
Basis Function Adaptation Methods for Cost
Approximation in MDP

Huizhen Yu
Department of Computer Science and HIIT

University of Helsinki
Helsinki 00014, Finland

Email: janey.yu@cs.helsinki.fi

Dimitri P. Bertsekas
Laboratory for Information and Decision Systems (LIDS)

Massachusetts Institute of Technology
MA 02139, USA

Email: dimitrib@mit.edu

Abstract—We generalize a basis adaptation method for cost
approximation in Markov decision processes (MDP), extending
earlier work of Menache, Mannor, and Shimkin. In our context,
basis functions are parametrized and their parameters are tuned
by minimizing an objective function involving the cost function
approximation obtained when a temporal differences (TD) or
other method is used. The adaptation scheme involves only low
order calculations and can be implemented in a way analogous
to policy gradient methods. In the generalized basis adaptation
framework we provide extensions to TD methods for nonlinear
optimal stopping problems and to alternative cost approximations
beyond those based on TD.

I. OVERVIEW

We consider a parameter optimization context consisting of
a parameter vector θ ∈ Θ, where Θ is an open subset of <k,
a function x∗ : Θ 7→ <n, and a cost function F : <n 7→ <.
We want to solve the problem

min
θ∈Θ

F
(
x∗(θ)

)
.

In general, for a given θ, the vector x∗(θ) may be the result of
an algorithm, a design process, or the solution of an equation
(all parametrized by θ), but in this paper we focus on a
special context that arises commonly in approximate dynamic
programming (ADP). The salient features of this context are:
• x∗(θ) is an approximation of the cost vector of an n-state

Markovian decision problem (MDP) within a subspace

Sθ =
{
Φ(θ)r | r ∈ <s

}
,

where the s columns of the n × s matrix Φ are basis
functions parametrized by θ.

• n, the dimension of x as well as the number of states, is
much larger than s, the dimension of the approximation
subspace Sθ.

We then obtain a basis adaptation problem: optimally select
the basis functions within a parametric class so that the cost
vector approximation x∗(θ) has some desirable properties.
This is related to the issue of selecting a good approximation
architecture, a subject of substantial research interest at present
in ADP. Note that the parameters in the basis functions may
have a natural interpretation; for instance, they may reflect the
degree of smoothness that we believe the cost function has,
particularly when the problem is a discretized version of a

continuous problem; or they may be parameters of a function
that maps states to quantitative features used to generate the
rows of Φ.

In this paper, we consider basis adaptation methods that use
gradient-based optimization and low dimensional calculations
(order s rather than n). We are motivated by two general
settings, which involve some form of Bellman’s equation,
x = T (x), corresponding to a single or to multiple policies.

In the first setting, Sθ is a general s-dimensional subset of
<n, and x∗ : Θ 7→ <n is the fixed point of the mapping T ,
left composed by a “projection” mapping Π(·, θ) : <n → Sθ
associated with θ, i.e., x∗(θ) is the solution of the “projected”
equation

x = Π
(
T (x), θ

)
. (1)

In the second setting, x∗(θ) is defined differently, as the
solution of an optimization problem:

x∗(θ) ∈ arg min
x∈X(θ)

f(x, θ), (2)

where for each θ, f(·, θ) and X(θ) are suitable cost function
and constraint, respectively. One example is the linear regres-
sion approach, where

f(x, θ) = ‖x− T (x)‖2, X(θ) = {Φ(θ)r | r ∈ <s}.

Another example is when x∗(θ) is obtained from an approxi-
mate linear programming formulation.

Most of the paper is devoted to the first setting where x∗(θ)
is the solution of the projected equation (1). To illustrate our
approach, let us assume for the time being that such a solution
exists, is unique, and is differentiable in a neighborhood
of a given θ; this can be implied from the differentiability
of the mappings Π, T at certain points, and the appropriate
implicit function theorems. Then, by differentiating both sides
of Eq. (1), we obtain the equation satisfied by the partial
derivatives of x∗(θ) with respect to the components θj of θ. In
particular, for each j, the n-dimensional vector ∂x

∗

∂θj
(θ) satisfies

the linear equation

∂x∗

∂θj
(θ) = ∂Π

∂θj

(
T (x∗), θ

)
+∇yΠ(y, θ)

∣∣
y=T (x∗)

· ∇T (x∗) · ∂x
∗

∂θj
(θ), (3)

978-1-4244-2761-1/09/$25.00 ©2009 IEEE

Authorized licensed use limited to: MIT Libraries. Downloaded on September 14, 2009 at 15:59 from IEEE Xplore. Restrictions apply.

where ∇ denotes the Jacobian of the associated mapping
with respect to a corresponding argument. This equation (and
hence also the values of ∂x∗

∂θj
(θ)) does not depend on how

the points in Sθ are represented. However, given a general
parametrization of the form

Sθ =
{
ψ(r, θ) | r ∈ <s

}
,

we have x∗(θ) = ψ(r∗, θ) for some r∗ ∈ <s, so that
∂x∗

∂θj
(θ) = ∂ψ

∂θj
(r∗, θ) +∇rψ(r∗, θ) · ∂r

∗

∂θj
(θ) (4)

(assuming differentiability of the functions involved for the
time being). Thus, after x∗(θ) (equivalently, r∗(θ)) is com-
puted, ∂x

∗

∂θj
(θ) can be efficiently represented without explicitly

storing length-n vectors, and by substituting Eq. (4) in (3),
solving Eq. (3) reduces to solving a low-dimensional linear
equation in ∂r∗

∂θj
(θ). This is important for computational rea-

sons. Similarly, when all the mappings are twice differentiable,
we can derive the equations satisfied by the second-order
derivatives.

Suppose that we wish to optimize over Θ a certain ob-
jective function F (x∗(θ)). Then we can use ∂x∗

∂θj
(θ) com-

puted as above and the chain rule to compute the gradient
∇(F ◦x∗), and apply gradient methods. In the context of TD-
based approximate policy evaluation for a discounted MDP,
this approach was first proposed by Menache, Mannor, and
Shimkin [1], who gave a simulation-based gradient method
that uses low-dimensional calculations for the case of the
linear Bellman equation x = T (x) corresponding to a single
policy, and the Bellman error criterion

F
(
x∗(θ)

)
=

∥∥x∗(θ)− T
(
x∗(θ)

)∥∥2
.

A central element of their approach is a convenient LSTD-
type iterative algorithm for estimating the partial derivatives
of x∗ with respect to components of θ. Their analysis still
relies on the availability of analytic expressions of x∗ and
r∗ in the linear problems they consider. One main purpose
of this paper is to show a broader scope of this adaptation
methodology beyond linear problems, as we have put forth
already in Eqs. (1)-(4). Our work generalizes the work of [1]
so that it applies to alternative optimization criteria, including
some involving a nonlinear Bellman equation (as for example
in optimal stopping), and also applies to cost approximation
by other methods, unrelated to the projected equation (1) (such
as for example regression).

Generally, there are potential difficulties at two levels when
using the method just outlined for basis adaptation:
• At the analytical level, issues such as (generalized) differ-

entiability and expressions of the Jacobians can be highly
complex and difficult to analyze.

• At the computational level, there can be difficulties in
estimating the necessary quantities defining the equations
and solving them using low-order simulation-based calcu-
lation, and there can also be difficult convergence issues.

In this paper, we will limit ourselves to the analytically simpler
case where Sθ is a linear subspace, Sθ =

{
Φ(θ)r | r ∈ <s

}
,

and Π(·, θ) is a Euclidean projection, hence a linear mapping.
Thus the projected equation simplifies to

x = Π(θ)T (x),

and x∗(θ) is simply Φ(θ)r∗(θ). For Π(θ) to be differentiable
at θ, it is sufficient that Φ(θ) is differentiable with linearly
independent columns. In Section II, T will be a linear mapping
associated with a single policy, while in Section III, T will
be a nonlinear mapping associated with an optimal stopping
problem. In the latter case, T may be nondifferentiable, so
we will use a more general differentiability notion in our
analysis. There are also other nonlinear cases (e.g., constrained
cases) that are relatively simple and are worthy of future
investigation.

The paper is organized as follows. In Sections II we
review the application of the basis adaptation scheme for
policy evaluation with TD. We recount the case considered
by [1], and we also include additional cases. In Section III,
we consider optimal cost approximation in optimal stopping
problems using TD(0). In this case, the mapping T is not
differentiable, and as a result the solution x∗(θ) of the as-
sociated nonlinear projected Bellman equation may not be
differentiable. It is instead semidifferentiable, (as we show in
an Appendix to this paper, available online). A corresponding
difficulty arises in estimating the semiderivatives/directional
derivatives by simulation-based algorithms. We discuss a
smoothing approach: applying basis adaptation to the solution
of the projected version of a smoothed Bellman equation. In
Section IV, as an example of the second setting, we discuss
basis adaptation for the linear regression approach based on
minimizing the Bellman equation error.

II. REVIEW OF A CASE OF LINEAR EQUATIONS: TD AND
POLICY EVALUATION

We consider the case of policy evaluation using TD(λ) with
linear function approximation. TD(λ) was first proposed by
Sutton [2]; for textbook discussions of TD(λ) and alternative
TD methods, see [3]–[5]. The mapping T is the linear mapping
associated with the multiple-step Bellman equation. In partic-
ular, for a given pair of (α, λ) with α ∈ (0, 1), λ ∈ [0, 1],

T (x) = g(λ) + P (λ)x

where g(λ) is a vector and P (λ) a matrix defined by

g(λ) = (I − λαP)−1g, P (λ) = (1− λ)
∞∑
m=0

λm(αP)m+1,

(5)
respectively, with P being the transition matrix of the Markov
chain associated with the policy, g being the one-stage cost
vector, and α being the discount factor. We consider the
discounted case α ∈ (0, 1) only for notational simplicity,
and the discussion that follows extends easily to undiscounted
cases.

For all θ ∈ Θ, the approximation space Sθ is the linear
s-dimensional subspace of <n spanned by the columns of a
matrix Φ(θ). We assume that for all θ, Φ(θ) is differentiable

Authorized licensed use limited to: MIT Libraries. Downloaded on September 14, 2009 at 15:59 from IEEE Xplore. Restrictions apply.

and its columns are linearly independent. Let Π(θ) be a
weighted Euclidean projection on Sθ, thus a linear mapping.
We assume that for all θ, the matrix I−Π(θ)P (λ) is invertible.

Then, for all θ ∈ Θ, there exists a unique solution x∗(θ) to
the projected Bellman equation associated with TD(λ),

x = Π(θ)T (x) = Π(θ)(g(λ) + P (λ)x),

and x∗(θ) is differentiable on Θ. Equation (3) becomes for
j = 1, . . . , k,

∂x∗

∂θj
(θ) = ∂Π

∂θj
(θ)T (x∗) + Π(θ)P (λ) ∂x∗

∂θj
(θ). (6)

Equation (4) becomes

∂x∗

∂θj
(θ) = ∂Φ

∂θj
(θ)r∗(θ) + Φ(θ)∂r

∗

∂θj
(θ)

with Φ(θ)r∗(θ) = x∗(θ), (r∗(θ) is differentiable since Φ(θ)
is differentiable and has linearly independent columns). It
follows from combining the above two equations that the
second component Φ(θ)∂r

∗

∂θj
(θ) of the derivative is the solution

of the equation

x = qj(x∗) + Π(θ)P (λ)x (7)

where the vector qj(x∗) ∈ Sθ is given by

qj(x∗) = ∂Π
∂θj

(θ)T (x∗) + (Π(θ)P (λ) − I) ∂Φ
∂θj

(θ)r∗. (8)

(Note that since r∗ in this case has an explicit expression,
alternatively, we can differentiate the expression of r∗ directly
to get an identical formula for derivative estimation.)

We can use various TD algorithms to solve Eq. (7), as we
will discuss shortly. In a way this is similar to actor-critic
methods (see e.g., [6]): the gradient satisfies linear equations
[(7) for all j] of the same form as the equation satisfied by the
approximating cost x∗, except that the constant terms of these
equations are defined through x∗. For gradient estimation, least
squares-based algorithms, such as LSTD [7] and LSPE [8]
are particularly convenient, because qj(x∗) is also linear in
r∗, so the terms multiplying r∗ in its expression can be
estimated simultaneously as r∗ itself is being estimated. In
what follows, we describe the details, starting with expressing
Eq. (7) explicitly in terms of low dimensional quantities.

A. Projection Norm Independent of θ

Let ξ be the weights in the projection norm, and let Ξ denote
the diagonal matrix with diagonal entries being ξ. We first
consider the case where ξ does not functionally depend on θ.
The projection Π(θ) can be expressed in matrix notation as

Π(θ) = Φ(θ)(Φ(θ)′ ΞΦ(θ))−1Φ(θ)′ Ξ.

To simplify notation, define matrices B0 and Bj , j = 1, . . . , k,
by

B0(θ) = Φ(θ)′ ΞΦ(θ), Bj(θ) = ∂Φ
∂θj

(θ)′ ΞΦ(θ), (9)

and also omit θ in the parentheses for the time being. A useful
fact is that for any invertible square matrix B differentiable in

θ, ∂B
−1

∂θj
= −B−1 ∂B

∂θj
B−1. It can be easily verified that

∂Π
∂θj

= ∂Φ
∂θj

B−1
0 Φ′ Ξ − ΦB−1

0

(
Bj +B′j

)
B−1

0 Φ′ Ξ

+ ΦB−1
0

∂Φ
∂θj

′
Ξ. (10)

Substituting this expression in Eq. (8), using the fact
B−1

0 Φ′ ΞT (x∗) = r∗, and rearranging terms, we can express
qj(x∗) explicitly in terms of low-dimensional quantities:

qj(x∗) = Φr̂j , with r̂j = B−1
0

(
∂Φ
∂θj

′
Ξ g(λ) +Mjr

∗
)
, (11)

where

Mj = ∂Φ
∂θj

′
Ξ (P (λ) − I)Φ + Φ′ Ξ (P (λ) − I) ∂Φ

∂θj
. (12)

We can also write Eq. (7) equivalently as

M0r +B0r̂j = 0

where
M0 = Φ′ Ξ(P (λ) − I)Φ. (13)

B. Projection Norm Dependent on θ

We now consider the case where ξ depends on θ. The
expression of ∂Π

∂θj
(θ) contains two more terms in addition to

those in Eq. (10):

−ΦB−1
0

(
Φ′ ∂Ξ

∂θj
Φ

)
B−1

0 Φ′ Ξ, and ΦB−1
0 Φ′ ∂Ξ

∂θj
.

Correspondingly, it is easy to verify that now qj(x∗) = Φr̂j
with

r̂j = B−1
0

(
∂Φ
∂θj

′
Ξ g(λ) +Mjr

∗ + Φ′ ∂Ξ
∂θj

g(λ) + M̂jr
∗
)
,

(14)
where Mj is given by Eq. (12), and

M̂j = Φ′ ∂Ξ
∂θj

(P (λ) − I)Φ. (15)

Since the expressions involve ∂ξ
∂θj

, this setting is realistic only
when ξ(θ) is known explicitly. It is more suitable for TD(0)
but can be difficult to apply for TD(λ) with λ > 0 (see related
details in Example 4 below).

C. Examples of Derivative Estimation

We define some notation to be used throughout the paper
except where stated otherwise. We denote by g(i, i′) the one-
stage cost of transition from state i to i′, and we denote by
φ(i) the ith row of Φ, viewed as a column vector. Let {γt}
denote a deterministic sequence of positive stepsizes satisfying
the standard condition:

∑
t≥0 γt = ∞,

∑
t≥0 γ

2
t < ∞. Let

(i0, i1, . . .) be a sample trajectory of states from an irreducible
Markov chain with invariant distribution ξ. This Markov
chain is assumed to be the Markov chain associated with the
policy, i.e., it has as transition matrix P , except where noted
otherwise.

Example 1 (ξ independent of θ). This is the case considered
in [1]. The component Φ∂r∗

∂θj
of the derivative ∂x∗

∂θj
satisfies

Authorized licensed use limited to: MIT Libraries. Downloaded on September 14, 2009 at 15:59 from IEEE Xplore. Restrictions apply.

Eq. (7) with qj = Φr̂j given by Eq. (11). To estimate ∂x∗

∂θj
, we

define vector iterates

z0,t = λαz0,t−1 + φ(it), zj,t = λαzj,t−1 + ∂φ(it)
∂θj

,

b0,t = (1− γt)b0,t−1 + γtz0,tg(it, it+1),
bj,t = (1− γt)bj,t−1 + γtzj,tg(it, it+1),

and matrix iterates

B0,t = (1− γt)B0,t−1 + γtφ(it)φ(it)′,
M0,t = (1− γt)M0,t−1 + γtz0,t(αφ(it+1)− φ(it))′,
Mj,t = (1− γt)Mj,t−1 + γtzj,t(αφ(it+1)− φ(it))′

+ γtz0,t

(
α∂φ(it+1)

∂θj
− ∂φ(it)

∂θj

)′
.

It can be shown that as t → ∞, B0,t → B0, M0,t → M0,
Mj,t → Mj , b0,t → Φ′ Ξ g(λ), and bj,t → ∂Φ

∂θj
Ξ g(λ), with

probability 1 (w.p.1). We then let r0,t and rj,t be defined either
by the LSTD algorithm:

r0,t+1 = −M−1
0,t b0,t,

rj,t+1 = −M−1
0,t (bj,t +Mj,tr0,t) ;

or, by the LSPE algorithm with a constant stepsize γ (e.g,
γ ∈ (0, 1]):

r0,t+1 = r0,t + γB−1
0,t (M0,tr0,t + b0,t) ,

rj,t+1 = rj,t + γB−1
0,t (M0,trj,t + bj,t +Mj,tr0,t) .

It follows from the convergence of LSTD/LSPE that w.p.1,
limt→∞ r0,t = r∗ and

lim
t→∞

rj,t = ∂r∗

∂θj
, lim

t→∞
∂Φ
∂θj

r0,t + Φrj,t = ∂x∗

∂θj
.

Example 2. We continue with the above example. Suppose
the objective function F (x) for basis adaptation is the Bellman
error:

F (x∗) = 1
2‖x

∗ − g − αPx∗‖2ξ .

Then, ∇(F ◦ x∗)(θ) = (. . . , ∂(F◦x∗)
∂θj

(θ), . . .) with

∂(F◦x∗)
∂θj

=
〈
x∗ − g − αPx∗ , ∂x

∗

∂θj
− αP ∂x∗

∂θj

〉
ξ
,

where < ·, · >ξ denotes inner product and we omit θ in the
parentheses for simplicity. Estimation using samples can be
done efficiently by approximating the matrices and vectors
which do not depend on x∗ and plugging in the approximations
of r∗ and ∂r∗

∂θj
as they are computed. In particular, we have

∂(F◦x∗)
∂θj

= r∗′Φ′(I − αP)′ Ξ (I − αP)
(
∂Φ
∂θj

r∗ + Φ∂r∗

∂θj

)
− g′ Ξ (I − αP)

(
∂Φ
∂θj

r∗ + Φ∂r∗

∂θj

)
. (16)

To compute this quantity, for state it along a trajectory of states
(i0, i1, . . .), we sample an additional transition īt+1 from it,

independently of the trajectory, and do the matrix and vector
iterates:

Vj,t = (1− γt)Vj,t−1

+ γt (φ(it)− αφ(it+1))

[
∂φ(it)
∂θj

− α∂φ(̄it+1)
∂θj

φ(it)− αφ(̄it+1)

]′
,

vj,t = (1− γt)vj,t−1 + γtg(it, it+1)

[
∂φ(it)
∂θj

− α∂φ(̄it+1)
∂θj

φ(it)− αφ(̄it+1)

]′
.

Then, as t→∞, w.p.1,

Vj,t → Φ′(I − αP)′ Ξ (I − αP)
[
∂Φ
∂θj

Φ
]
,

vj,t → g′ Ξ (I − αP)
[
∂Φ
∂θj

Φ
]
,

so, with r0,t and rj,t given by Example 1,

r′0,t Vj,t

[
r0,t
rj,t

]
− vj,t

[
r0,t
rj,t

]
→ ∂(F◦x∗)

∂θj
, w.p.1.

One may also consider a two-time-scale algorithm which es-
timates the gradient at a faster time-scale, by using the iterates
given in this and the preceding example (with γt = t−β , β ∈
(1
2 , 1) for instance), and changes θt at a slower time-scale

along the estimated gradient direction. Then it is not difficult
to show, under standard conditions, that w.p.1, θt converges
to the closure of the set {θ | ∇(F ◦ x∗)(θ) = 0, θ ∈ Θ}, by
using e.g., the results in Borkar [9] and [10].

Example 3. As an example of finding θ to minimize an
objective function different than the Bellman error, we may
consider

F (x∗(θ)) = 1
2

∑
i∈I

(Ji − x∗i (θ))
2,

where I is a certain small subset of states, and Ji, i ∈ I, are
the costs of the policy at these states calculated directly by
simulation. We may use this criterion to tune the subspace
Sθ, while we use TD to obtain approximating costs at the rest
of states. The gradient ∇(F ◦x∗) can be easily calculated from
the estimates of ∇x∗ given in Example 1.

Example 4 (ξ dependent on θ). We assume that for all states i,
the ratios ∂ξ(i)

∂θj
(θ)/ξ(i) are known, and ξ is the invariant

distribution of the Markov chain that we are simulating, whose
transition matrix is P̂ . We also assume that the ratios pii′

p̂ii′

between the entries of P and P̂ are well-defined and known.
The component Φ∂r∗

∂θj
of the derivative ∂x∗

∂θj
satisfies Eq. (7)

with qj = Φr̂j now given by Eq. (14). To estimate ∂x∗

∂θj
, we

use weighted sampling to handle the terms in the expression
of r̂j that involve Φ′ ∂Ξ

∂θj
based on the observation that we can

write for j = 1, . . . , k,

Φ′ ∂Ξ
∂θj

=
[
w(1)φ(1) · · · w(n)φ(n)

]
· Ξ, (17)

where w(i) = ∂ξ(i)
∂θj

/ξ(i), i = 1, . . . , n. From this it is easy
to see how to estimate the two related terms Φ′ ∂Ξ

∂θj
g(λ) and

M̂j in Eq. (14) using standard TD formulas. For estimating

Authorized licensed use limited to: MIT Libraries. Downloaded on September 14, 2009 at 15:59 from IEEE Xplore. Restrictions apply.

terms involving P (λ), since the states are sampled using a
Markov chain with transition matrix P̂ instead of P , we
employ weighting of samples to account for this discrepancy
(see [11]).

In particular, similar to Example 1, we define the following
vector iterates

z0,t = λα
pit−1it

p̂it−1it
· z0,t−1 + φ(it),

zj,t = λα
pit−1it

p̂it−1it
· zj,t−1 + ∂φ(it)

∂θj
,

b0,t = (1− γt)b0,t−1 + γtz0,tg(it, it+1),
bj,t = (1− γt)bj,t−1 + γtzj,tg(it, it+1),

and matrix iterates

B0,t = (1− γt)B0,t−1 + γtφ(it)φ(it)′,

M0,t = (1− γt)M0,t−1 + γtz0,t

(
α
pitit+1
p̂itit+1

· φ(it+1)− φ(it)
)′
,

Mj,t = (1− γt)Mj,t−1 + γtzj,t

(
α
pitit+1
p̂itit+1

· φ(it+1)− φ(it)
)′

+ γtz0,t

(
α
pitit+1
p̂itit+1

· ∂φ(it+1)
∂θj

− ∂φ(it)
∂θj

)′
.

In addition, we define the following vector and matrix iterates

ẑj,t = λα
pit−1it

p̂it−1it
· ẑj,t−1 + φ(it) · ∂ξ(it)∂θj

/ξ(it),

b̂j,t = (1− γt)b̂j,t−1 + γtẑj,tg(it, it+1),

M̂j,t = (1− γt)M̂j,t−1 + γtẑj,t

(
α
pitit+1
p̂itit+1

· φ(it+1)− φ(it)
)′
.

We then define iterates r0,t, rj,t by the LSTD algorithm:

r0,t+1 = −M−1
0,t b0,t,

rj,t+1 = −M−1
0,t

(
bj,t +Mj,tr0,t + b̂j,t + M̂j,tr0,t

)
.

Then, it can be shown that M0,t → M0, Mj,t → Mj ,
and M̂j,t → M̂j in probability [cf. Eqs. (13), (12), (15),
respectively]; and b0,t → Φ′ Ξ g(λ), bj,t → ∂Φ

∂θj
Ξ g(λ), and

b̂j,t → Φ′ ∂Ξ
∂θj

g(λ) in probability [cf. Eq. (14)]. Consequently,
it can shown that r0,t → r∗, rj,t → ∂r∗

∂θj
, and ∂Φ

∂θj
r0,t+Φrj,t →

∂x∗

∂θj
in probability. �

D. Estimation of Second-Order Derivatives
When Φ is twice differentiable in θ, x∗ is also, and we can

compute the second-order derivatives. In particular,
∂2x∗

∂θj∂θk
= ∂2Φ

∂θj∂θk
r∗ + ∂Φ

∂θj

∂r∗

∂θk
+ ∂Φ

∂θk

∂r∗

∂θj
+ Φ ∂2r∗

∂θj∂θk
, (18)

where the first three terms can be obtained in the process of
computing r∗ and its first-order derivatives, and the last term
Φ ∂2r∗

∂θj∂θk
can be computed by solving a linear equation of the

form
x = qjk + Π(θ)P (λ)x

for some qjk ∈ Sθ. This equation is obtained by differentiating
both sides of Eq. (7) at Φ∂r∗

∂θj
by θk, similar to the derivation

of first-order derivatives. Estimating ∂2x∗

∂θj∂θk
and ∂2(F◦x∗)

∂θj∂θk

can also be done efficiently by simulation, similar to the
examples in the preceding section. These quantities are useful
in applying Newton’s method to optimize the parameter θ.

III. A CASE OF NONLINEAR EQUATIONS: TD AND
OPTIMAL STOPPING PROBLEMS

We consider optimal stopping problems and approximation
of the optimal cost functions using TD(0). The mapping T is
the nonlinear mapping associated with the Bellman equation:

T (x) = g +Af(x)

where f(x) = min{c, x}, or, written component-wise,

f(x) = (f1(x1), . . . , fn(xn)) , where fi(xi) = min{ci, xi},

with ci being the cost of stopping at state i, and A = αP, α ∈
(0, 1), with P being the transition matrix of the Markov chain
and α being the discount factor of the stopping problem. We
consider the discounted case for simplicity, even though the
discussion extends to the total cost case.

As in the previous section, for all θ ∈ Θ, the approximation
space Sθ is a linear s-dimensional subspace of <n spanned
by the columns of Φ(θ), and the projection Π(θ) on Sθ is a
weighted Euclidean projection with respect to the norm ‖ · ‖ξ
where ξ denotes the weight vector. For simplicity, we assume
in this section that ξ corresponds to the invariant distribution
of the Markov chain. We also assume that for all θ, Φ(θ)
is differentiable and its columns are linearly independent.
The approximating cost x∗(θ) is the unique solution of the
projected Bellman equation

x = Π(θ)T (x) = Π(θ)
(
g +Af(x)

)
. (19)

Note that with the above choice of ξ, Π(θ)T is a contraction
with ‖Π(θ)T‖ξ ≤ α for all θ ∈ Θ.

In this case, x∗ does not have an analytical expression,
but it can be efficiently computed [12]–[14], thanks to the
contraction property of Π(θ)T . We will specialize the general
basis adaptation method discussed in Section I to this case.
Note, however, that T is not differentiable everywhere.

First we derive the derivative formula and an estimation
algorithm for points at which T is differentiable. We then
discuss the semidifferentiability of x∗(θ) (with some analysis
deferred to the Appendix, available online), and an associated
difficulty in semiderivative/directional derivative estimation
due to the non-smoothness of the Bellman operator. We then
present a smoothing approach to basis adaptation based on
using a smoothed version of the Bellman equation.

A. Derivatives at Certain Differentiable Points

Consider a point θ ∈ Θ such that for all states i,

x∗i (θ) 6= ci. (20)

Let δ[. . .] denote the indicator function. We have

∇T (x∗) = A∇f(x∗),

where ∇f(x∗) is a diagonal matrix with the ith diagonal entry
being

dfi

dxi
(x∗i) = δ[x∗i < ci]. (21)

Since x−Π(θ)T (x) is differentiable at (x∗, θ) and the matrix
I − Π(θ)A∇f(x∗) is non-singular (which can be seen from

Authorized licensed use limited to: MIT Libraries. Downloaded on September 14, 2009 at 15:59 from IEEE Xplore. Restrictions apply.

the fact that the mapping L(x) = Π(θ)A∇f(x∗)x is also a
contraction with respect to ‖ · ‖ξ), by the implicit function
theorem x∗(θ) is differentiable in a neighborhood of θ.

Specializing Eq. (3) of Section I to this case, we have

∂x∗

∂θj
(θ) = ∂Π

∂θj
(θ)T (x∗) + Π(θ)A∇f(x∗)∂x

∗

∂θj
(θ). (22)

We also have ∂x∗

∂θj
(θ) = ∂Φ

∂θj
(θ) r∗(θ) + Φ(θ) ∂r

∗

∂θj
(θ). It can

be verified, similar to the derivation in the previous section,
that the second component Φ(θ) ∂r

∗

∂θj
(θ) is the solution of the

linear equation

x = qj(x∗) + Π(θ)A∇f(x∗)x (23)

with qj(x∗) ∈ Sθ given as follows. Omitting θ in the
parentheses for simplicity,

qj(x∗) = Φr̂j

with

r̂j =B−1
0

(
∂Φ
∂θj

′
Ξ g +Mjr

∗
)

+B−1
0

(
∂Φ
∂θj

′
ΞA

(
f(x∗)−∇f(x∗) Φr∗

))
(24)

and

Mj = ∂Φ
∂θj

′
Ξ (A∇f(x∗)− I)Φ + Φ′ Ξ (A∇f(x∗)− I) ∂Φ

∂θj
.

(25)

The following derivative estimation algorithm is then evi-
dent. Notice that in a neighborhood of x∗, ∇f(x) is constant,
therefore continuous. This is important for the convergence of
the simulation-based algorithms we use to estimate ∂x∗

∂θj
.

Example 5. Let (i0, i1, . . .) be a sample trajectory of states
from the Markov chain. We assume the availability of a
sequence r0,t converging to r∗, which can be obtained by a
number of TD algorithms, e.g., the least squares Q-learning
algorithm and its convergent variants [14], the fixed point
Kalman filter algorithm [13], and the recursive TD(0) al-
gorithm [12]. Let γt be a sequence of stepsizes such that∑
t γt = ∞,

∑
t γ

2
t < ∞. We define scalar κt ∈ {0, 1} and

vector iterates

κt+1 = δ
[
φ(it+1)′r0,t < cit+1

]
,

bj,t = (1− γt)bj,t + γt
∂φ(it)
∂θj

g(it, it+1),

bsj,t = (1− γt)bsj,t−1 + γtα cit+1 (1− κt+1)
∂φ(it)
∂θj

,

and define matrix iterates

Ms
0,t = (1− γt)Ms

0,t−1 + γtφ(it) (ακt+1φ(it+1)− φ(it))
′
,

Ms
j,t = (1− γt)Ms

j,t−1 + γt
∂φ(it)
∂θj

(ακt+1φ(it+1) − φ(it))
′

+ γtφ(it)
(
ακt+1

∂φ(it+1)
∂θj

− ∂φ(it)
∂θj

)′
.

We define rj,t either by the LSTD algorithm:

rj,t+1 = −(Ms
0,t)

−1
(
bj,t + bsj,t +Ms

j,tr0,t
)
;

or, by the LSPE algorithm with a constant stepsize γ ∈
(0, 2

1+α) (γ = 1, for instance):

rj,t+1 = rj,t + γB−1
0,t

(
Ms

0,trj,t + bj,t
)

+ γB−1
0,t

(
bsj,t +Ms

j,tr0,t
)
,

where B0,t is defined as in Example 1.

Proposition 1. Assume that θ is such that Eq. (20) holds, and
that r0,t → r∗ as t→∞, w.p.1. For j = 1, . . . , k, let rj,t be
given by Example 5; then, w.p.1,

lim
t→∞

rj,t = ∂r∗

∂θj
, lim

t→∞
∂Φ
∂θj

r0,t + Φrj,t = ∂x∗

∂θj
.

Proof: (Sketch) Since ∇f(x) is constant in a neigh-
borhood of x∗ and r0,t → r∗ as t → ∞ w.p.1, κt+1 =
dfit+1
dxit+1

(x∗it+1
) for t sufficiently large, w.p.1. Then it can be

seen that the iterates converge to their respective limits:
bj,t → ∂Φ

∂θj

′
Ξ g, bsj,t → ∂Φ

∂θj

′
ΞA

(
f(x∗) − ∇f(x∗) Φr∗

)
, [cf.

Eq. (24)], Ms
0,t → Φ′ Ξ (A∇f(x∗) − I)Φ [cf. Eq. (23)], and

Ms
j,t → Mj [cf. Eq. (25)]. The claimed convergence then

follows from the convergence of LSTD/LSPE, where for LSPE
we use also the fact that L(x) = qj + ΠA∇f(x∗)x is a
contraction mapping with respect to ‖ · ‖ξ.

Example 6. Consider using the Bellman error as the objective
function F for basis adaptation:

F (x∗) = 1
2‖x

∗ − g − αPf(x∗)‖2ξ .

We have
∂(F◦x∗)
∂θj

=
〈
x∗ − g − αPf(x∗) , ∂x

∗

∂θj
− αP ∇f(x∗) ∂x

∗

∂θj

〉
ξ

=
〈
x∗− ḡ − αP∇f(x∗)x∗ , ∂x

∗

∂θj
− αP ∇f(x∗)∂x

∗

∂θj

〉
ξ

where
ḡ = g + αP

(
f(x∗)−∇f(x∗)x∗

)
.

Estimating this inner product by simulation can be done
exactly as in Example 2, except for the following differences.
We define

k̄t+1 = δ
[
φ(̄it+1)′r0,t < cīt+1

]
,

which equals
dfīt+1
dxīt+1

(x∗
īt+1

) for t sufficiently large, w.p.1.

We replace ∂φ(̄it+1)
∂θj

and φ(̄it+1) in both Vj,t and vj,t by

κ̄t+1
∂φ(̄it+1)
∂θj

and κ̄t+1φ(̄it+1), respectively. We also replace
the term φ(it+1) in Vj,t by κt+1φ(it+1), and finally, in vj,t,
we replace the term g(it, it+1) by by g(it, it+1) + α(1 −
κt+1)cit+1 .

B. Semidifferentiability of x∗

For θ ∈ Θ such that x∗i (θ) = ci for some i, x∗(θ)
may not be differentiable at θ. Nevertheless, x∗ is “well-
behaved” in the sense that x∗(θ) is semidifferentiable on Θ,
as we show in the Appendix to this paper (available online).
Semidifferentiability is stronger than the one-sided directional
differentiability; it implies the latter and the continuity of the
directional derivatives in the direction (see [15]). While we
will not go deeply into semiderivative estimation in the present

Authorized licensed use limited to: MIT Libraries. Downloaded on September 14, 2009 at 15:59 from IEEE Xplore. Restrictions apply.

paper, we continue our discussion a little further to illustrate a
difficulty, and to motivate the subsequent smoothing approach.

First, we introduce some notation. For a semidifferentiable
function F (x), we denote by dF (x)(v) its semiderivative
at x for a direction v (which coincides with the one-sided
directional derivative at x for v); and for a semidifferentiable
mapping F (x), we denote its semiderivative at x for v by
DF (x)(v). Consider the functions fi(xi) = min{ci, xi}, i =
1, . . . , n, in our stopping problem. The semiderivative of fi at
xi for a scalar v is

dfi(xi)(v) = f̂i(v;xi),

where f̂i : <× < → < is given by

f̂i(v;xi) =

v, xi < ci,

0, xi > ci,

min{0, v}, xi = ci.

(26)

It can be shown that x∗(θ) is semidifferentiable on Θ (Prop. 3
in the Appendix). Denote the semiderivative of x∗ at θ for a
direction v = (v1, . . . , vk) of θ by Dx∗(θ)(v). Applying the
chain rule, it can be shown that the semiderivative Dx∗(θ)(v)
is the unique solution of the following nonlinear equation of
x:

x =
k∑
j=1

vj
∂Π
∂θj

(θ)T (x∗) + Π(θ)Af̂(x;x∗) (27)

where f̂(x;x∗) =
(
f̂1(x1;x∗1) , . . . , f̂n(xn;x

∗
n)

)′
with f̂i

given by Eq. (26).
Similar to the differentiable cases in the earlier sections,

Eq. (27) for the semiderivative Dx∗(θ)(v) can be rewritten
explicitly in terms of Φ(θ) and

Ψv(θ) =
k∑
j=1

vj
∂Φ
∂θj

(θ).

In particular, (omitting θ in Φ(θ) and Ψv(θ) for notational
simplicity),

Dx∗(θ)(v) = Ψvr
∗ + ΦDr∗(θ)(v)

where the second component ΦDr∗(θ)(v) is the solution of
the nonlinear equation of x:

x = Φr̂v(x∗) + Π(θ)Af̂
(
Ψvr

∗ + x ;x∗
)
, (28)

where the first term Φr̂v(x∗) is given by

Φr̂v(x∗) = DΠ(θ)(v)T (x∗)−Ψvr
∗

= ΦB−1
0 (Ψ′

v ΞT (x∗))

− ΦB−1
0 (Ψ′

v ΞΦ + Φ′ ΞΨv) r∗. (29)

If x∗ were known exactly, then, since ΠAf̂(x; x̄) for any
fixed x̄ is a contraction mapping for x, Eq. (28) can be solved
by TD-type simulation-based algorithms [12]–[14], similar to
solving the projected Bellman equation of the stopping prob-
lems. However, because with simulation x∗ is only approached
in the limit, and also because f̂ is discontinuous in its second

argument, we find it difficult to ensure the convergence of
the simulation-based algorithm for solving Eq. (28), such as
the ones used in Example 5. This leads us to consider an
alternative smoothing approach to basis adaptation, presented
in the next section.

In connection with the preceding discussion, we note that if
T is smooth but Π(θ) is semidifferentiable, we will not have
the above difficulty to compute the semiderivatives of x∗ (in
fact we only need to solve linear equations as before), because
θ is always given. As it is natural to have parametrized basis
functions that are not everywhere differentiable with respect to
the parameters, the corresponding estimation scheme for the
semiderivatives of x∗(θ) can be useful for basis adaptation in
such cases.

C. Approximation by a Smoothed Problem

We consider smoothing the Bellman equation. For any
positive ε, define function hε : < → <, which is a smoothed
version of min{0, a}, by

hε(a) =

{
a− ε exp

{
a
2ε

}
, a ≤ 0,

−ε exp
{
− a

2ε

}
, a > 0.

(30)

Then, hε is monotonic, twice differentiable, and

sup
a∈<

|hε(a)−min{0, a}| ≤ ε. (31)

Define fε(x) =
(
fε,1(x1), . . . , fε,n(xn)

)
to be a smoothed

version of f(·) = min{c, ·} by

fε,i(xi) = ci + hε(xi − ci), (32)

and define Tε to be a “smoothed” Bellman operator by

Tε(x) = g +Afε(x). (33)

Then, fε and Tε are monotonic and twice differentiable, and
furthermore, Π(θ)Tε(·) is a contraction mapping with respect
to ‖·‖ξ (since |dfε,i

dxi
| < 1 for all i). Consequently, the smoothed

projected Bellman equation

x = Π(θ)Tε(x)

has a unique solution, which we denote by

x∗ε (θ) = Φ(θ)r∗ε (θ),

and which can be computed by simulation using a number
of TD algorithms (e.g., [12]–[14]). By Eq. (31), a worst case
bound on the difference x∗ε − x∗ can be shown:

‖x∗ε (θ)− x∗(θ)‖ξ ≤ αε
1−α . (34)

The derivatives of x∗ε with respect to θ can be estimated
similarly as in Section III-A with ∇fε(x∗ε) replacing ∇f(x∗)
in Eqs. (22)-(25).

Authorized licensed use limited to: MIT Libraries. Downloaded on September 14, 2009 at 15:59 from IEEE Xplore. Restrictions apply.

Example 7. Let (i0, i1, . . .) be a sample trajectory of states
from the Markov chain. We define iterates B0,t and bj,t as in
Example 5. We define scalars yt, κt and vector bsj,t by

yt+1 = φ(it+1)′r0,t, κt+1 =
dfε,it+1
dxit+1

(
yt+1

)
,

bsj,t = (1− γt)bsj,t−1

+ γtα
∂φ(it)
∂θj

(
fε,it+1(yt+1)− κt+1yt+1

)
,

and we define matrix iterates

Ms
0,t = (1− γt)Ms

0,t−1 + γtφ(it)
(
ακt+1φ(it+1)− φ(it

))′
,

Ms
j,t = (1− γt)Ms

j,t−1 + γt
∂φ(it)
∂θj

(
ακt+1φ(it+1)− φ(it

))′
+ γtφ(it)

(
ακt+1

∂φ(it+1)
∂θj

− ∂φ(it)
∂θj

)′
.

We then define rj,t as in Example 5.

Proposition 2. Assume that r0,t → r∗ε as t → ∞, w.p.1. For
j = 1, . . . , k, let rj,t be given by Example 7; then, w.p.1,

lim
t→∞

rj,t = ∂r∗ε
∂θj

, lim
t→∞

∂Φ
∂θj

r0,t + Φrj,t = ∂x∗ε
∂θj

.

Proof: (Sketch) Since r0,t → r∗ε and fε,∇fε are contin-
uous, we have

fε,it+1

(
φ(it+1)′r0,t

)
= fε,it+1

(
x∗ε,it+1

)
+ o(1),

and

κt+1 =
dfε,it+1
dxit+1

(
φ(it+1)′r0,t

)
=

dfε,it+1
dxit+1

(
x∗ε,it+1

)
+ o(1),

w.p.1, where o(1) denotes some term that diminishes to 0
as t → ∞. It then follows from e.g., Borkar [10], Chap. 2,
Lemma 1 with its extension in Section 2.2, and Chap. 6,
Corollary 8, that bsj,t, M

s
0,t, and Ms

j,t, j ≥ 1, converge to
their respective limits, whose expressions are as given in the
proof of Prop. 1 with ∇fε(x∗ε) replacing the term ∇f(x∗).
The claimed convergence then follows.

IV. A CASE OF PARAMETRIC OPTIMIZATION: LINEAR
REGRESSION FOR POLICY EVALUATION

Consider now
min
θ∈Θ

min
r∈<s

F (r, θ)

where
F (r, θ) = 1

2‖Φ(θ)r − g −AΦ(θ)r‖2ξ (35)

with A = αP, α ∈ (0, 1), and Φ(θ) is differentiable. Let

G(θ) = min
r∈<s

F (r, θ). (36)

Assume that for every θ there is a unique minimum r∗. Then,
it follows from the theory of parametric minimization (or by
a direct verification) that

∂G
∂θj

(θ) = ∂F
∂θj

(r∗, θ), (37)

which in our case, omitting θ in Φ(θ) for simplicity, is
∂G
∂θj

(θ) =
〈
Φr∗ − g −AΦr∗ , ∂Φ

∂θj
r∗ −A ∂Φ

∂θj
r∗

〉
ξ
. (38)

The derivatives can be easily estimated by simulation.

Similarly, when Φ(θ) is only semidifferentiable, deriva-
tives in the above can be replaced by semiderivatives, and
semiderivatives/directional derivatives of G(θ) can be esti-
mated for basis adaptation.

V. DISCUSSION

While we have considered primarily Markov decision prob-
lems in this paper, our basis selection scheme applies also in
the context of approximately solving linear or nonlinear fixed
point equations by TD methods [11] or by regression methods.
For both contexts, choosing suitable objective functions F
using prior knowledge about the problem can be beneficial,
as the Bellman error or the residual error in satisfying the
fixed point equation is not necessarily the best choice of the
objective, especially when the problem is ill-conditioned.

ACKNOWLEDGMENT

We thank Prof. John Tsitsiklis, Prof. Paul Tseng, Prof. Vivek
Borkar, and Nick Polydorides for helpful discussions. H. Yu
is supported in part by Academy of Finland grant 118653
(ALGODAN) and by the IST Programme of the European
Community IST-2002-506778 (PASCAL). D. P. Bertsekas is
supported by NSF Grant ECCS-0801549.

REFERENCES

[1] I. Menache, S. Mannor, and N. Shimkin, “Basis function adaptation in
temporal difference reinforcement learning,” Ann. Oper. Res., vol. 134,
no. 1, pp. 215–238, 2005.

[2] R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Machine Learning, vol. 3, pp. 9–44, 1988.

[3] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Belmont, MA: Athena Scientific, 1996.

[4] R. S. Sutton and A. G. Barto, Reinforcement Learning. Cambridge,
MA: MIT Press, 1998.

[5] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed.
Belmont, MA: Athena Scientific, 2007, vol. II.

[6] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” SIAM J.
Control Optim., vol. 42, no. 4, pp. 1143–1166, 2003.

[7] J. A. Boyan, “Least-squares temporal difference learning,” in Proc. The
16th Int. Conf. Machine Learning, 1999.

[8] D. P. Bertsekas, V. S. Borkar, and A. Nedić, “Improved temporal
difference methods with linear function approximation,” in Learning and
Approximate Dynamic Programming. IEEE Press, 2004.

[9] V. S. Borkar, “Stochastic approximation with ‘controlled Markov’
noise,” Systems Control Lett., vol. 55, pp. 139–145, 2006.

[10] ——, Stochastic Approximation: A Dynamic Viewpoint. New Delhi:
Hindustan Book Agency, 2008.

[11] D. P. Bertsekas and H. Yu, “Projected equation methods for approximate
solution of large linear systems,” J. Comput. Sci. Appl. Math., 2008, to
appear.

[12] J. N. Tsitsiklis and B. Van Roy, “Optimal stopping of Markov processes:
Hilbert space theory, approximation algorithms, and an application to
pricing financial derivatives,” IEEE Trans. Automat. Contr., vol. 44, pp.
1840–1851, 1999.

[13] D. S. Choi and B. Van Roy, “A generalized Kalman filter for fixed
point approximation and efficient temporal-difference learning,” Discrete
Event Dyn. Syst., vol. 16, no. 2, pp. 207–239, 2006.

[14] H. Yu and D. P. Bertsekas, “A least squares Q-learning algorithm for
optimal stopping problems,” MIT, LIDS Tech. Report 2731, 2006.

[15] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis. Berlin:
Springer-Verlag, 1998.

[16] S. M. Robinson, “An implicit-function theorem for a class of nonsmooth
functions,” Math. Oper. Res., vol. 16, no. 2, pp. 292–309, 1991.

[17] A. L. Dontchev and R. T. Rockafellar, “Robinson’s implicit function
theorem and its extensions,” Math. Program. Ser. B, vol. 117, no. 1, pp.
129–147, 2008.

Authorized licensed use limited to: MIT Libraries. Downloaded on September 14, 2009 at 15:59 from IEEE Xplore. Restrictions apply.

