
SIAM J. OPTIMIZATION
Vol. 1, No. 4, pp. 425-447, November 1991

(C) 1991 Society for Industrial and Applied Mathematics

001

AN AUCTION ALGORITHM FOR SHORTEST PATHS*

DIMITRI P. BERTSEKAS’

Abstract. A new and simple algorithm for finding shortest paths in a directed graph is proposed. In
the single origin-single destination case, the algorithm maintains a single path starting at the origin, which
is extended or contracted by a single node at each iteration. Simultaneously, at most one dual variable is
adjusted at each iteration so as to either improve or maintain the value of a dual function. For the case of
multiple origins, the algorithm is well suited for parallel computation. It maintains multiple paths that can
be extended or contracted in parallel by several processors that share the results of their computations.
Based on experiments with randomly generated problems on a serial machine, the algorithm substantially
outperforms its closest competitors for problems with few origins and a single destination. It also seems
better suited for parallel computation than other shortest path algorithms.

Key words, shortest path, network optimization, auction, parallel algorithms

AMS(MOS) subject classifications, primary 90C47" secondary 90C05

1. Introduction. In this paper we propose a new algorithm for finding shortest
paths in a directed graph (V,). For the single origin and single destination case, our
algorithm is very simple. It maintains a single path starting at the origin. At each
iteration, the path is either extended by adding a new node, or contracted by deleting
its terminal node. When the destination becomes the terminal node of the path, the
algorithm terminates.

To get an intuitive sense of the algorithm, think of a mouse moving in a graphlike
maze, trying to reach a destination. The mouse criss-crosses the maze, either advancing
or backtracking along its current path. Each time the mouse backtracks from a node,
it records a measure of the desirability of revisiting and advancing from that node in
the future (this will be represented by a price variablemsee 2). The mouse revisits
and proceeds forward from a node when the node’s measure of desirability is judged
superior to those of other nodes. Our algorithm efficiently emulates this mouse search
process using simple data structures.

In a parallel computing environment, the problem of multiple origins with a single
destination can be solved by running in parallel a separate version of the algorithm
for each origin. However, the different parallel versions can help each other by sharing
the interim results of their computations, thereby substantially enhancing the
algorithm’s performance. The recent Master’s thesis [Po191] discusses a number of
parallel asynchronous implementations of our algorithm, and reports on simulations
suggesting a significant speedup potential. Generally, our algorithm seems better suited
for parallel computation than all of its competitors.

The practical performance of the algorithm and its numerous variations remain
to be fully investigated, particularly using parallel machines. Preliminary experimental
results with randomly generated problems on a serial machine, and a comparison with
the state-of-the-art shortest path codes of Gallo and Pallotino [GaP88] have been very
encouraging. In particular, a code implementing one version of our algorithm outper-
forms by a large margin its closest competitors for the case of few origins and one

Received by the editors August 30, 1990; accepted for publication (in revised form) March 28, 1991.
This research was supported by National Science Foundation grant DDM-8903385 and by Army Research
Office grant DAAL03-86-K-0171.

? Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139.

425

D
ow

nl
oa

de
d

10
/3

0/
14

 to
 1

28
.3

1.
7.

81
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

426 DIMITRI P. BERTSEKAS

destination; see 7. In a parallel computing environment, the relative advantage of
our algorithm should increase, but this remains to be verified in future work.

The worst case running time of the algorithm is pseudopolynomial; it depends
on the shortest path lengths. This in itself is not necessarily bad. Dial’s algorithm (see
[Dia69], [DGK79], [AMOS9], [GAP88]) is also pseudopolynomial, yet its running
time in practice is excellent, particularly for a small range of arc lengths. Another
popular method, the D’Esopo-Pape algorithm [Pap74], has exponential worst case
running time [Ker81], ShW81], yet it performs very well in practice [DGK79], [GAP88].
Nonetheless, under mild conditions, our algorithm can be turned into a polynomial
one by using the device of arc length scaling. However, in our computational experi-
ments, this scaling device was entirely unnecessary, and, in fact, degraded the
algorithm’s performance.

To place our algorithm in perspective, we note that shortest path methods are
traditionally divided into two categories: label setting (Dijkstra-like) and label correct-
ing (Bellman-Ford-like); see the surveys given in [AMO89], [GAP86], [GAP88], and
the references quoted there. Our algorithm shares features from both types of
algorithms. It resembles label setting algorithms in that the shortest distance of a node
is found at the first time the node is labeled (becomes the terminal node of the path
in our case). It resembles label correcting algorithms in that the label of a node may
continue to be updated after its shortest distance is found.

As we explain in 6, our method may be viewed as a dual coordinate ascent or
relaxation method. In reality, the inspiration for the algorithm came from the author’s
auction and e-relaxation methods [BerT9], [Ber86] (extensive descriptions of these
methods can be found in [Ber88], [BEE88], [BET89], and [Ber90]). If one applies the
e-relaxation method for a minimum cost flow formulation of the shortest path problem
(see 6), but with the important difference that e 0, then one obtains an algorithm
which is very similar to the one provided here.

Our algorithm may also be viewed as a special case of the so called naive auction
algorithm, applied to a special type of assignment problem, which is derived from the
shortest path problem (see, e.g., [Law76, p. 186]). The naive auction algorithm, first
proposed by Bertsekas in [Ber81] as part of the relaxation method for the assignment
problem, and also discussed more recently in the tutorial paper [Ber90], is the same
as the auction algorithm, except that the parameter e that controls the accuracy of the
solution is set to zero. The naive auction algorithm is not guaranteed to solve general
assignment problems, and is primarily useful as an initialization method for other
assignment algorithms, such as relaxation (as described in [Ber81]) or sequential
shortest path (as described in [JoV87]). Nevertheless, it is guaranteed to solve the
special type of assignment problem, which is relevant to the shortest path context of
the present paper.

The paper is organized as follows: In 2, we describe the basic algorithm for the
single origin case and we prove its basic properties. In 3, we develop the polynomial
version of the algorithm using arc length scaling. In 4, we describe various ways to
improve the performance of the algorithm. In 5, we consider the multiple origin case
and we discuss how the algorithm can take advantage of a parallel computing environ-
ment. In 6, we derive the connection with duality and we show that the algorithm
may be viewed both as a naive auction algorithm and as a coordinate ascent (or
Gauss-Seidel relaxation) method for maximizing a certain dual cost function. Finally,
7 contains computational results.

2. Algorithm description and analysis. We describe the algorithm in its simplest
form for the single origin and single destination case, and we defer the discussion of

D
ow

nl
oa

de
d

10
/3

0/
14

 to
 1

28
.3

1.
7.

81
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

AUCTION FOR SHORTEST PATHS 427

other and more efficient versions for subsequent sections. Our main assumption is that
all cycles have positive length, although we will see shortly that the initialization of the
algorithm is greatly simplified if, in addition, all arc lengths are nonnegative.

To simplify the presentation, we will also assume that each node except for the
destination has at least one outgoing incident arc; any node not satisfying this condition
can be connected to the destination with a very high length arc without materially
changing the problem and the subsequent algorithm. We also assume that there is at
most one arc between two nodes in each direction, so that we can unambiguously refer
to an arc (i, j). Again, this assumption is made for notational convenience; our algorithm
can be trivially extended to the case where there are multiple arcs connecting a pair
of nodes.

Let node 1 be the origin node and let be the destination node. In the following,
by a path we mean a sequence of nodes (il, i2,"" ", ik) such that (im, im+) is an arc
for all m 1, , k 1. If, in addition, the nodes il, i2, , ik are distinct, the sequence
(il, i2,""", ik) is called a simple path. The length of a path is defined to be the sum
of its arc lengths.

The algorithm maintains at all times a simple path P (1, il, i2," ", ik). The node
ik is called the terminal node of P. The degenerate path P- (1) may also be obtained
in the course of the algorithm. If ik+l is a node that does not belong to a path
P (1, il, i2,""", ik) and (ik, ik+) is an arc, extending P by ik+l means replacing P by
the path (1, i, i2, ., ik, ik/l), called the extension ofP by ik+l. If P does not consist
of just the origin node 1, contracting P means replacing P with the path
(1, i, i_, ik-).

The algorithm also maintains a variable Pi for each node (called price of i) such
that

(la) p,<-aij+p V(i,j),

(lb) pi a +p for all pairs of successive nodes and j of P.

We denote by p the vector of prices p. A pair (P, p) consisting of a simple path P
and a price vector p that satisfies the above conditions is said to satisfy complementary
slackness (or CS for short). (When we say that a pair (P, p) satisfies the CS conditions,
we implicitly assume that P is simple.)

The CS terminology is motivated by a formulation of the shortest path problem
as a linear minimum cost flow problem; see 6. In this formulation, the prices p can
be viewed as the variables of a problem which is dual in the usual linear programming
duality sense. The complementary slackness conditions for optimality of the primal
and dual variables can be shown to be equivalent to the conditions (1). For the moment,
however, we ignore the linear programming context, and we simply note that if a pair
(P, p) satisfies the CS conditions, then the portion of P between node 1 and any node
P is a shortest path from 1 to i, while Pl--Pi is the corresponding shortest distance.

To see this, observe that, by (lb), pl-p is the length of the portion of P between 1
and i, and by (la) every path connecting 1 and must have length at least equal to Pl -Pi.

We will assume that an initial pair (P, p) satisfying CS is available. This is not a
restrictive assumption when all arc lengths are nonnegative, since then one can use
the default pair

P (1), p,=O

When some arcs have negative lengths, an initial choice of a pair (P, p) satisfying CS
may not be obvious or available, but 4 provides a general method for finding such
a pair.

D
ow

nl
oa

de
d

10
/3

0/
14

 to
 1

28
.3

1.
7.

81
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

428 DIMITRI P. BERTSEKAS

We now describe the algorithm. Initially, (P, p) is any pair satisfying CS. The
algorithm proceeds in iterations, transforming a pair (P, p) satisfying CS into another
pair satisfying CS. At each iteration, the path P is either extended by a new node or
else is contracted by deleting its terminal node. In the latter case the price of the
terminal node is strictly increased. A degenerate case occurs when the path consists
by just the origin node 1; in this case the path is either extended, or else is left
unchanged with the price Pl being strictly increased. The iteration is as follows:

TYPICAL ITERATION
Let be the terminal node of P. If

(2) p < min (ao +p),
(i,j)

(3)

go to Step 1; else go to Step 2.
Step 1: (Contract path). Set

Pi := min {ao + pj},
i,j) 4

(4)

and if 1, contract P. Go to the next iteration.
Step 2: (Extend path). Extend P by node ji where

ji arg min {ai +p}.
(i,j)e

If ji is the destination t, stop; P is the desired shortest path. Otherwise, go to the
next iteration.

It can be seen that, following the extension Step 2, P is a simple path from 1 to
j. Indeed, if this were not so, then adding j to P would create a cycle, and for every
arc (i, j) of this cycle we would have p ao+p. Thus, the cycle would have zero
length, which is not possible by our assumptions.

Figure 1 provides an example of the operation of the algorithm. In this example,
the terminal node traces the tree of shortest paths from the origin to the nodes that
are closer to the origin than the given destination. We will see that this behavior is
typical when the initial prices are all zero.

PROPOSITION 1. The pairs (P, p) generated by the algorithm satisfy CS. Further-
more, for every pair of nodes and j, and at all iterations, p-p is an underestimate of
the shortest distance from to j.

Proof We first show by induction that (P, p) satisfies CS. Indeed, the initial pair
satisfies CS by assumption. Consider an iteration that starts with a pair (P, p) satisfying
CS and produces a pair (P,/5). Let be the terminal node of P. If

min {aj +p},(5) p, ,
then P is the extension of P by a node j and/5 p, implying that the CS condition
(lb) holds for all arcs of P as well as arc (i, ji) (since j attains the minimum in (5);
cf. condition (4)).

Suppose next that

p < min {a +p}.
(i,j)

Then if P is the degenerate path (1), the CS condition holds vacuously. Otherwise, P
is obtained by contracting P, and for all nodesj P, we have/3 pj, implying conditions
(la) and (lb) for arcs outgoing from nodes of P. Also, for the terminal node i, we have

/5i min { aij + p},
(i,j)

D
ow

nl
oa

de
d

10
/3

0/
14

 to
 1

28
.3

1.
7.

81
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

AUCTION FOR SHORTEST PATHS 429

P2=2

2 pl

Or ation

P3=2

Shortest path problem with arc
lengths as shown

Trajectory of terminal node
and final prices generated by
the algorithm

Iteration
Path P Price vector p Type of action

prior to the iteration prior to the iteration during the iteration

(1) (0, 0, 0, 0) contraction at
2 (1) (1, 0, 0, 0) extension to 2
3 (1,2) (1, 0, 0, 0) contraction at 2
4 (1) (1, 2, 0, 0) contraction at
5 (1) (2, 2, 0, 0) extension to 3
6 (1, 3) (2,2, 0, 0) contraction at 3
7 (1) (2,2,2, 0) contraction at
8 (1) (3, 2, 2, 0) extension to 2
9 (1, 2) (3, 2, 2, 0) extension to 4
10 (1,2,4) (3,2,2,0) stop

FIG. 1. An example illustrating the algorithm starting with P- (1) and p--O.

implying condition (la) for arcs outgoing from that node as well. Finally, since/i > Pi
and /k Pk for all k # i, we have Pk <= akj+ for all arcs (k, j) outgoing from nodes
k P. This completes the induction proof.

Finally, consider any path from a node to a node j. By adding the CS condition
(la) along the path, we see that the length of the path is at least p-p, proving the
last assertion of the proposition.

PROPOSITION 2. IfP is a path generated by the algorithm, then P is a shortest path
from the origin to the terminal node of P.

Proof This follows from the CS property of the pair (P, p) shown in Proposition
1; see the remarks following the CS conditions (1). Furthermore, by the CS condition
(la), every path connecting 1 and must have length at least equal to Pl-P. r]

2.1. Interpretation of the algorithm. The preceding propositions can be used to
provide an intuitive interpretation of the algorithm. Denote for each node

(6) D shortest distance from the origin 1 to node i,

with D1 0 by convention. By Proposition 1, we have, throughout the course of the
algorithm,

pl -pj <= Dj Vj c df,

while by Proposition 2, we have

Pl--P Di for all in P.

D
ow

nl
oa

de
d

10
/3

0/
14

 to
 1

28
.3

1.
7.

81
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

430 DIMITRI P. BERTSEKAS

It follows that

Di + pi pt <-_ Dj + pj pt l P and j.

Since by Proposition 1, Pi-Pt is an estimate of the shortest distance from to t, we
may view the quantity

Dj +p -pt

as an estimate of the shortest distance from 1 to using only paths passing through j.
Thus, intuitively, it makes sense to consider a node j as "eligible" for inclusion in the
algorithm’s path only if D +p-p, is minimal.

Based on the preceding interpretation, it can be seen that:
(a) The algorithm maintains a path consisting of "eligible" candidates for partici-

pation in a shortest path from 1 to t.

(b) The algorithm extends P by a node j if and only ifj is an "eligible" candidate.
(c) The algorithm contracts P if the terminal node has no neighbor which is

"eligible." Then, the estimate of i’s shortest distance to is improved (i.e., is increased),
and becomes "ineligible" (since D +p-p, is not minimal anymore), thus justifying
its deletion from P. Node will be revisited only after Di +p-p, becomes minimal
again, following sufficiently large increases of the prices of the currently "eligible"
nodes.

The preceding interpretation suggests also that the nodes become terminal for the
ofirst time in the order of the initial values D +pj _p,O, where

(7) pO initial price of node i.

To formulate this property, denote for every node

(8) d, D, +p
Let us index the iterations by 1, 2,. ., and let

(9) k the first iteration index at which node becomes a terminal node,

where, by convention, kl 0 and k if never becomes a terminal node.
PROPOSITION 3. (a) At the end of iteration ki we have Pl--d.
(b) If k < k;, then di <= d;.
Proof. (a) At the end of iteration ki, P is a shortest path from I to by Proposition

2, while the length of P is Pl _pO.
(b) By part (a), at the end of iteration k, we have p d, while at the end of

iteration k;, we have pl d;. Since p is monotonically nondecreasing during the
algorithm and k < k, the result follows.

Note that the preceding proposition shows that when all arc lengths are nonnega-
tive, and the default initialization p 0 is used, the nodes become terminal for the first
time in the order of their proximity to the origin.

2.2. Termination and running time of the algorithm. The following proposition
establishes the validity of the algorithm.

PROPOSITION 4. If there exists at least one path from the origin to the destination,
the algorithm terminates with a shortest path from the origin to the destination. Otherwise
the algorithm never terminates and pl o.

Proof Assume first that there is a path from node 1 to the destination t. Since by
Proposition 1, p-p, is an underestimate of the (finite) shortest distance from 1 to t,
p is monotonically nondecreasing, and pt is fixed throughout the algorithm, Pl must
stay bounded. We next claim that p must stay bounded for all i. Indeed, in order to

D
ow

nl
oa

de
d

10
/3

0/
14

 to
 1

28
.3

1.
7.

81
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

AUCTION FOR SHORTEST PATHS 431

have pi 0% node must become the terminal node of P infinitely often, implying (by
Proposition 1) that p-Pi must be equal to the shortest distance from 1 to infinitely
often, which is a contradiction since Pl is bounded.

We next show that the algorithm terminates finitely. Indeed, it can be seen with
a straightforward induction argument that for every node i, Pi is either equal to its
initial value, or else it is the length of some path starting at plus the initial price of
the final node of the path; we call this the modified length of the path. Every path
starting at can be decomposed into a simple path together with a finite number of
cycles, each having positive length by assumption, so the number of distinct modified
path lengths within any bounded interval is bounded. Now Pi was shown earlier to be
bounded, and each time becomes the terminal node by extension of the path P, Pi
is strictly larger over the preceding time that became the terminal node of P,
corresponding to a strictly larger modified path length. It follows that the number of
times can become a terminal node by extension of the path P is bounded. Since the
number of path contractions between two consecutive path extensions is bounded by
the number of nodes in the graph, the number of iterations of the algorithm is bounded,
implying that the algorithm terminates finitely.

Assume now that there is no path from node 1 to the destination. Then, the
algorithm will never terminate, so by the preceding argument, some node will become
the terminal node by extension of the path P infinitely often and Pi oo. At the end
of iterations where this happens, pl-Pi must be equal to the shortest distance from 1
to i, implying that p--> oo. U

We will now estimate the running time of the algorithm, assuming that all the arc
lengths and initial prices are integer. Our estimate involves the set of nodes

(10) #-{ild,<=d,};
by Proposition 3, these are the only nodes that ever become terminal nodes of the
paths generated by the algorithm. Let us denote

(11) ! number of nodes in #,

(12) G maximum out-degree (number of outgoing arcs) over the nodes in

and let us also denote by E the product

(13) E=I.G.

PROPOSITION 5. Assume that there exists at least one path from the origin 1 to the
destination t, and that the arc lengths and initial prices are all integer. The worst case

running time of the algorithm is O(E(D,+p-p)).
Proof Each time a node becomes the terminal node of the path, we have

Pi Pa- Di (cf. Proposition 2). Since at all times we have p-< D, +pO (cf. Proposition
1), it follows that

and using the definitions d, D, + pO and di Di + pO, and the fact di => dm (cf. Proposi-
tion 3), we see that throughout the algorithm, we have

(14) pi -Pi < dt di < dt dl Ot + pt -pl
Therefore, since prices increase by integer amounts, D, +prO_ plo + 1 bounds the number
of times that Pi increases (with an attendant path contraction if 1). Since the
computation per iteration is bounded by a constant multiple of the out-degree of the
terminal node of the path, we see that the computation corresponding to contractions
and price increases is O(E(D, + pO plo)).

D
ow

nl
oa

de
d

10
/3

0/
14

 to
 1

28
.3

1.
7.

81
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

432 DIMITRI P. BERTSEKAS

The number of path extensions with becoming the terminal node of the path
is bounded by the number of increases ofpi, which in turn is bounded by D, +p,-p+ 1.
Thus the computation corresponding to extensions is also O(E (Dr +pO pol)). El

Note that we have Dt <-_ hL, where

(15) L max aij,
(i,j)

(16) h--minimum number of arcs in a shortest path from 1 to t.

Then in the special case where all arc lengths are nonnegative, and for the default
price vector p 0, Proposition 5 yields the running time estimate

(17) O(EhL).

As the preceding estimate suggests, the running time can depend on L, as illustrated
in Fig. 2 for a graph involving a cycle with relatively small length. This is the same
type of graph for which the Bellman-Ford method starting with the zero initial
conditions performs poorly (see [BET89, p. 298]).

Origin Destination

FIG. 2. Example graph for which the number of iterations of the algorithm is not polynomially bounded.
The lengths are shown next to the arcs and L> 1. By tracing the steps of the algorithm starting with P (1)
and p O, we see that the price of node 3 will be first increased by and then it will be increased by increments

of 3 (the length of the cycle) as many times as necessary for P3 to reach L.

In the next section we will modify the algorithm to improve its complexity.
However, we believe that the estimate of Proposition 5 is far from representative of
the algorithm’s "average" performance. For randomly generated problems, it appears
that the number of iterations can be estimated quite reliably (within a constant factor
roughly equal to two) by

n,-l+ (2n, 1),
,q,i

where n is the number of nodes in a shortest path from 1 to i; for example, for the
problem of Fig. 1, the above estimate is exact.

2.3. The case of multiple destinations. We finally note that when there is a single
origin and multiple destinations, the algorithm can be applied with virtually no change.
We simply stop the algorithm when all destinations have become the terminal node
of the path P at least once. If, initially, we choose pi 0 for all i, the destinations will
be reached in the order of their proximity to the origin, as shown by Proposition 3.
We also note that the algorithm can be similarly applied to a problem with multiple
origins and a single destination, by first reversing the roles of origins and destinations,
and the direction of each arc.

3. Arc length scaling. Throughout this section (and only this section) we will
assume that all arc lengths are nonnegative. We introduce a version of the algorithm

D
ow

nl
oa

de
d

10
/3

0/
14

 to
 1

28
.3

1.
7.

81
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

AUCTION FOR SHORTEST PATHS 433

where the shortest path problem is solved several times, each time with different arc
lengths and starting prices. Let

(18) K= [logLJ+l

and for k= 1,..., K, define

(19) ao(k)= 2K_k V(i,j) e

Note that ao(k) is the integer consisting of the k most significant bits in the K-bit
binary representation of a0. Define

(20) /= min {k_-> 1 leach cycle has positive length}.

The following algorithm is predicated on the assumption that k is a small integer that
does not grow beyond a certain bound as K increases. This is true for many problem
types; for example, when the graph is acyclic, in which case k 1. For the case where
this is not so, a slightly different arc length scaling procedure can be used; see the
next section.

The scaled version of the algorithm solves K k + 1 shortest path problems, called
subproblems. The arc lengths for subproblem k, k k, , K, are a0(k) and the starting
prices are obtained by doubling the final prices p*i(k) of the previous subproblem

(21) p(k+l)=2p*(k) VieW,

except for the first subproblem (k k), where we take

p,.(): o vi.

Note that we have ao(K ao for all (i,j), and the last subproblem is equivalent
to the original. Since the length of a cycle with respect to arc lengths a0(k) is positive
(by the definition of k) and from the definition (19), we have

(22) O<-ao(k+l)-2ao(k)<-I V(i,j) s,
it follows that cycles have positive length for each subproblem. Furthermore, in view
of (22) and the doubling of the prices at the end of each subproblem (cf. (19)), the
CS condition

(23) p(k+l)<=py(k+l)+ao(k+l) V(i,j) s
is satisfied at the start of subproblem k + 1, since it is satisfied by p*(k) at the end of
subproblem k. Therefore, the algorithm of the preceding section can be used to solve
all the subproblems.

Let D,(k) be the shortest distance from 1 to for subproblem k and let

(24) h(k) the number of arcs in the final path from 1 to in subproblem k.

It can be seen using (22) that

D,(k+ 1) =< 2D,(k) + h(k),

and in view of (21), we obtain

P,(k + 1) <= 2(p*(k) -p*, (k)) + h(k) p(k + 1) -p,(k + 1) + h(k).

Using Proposition 5, it follows that the running time of the algorithm for subproblem
k,k=k+l,. ,K, is

(25) O(E(k)h(k)),

D
ow

nl
oa

de
d

10
/3

0/
14

 to
 1

28
.3

1.
7.

81
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

434 DIMITRI P. BERTSEKAS

where E(k) is the number of the form (12) corresponding to subproblem k. The running
time of the algorithm for subproblem k is

(26) O(E(k)D,(k)),

where D,(k) is the shortest distance from 1 to corresponding to the lengths aij(k). Since

aij() < 2

we have

(27) D,(/7) < 2h(/7).
Adding over all k k, ., K, we see that the running time of the scaled version of
the algorithm is

(28) 0 2E(/)h(/)+ E(k)h(k)
k=/+!

Assuming that k is bounded as L increases, the above expression is bounded by
O(NGh log L), where h maxk=,...,/ h(k), N is the number of nodes, and G is the
maximum out-degree of a node. These worst-case estimates of running time are still
inferior to the sharpest estimate O(A+ N log N) available for implementations of
Dijkstra’s method, where A is the number of arcs. The estimate (28) compares favorably
with the estimate O(Ah) for the Bellman-Ford algorithm when 2 maxk E(k) is much
smaller than A; this may occur if the destination is close to the origin relative to other
nodes, in which case maxk E(k) may be much smaller than A.

We finally note that we can implement arc length scaling without knowing the
value of k. We can simply guess an initial value of k, say k 1, apply the algorithm
for lengths aij(k), and at each path extension, check whether a cycle is formed. If so,
we increment k, we double the current prices, we reset the path to P (1), and we
restart the algorithm with the new data and initial conditions. Eventually, after a finite
number of restarts, we will obtain a value of k which is large enough for cycles never
to form during the rest of the algorithm. The computation done up to that point,
however, will not be entirely wasted; it will serve to provide a better set of initial prices.

4. Efficient implementation, two-sided algorithm, and preprocessing. The main com-
putational bottleneck of the algorithm is the calculation of mini,j) {aij+p}, which
is done every time node becomes the terminal node of the path. We can reduce the
number of these calculations using the following observation. Since the CS condition
(la) is maintained at all times, if some arc (i, ji) satisfies

it follows that

Pi aiji + Pj,,

min {a + pa},aiji + PJi
i,j)e .g

so the path can be extended by j if is the terminal node of the path. This suggests
the following implementation strategy: each time a path contraction occurs with
being the terminal node, we calculate

min {a + p},
i,j)a

together with an arc (i,j) such that

ji arg min {a +p}.
i,j)e ag

D
ow

nl
oa

de
d

10
/3

0/
14

 to
 1

28
.3

1.
7.

81
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

AUCTION FOR SHORTEST PATHS 435

At the next time node becomes the terminal node of the path, we check whether the
condition Pi aij, +pj, is satisfied, and if so, we extend the path by node j without
going through the calculation of min(.) {ai+p}. In practice, this device is very
effective, typically saving from a third to a half of the calculations of the preceding
expression. The reason is that the test p a, + PJi is rarely failed; the only way it can
fail is when the price pji is increased between the two successive times became the
terminal node of the path.

The preceding idea can be strengthened further. Suppose that whenever we
compute the "best neighbor"

ji arg min {ai +p}
i,j .l

we also compute the "second best neighbor" ki given by

k arg min {a + pj},
(i,j) 4,j Ji

and the corresponding "second best level"

Wi aitq h-Pkg.

Then, at the next time node becomes the terminal node of the path, we can check
whether the condition a, +pg -< w is satisfied, and if so, we know that j still attains
the minimum in the expression

min (aj +p},
i,j .4

thereby obviating the calculation of this minimum. If on the other hand we have
ajg +Pi > w (due to an increase of p, subsequent to the calculation of wi), we can
check to see whether we still have w akg + Pkg if this is so, then ki becomes the "best
neighbor,"

k arg min {a; + p; }
(i,j)

thus obviating again the calculation of the minimum.
With proper implementation, the devices outlined above can typically reduce the

number of calculations of the expression min(i,j) {aij+p} by a factor in the order
of three to five, thereby dramatically reducing the total computation time.

4.1. The two-sided algorithm. In shortest path problems, one can exchange the
role of origins and destinations by reversing the direction of all arcs. It is therefore
possible to use a destination-oriented version of our algorithm which maintains a path
R that ends at the destination and changes at each iteration by means of a contraction
or an extension. This algorithm, presented below and called the reverse algorithm, is
equivalent to the algorithm in 2, which will henceforth be referred to as the forward
algorithm. The CS conditions for the problem with arc directions reversed are

P <-- ai + ffi V i, j 4,

/j a0 +p for all pairs of successive nodes and j of R,

where/ is the price vector. By replacing/ by -p, we obtain the CS conditions in the
form of (1), thus maintaining a common CS condition for both the forward and the
reverse algorithm. The following description of the reverse algorithm also replaces/
by -p, with the result that the prices are decreasing instead of increasing. To be
consistent with the assumptions made regarding the forward algorithm, we assume
that each node except for the origin has at least one incoming arc.

D
ow

nl
oa

de
d

10
/3

0/
14

 to
 1

28
.3

1.
7.

81
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

436 DIMITRI P. BERTSEKAS

In the reverse algorithm, initially, R is any path ending at the destination and p
is any price vector satisfying the CS conditions (1) together with R; for example,

g (t), pi=O Vi,

if all arc lengths are nonnegative.

TYPICAL ITERATION OF THE REVERSE ALGORITHM
Let j be the starting node of R. If

pj > max { Pi aij },
(i,j).

go to Step 1; else go to Step 2.
Step 1: (Contract path). Set

pg := max {p aig},
i,j)

and if j t, contract R (that is, delete the starting node j of R). Go to the next
iteration.
Step 2: (Extend path). Extend R by node ig, (that is, make ig the starting node of
R, preceding j), where

/ arg max {Pi- aij}.
i,j),4

If ij is the origin 1, stop; R is the desired shortest path. Otherwise, go to the next
iteration.

The reverse algorithm is really the forward algorithm applied to a reverse shortest
path problem, so by the results of 2, it is valid and obtains a shortest path in a finite
number of iterations, assuming that at least one path exists from 1 to t.

We now consider combining the forward and the reverse algorithms into one. In
this combined algorithm, we initially have a price vector p and two paths P and R
satisfying CS together with p, where P starts at the origin and R ends at the destination.
The paths P and R are extended and contracted according to the rules of the forward
and the reverse algorithms, respectively, and the combined algorithm terminates when
P and R have a common node. Both P and R satisfy CS together with p throughout
the algorithm, so when P and R meet, say at node i, the composite path consisting of
the portion of P from 1 to and the portion of R from to will be shortest.

COMBINED ALGORITHM
Step 1: (Run forward algorithm). Execute several iterations of the forward
algorithm (subject to the termination condition), at least one of which leads to
an increase of the origin price Pl. Go to Step 2.
Step 2: (Run reverse algorithm). Execute several iterations of the reverse algorithm
(subject to the termination condition), at least one of which leads to a decrease
of the destination price pt. Go to Step 1.

To justify the combined algorithm, note that Pl can only increase and Pt can only
decrease during its course, while the difference Pl- Pt can be no more than the shortest
distance between 1 and t. Assume that the arc lengths and the initial prices are integer,
and that there is at least one path from 1 to t. Then, Pl and Pt can only change by
integer amounts and Pl-P is bounded. Hence, pl and p can change only a finite
number of times, guaranteeing that there will be only a finite number of executions
of Steps 1 and 2 of the combined algorithm. By the results of 2, each Step 1 and
Step 2 must contain only a finite number of iterations of the forward and the reverse

D
ow

nl
oa

de
d

10
/3

0/
14

 to
 1

28
.3

1.
7.

81
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

AUCTION FOR SHORTEST PATHS 437

algorithms, respectively. It follows that the algorithm must terminate in a finite number
of iterations. Note that this argument relies on the requirement that Pl increases at
least once in Step 1 and Pt decreases at least once in Step 2. Without this requirement,
one can construct examples showing that the combined algorithm may never terminate.
Note also that our termination proof depends on the problem data being integer. For
real problem data, we have been unable to prove termination or to disprove it with a
counterexample.

One motivation for the combined algorithm is that two processors can be used in
parallel to maintain the forward and the reverse paths while sharing the same price
vector. However, there is another motivation. Based on our computational results, the
combined algorithm is much faster than both the forward and the reverse algorithms.

4.2. Initialization and preprocessing. In order to initialize the algorithm, one should
have a price vector p satisfying Pi -< a0 +Pj for all arcs (i, j). When some arc lengths
are negative, the default choice p 0 does not satisfy this condition, and there may
be no obvious initial choice for p. In other situations, even when all arc lengths are
nonnegative, it may be preferable to use a "favorable" initial price vector in place of
the default choice p 0. This possibility arises in a reoptimization context with slightly
different arc length data, or with a different origin and/or destination. However, the
"favorable" initial price vector may not satisfy the preceding condition.

To cope with situations such as the above, we provide a preprocessing algorithm
for obtaining an appropriate initial vector p satisfying the condition pi _-< a0 +p for all
arcs (i, j) (except for the immaterial outgoing arcs from the destination t).

To be precise, suppose that we have a vector/5, which, together with a set of arc
lengths {i/}, satisfies/-<_ 0 +/Sj for all arcs (i, j), and that we are given a new set of
arc lengths {a0}. We describe a preprocessing algorithm for obtaining a vector p
satisfying p _-< a0 +pj for all arcs (i, j). (Thus, to deal with the case where some arc
lengths are negative and no appropriate initial vector is known, one can take/ 0
and j max {0, a0).) The algorithm maintains a subset of arcs and a price vector
p. Initially,

= {(i,j) 6 g[a0 < ao, # t},

The typical iteration is as follows:

TYPICAL PREPROCESSING ITERATION
Step 1: (Select arc to scan). If is empty, stop; otherwise, remove an arc (i, j)
from g and go to Step 2.
Step 2: (Add affected arcs to). If p > ag + pg, set

Pi := aij +p
and add to every arc (k, i) with k # that does not already belong to .
We have the following proposition.
PROPOSITION 6. Assume that each node is connected to the destination with at

least one path. Then the preprocessing algorithm terminates in afinite number ofiterations
with a price vector p satisfying

(29) p <= ao + pg V i, j 6 g with iCt.

Proof We first note that by induction we can prove that throughout the algorithm
we have

{(i,j)6 lpi > aq+pj, iS t}.

D
ow

nl
oa

de
d

10
/3

0/
14

 to
 1

28
.3

1.
7.

81
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

438 DIMITRI P. BERTSEKAS

As a result, when becomes empty, the condition (29) is satisfied. Next, observe that
by induction it can be seen that throughout the algorithm, Pi is equal to the modified
length of some path starting at (the length of the path plus the initial price of the
final node of the path; see the proof of Proposition 4). Thus, termination of the
algorithm will follow as in the proof of Proposition 4 (using the fact that cycle lengths
are positive and prices are monotonically nonincreasing throughout the algorithm),
provided we can show that the prices are bounded from below. Indeed, let

distance from k to if k t,
Pk*=

/, if k= t,

and let r be a sufficiently large scalar so that

p, >-p* r

We show by induction that throughout the algorithm we have

(30) Pk >=P r lk t.

Indeed, this condition holds initially by the choice of r. Suppose that the condition
holds at the start of an iteration where arc (i, j) with is removed from . We then
have

ai +p > ao + pj.* r > min {a, +p } r p* r,
i,m),.

where the last equality holds in view of the definition of Pk* as a constant plus the
shortest distance from k to t. Therefore, the iteration preserves the condition (30) and
the prices p remain bounded throughout the preprocessing algorithm. This completes
the proof.

If the new arc lengths differ from the old ones by "small" amounts, it can be
reasonably expected that the preprocessing algorithm will terminate quickly. This
hypothesis, however, must be tested empirically on a problem-by-problem basis.

In the preceding preprocessing iteration, node prices can only decrease. An
alternative iteration where node prices can only increase starts with

={(i,j)Clao<o,j 1}, p=p.
and operates as follows:

ALTERNATIVE PREPROCESSIN6 ITERATION
Step 1: (Select arc to scan). If is empty, stop; otherwise, remove an arc (i, j)
from ’ and go to Step 2.
Step 2: (Add affected arcs to d). If Pi > aij + pj, set

Pj :-- Pi ai

and add to every arc (j, k) with k 1 that does not already belong to .
This algorithm is the preceding preprocessing algorithm (where prices decrease

monotonically), but is applied to the reverse shortest path problem, where the arc
directions have been reversed and the roles of origin and destination have been
exchanged (cf. the two-sided algorithm given earlier). The following proposition
therefore follows from Proposition 6.

PROPOSITION 7. Assume that the origin node 1 is connected to each node with at
least one path. Then the alternative preprocessing algorithm terminates in a finite number
of iterations with a price vector p satisfying

P,<=aij+pi V(i,j)e withj l.

D
ow

nl
oa

de
d

10
/3

0/
14

 to
 1

28
.3

1.
7.

81
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

AUCTION FOR SHORTEST PATHS 439

The preprocessing idea can also be used in conjunction with arc length scaling
in the case where the integer k of (20) is large or unknown. We can then use, in place
of the scaled arc lengths aij(k) of (19), the arc lengths

[aij];(k)=/2K_k[V(i,j),,

in which case we will have (k) > 0 if ai > 0. As a result, every cycle will have positive
length with respect to arc lengths {(k)} for all k. The difficulty now, however, is that
(22) and (23) may not be satisfied. In particular, we will have instead

1 --< tij(k + 1) 2tii(k) =< 0 V(i,j),

and

(31) p(k+l)<=p)?(k+l)+ij(k+l)+l l(i,j),

and the vector p(k+ 1) may not satisfy the CS conditions with respect to arc lengths
{(k/ 1)}. The small violation of the CS conditions indicated in (31) can be rectified
by applying the preprocessing algorithm at the beginning of each subproblem. It is
then possible to prove a polynomial complexity bound for the corresponding arc length
scaling algorithm, by proving a polynomial complexity bound for the preprocessing
algorithm and by using very similar arguments to those used in the previous section.

5. Parallelization issues. When there is a single destination and multiple origins,
several interesting parallel computation possibilities arise. The idea is to maintain a
different path pi for each origin i, and possibly, a reverse path R for the destination.
Different paths may be handled by different processors, and price information can be
shared by the processors in some way. There are several possible implementations of
this idea. We will describe two of these implementations, motivated by the architectures
of shared memory and message passing machines, respectively. For simplicity, we will
not consider the possibility of using the reverse path R. In [Po191], Polymenakos
discusses parallel two-sided algorithms.

5.1. Shared memory implementation. Here, there is a common price vector p stored
in memory that is accessible by all processors. For each origin i, there is a path pi

satisfying CS together with p. In a synchronous implementation of the algorithm, an
iteration is executed simultaneously for some origins (possibly all origins, depending
on the availability of processors). At the end of an iteration, the results corresponding
to the different origins are coordinated. To this end, we note that if a node is the
terminal node of the path of several origins, the result of the iteration will be the same
for all these origins, i.e., a path extension or a path contraction and corresponding
price change will occur simultaneously for all these origins. The only potential conflict
arises when a node is the terminal path node for some origin and the path of a
different origin is extended by as a result of the iteration. Then, if p is increased due
to a path contraction for the former origin, the path extension of the latter origin is
cancelled. An additional important detail is that an origin can stop its computation
once the terminal node of its path pi is an origin that has already found its shortest
path to the destination. Thus, the processor handling this origin may be diverted to
handle the path of another origin.

It is reasonable to speculate that the parallel time to solve the multiple origins
problem is closer to the smallest time over all origins to find a single origin shortest
path, rather than to the longest time. However, this conjecture needs to be tested
experimentally on a shared memory machine.

D
ow

nl
oa

de
d

10
/3

0/
14

 to
 1

28
.3

1.
7.

81
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

440 DIMITRI P. BERTSEKAS

The parallel implementation outlined above is synchronous, that is, all origins
iterate simultaneously, and the results are communicated and coordinated at the end
of the iteration to the extent necessary for the next iteration. An asynchronous
implementation is also possible, principally because ofthe monotonicity ofthe mapping

Pi := min {au + pj};
i, ,sd

see [Ber82] and [BET89]. We refer to [Po191] for a discussion of such an asynchronous
implementation.

5.2. Message passing implementation. Here, for each origin i, there is a separate
processor that executes the forward algorithm and keeps in local memory a price vector
p and a corresponding path P satisfying CS together with p. The price vectors are
communicated at various times to other processors, perhaps irregularly. A processor
operating on (P, p), upon reception of a price vector pJ from another processor j,
adopts as the price of each node n the maximum of the prices of n according to the
existing and the received price vectors, that is,

(32) Pin := max {p,, p} Vn .
The processor also uses the updated price vector p to delete successively, starting with
the terminal node, the arcs (m, n) of P for which the equality Pm am, +p, is violated.
The CS property is maintained in this way because it can be shown that the updated
price vector p satisfies the condition

Pm=< a,,, +p, V(m, n) .
This is the subject of the following proposition.

PRoPOSrrioN 8. Let p and p be two price vectors satisfying

p<=a,,+p’,,, p<--_a,,+p V(m,n).(33)

Then,

(34)

and

(35)

and

max{p’m,p}<--_a,,,.+max{p’,,,p} V(m, n) M,

min{p i,.,,, p} < a,.. + min {p p} V(m, n) 6 .
Proof. From (33), we have

p<am+max{p,,p{} V(m,n)s,

PJm amn "k- max {p i,,, p} V(m, n) 4.

Combining these two relations, we obtain (34). The proof of (35) is similar.
Note that even with no communication between the processors, the algorithm

would still involve considerable parallelism, since a multiple origin problem would be
solved in the time needed to solve a single origin problem. Combining the price vectors
of several processors, however, tends to speed up the termination of the algorithm for
all origins. In fact, if there are more processors than origins, it may still be beneficial
to create some additional artificial origins in order to obtain additional price vectors.
The drawback of this implementation is that communication of the price vectors may
be relatively slow, and that combining two price vectors according to (32) may be
time-consuming if no vector processing hardware is available at the processors.

D
ow

nl
oa

de
d

10
/3

0/
14

 to
 1

28
.3

1.
7.

81
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

AUCTION FOR SHORTEST PATHS 441

6. Relation to naive auction and dual coordinate ascent. We now explain how our
(forward) single origin-single destination algorithm can be viewed as an instance of
the application of the naive auction algorithm to a special type of assignment problem.

The naive auction algorithm is applicable to assignment problems where we have
to match n persons and n objects on a one-to-one basis. There is a cost cij for matching
person with object j and we want to assign persons to objects so as to minimize the
total cost. There is also a restriction that person can be assigned to object j only if
(i, j) belongs to a set of given pairs 1. Mathematically, we want to find a feasible
assignment that minimizes the total cost Yi= Ciji, where by a feasible assignment we
mean a set of person-object pairs (1,jl),’’’, (n,j,), such that the objects jl,’’’,j,,
are all distinct and (i, ji) for all i. (Auction algorithms are usually described in
terms of maximization of the total "benefit" of the assignment; see, for example,
[Ber90]. It is, however, convenient here to reformulate the problem and the algorithm
in terms of minimization; this amounts to reversing the signs of the cost coefficients
and the prices, and replacing maximization by minimization.)

The naive auction algorithm proceeds in iterations and generates a sequence of
price vectors p and partial assignments (that is, assignments where only a subset of
the persons have been matched with objects). At the beginning of each iteration, the
condition

min { cj +p}(36) Ciji -[-" pj
(i,J)

is satisfied for all pairs (i, j) of the partial assignment. The initial price vector-partial
assignment pair is required to satisfy this condition, but is otherwise arbitrary. If all
persons are assigned, the algorithm terminates. If not, some person who is unassigned,
say i, is selected. This person finds an object j, which is best in the following sense"

j arg min { ci + p};
i,j),

and then"
(a) Gets assigned to the best object ji; the person that was assigned to j at the

beginning of the iteration (if any) becomes unassigned.
(b) Sets the price of ji to the level at which he/she is indifferent between ji and

the second best object, that is, he/she sets p, to

PJi + Wi l.)i

where vi is the cost for acquiring the best object (including payment ofthe corresponding
price),

vi min {% + pj },
i,j .s

and wi is the cost for acquiring the second best object

wi= min {ci+p}.
i,j .sC,j #ji

This process is repeated in a sequence of iterations until each person is assigned to
an object.

The naive auction algorithm differs from the auction algorithm in the choice of
the price increase increment. In the auction algorithm the price p, is increased by
wi- vi + e, where e is a small positive constant. Thus the naive auction algorithm is
the same as the auction algorithm, except that e 0. This is, however, a significant
difference; while the auction algorithm is guaranteed to terminate in a finite number

D
ow

nl
oa

de
d

10
/3

0/
14

 to
 1

28
.3

1.
7.

81
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

442 DIMITRI P. BERTSEKAS

of iterations if at least one feasible assignment exists, the naive auction algorithm may
cycle indefinitely, with some objects remaining unassigned. If, however, the naive
auction algorithm terminates, the feasible assignment obtained upon termination is
optimal. The reason is that (36) may be viewed as a complementary slackness condition
for the linear programming problem associated with the assignment problem, and by
a classical linear programming result, this condition, together with feasibility, guaran-
tees optimality of the final assignment.

6.1. Formulation of the shortest path problem as an assignment problem. Now,
given the shortest path problem described in 2, with node 1 as origin and node as
destination, we formulate the following assignment problem.

Let 2,. , N be the "object" nodes, and for each node t, introduce a "person"
node i’. For every arc (i, j) of the shortest path problem with and j # 1, introduce
the arc (i’,j) with cost ai in the assignment problem. Also introduce the zero cost arc
(i’, i) for each iS 1, t. Figure 3 illustrates the assignment problem.

t=4

FIG. 3. A shortest path problem and its corresponding assignment problem. The arc lengths and the
assignment costs are shown next to the arcs.

Now consider applying the naive auction algorithm starting from a price vector
p satisfying the CS condition (la), i.e.,

(37) pi<=aij+p l(i,j) g,
and the partial assignment

(i’,i) ti#l,t.

This initial pair satisfies the corresponding condition (36), because the cost of the
assigned arcs (i’, i) is zero.

We impose an additional rule for breaking ties in the naive auction algorithm: if
at some iteration involving the unassigned person i’, the arc (i’, i) is the best arc and
is equally desirable with some other arc (i’,ji) (i.e., Pi--ai, +pj, min<i,) {ai +p}),
then the latter arc is preferred; that is, (i’,ji) is added to the assignment rather than
(i’, i). Furthermore, we introduce an inconsequential modification of the naive auction
iteration involving a bid of person 1’, in order to account for the special way of handling
a contraction at the origin in the shortest path algorithm. In particular, the bid of 1’
will consist of finding an object jl attaining the minimum in

min {alj +p},
(1,j)d

assigning jl to 1’, and deassigning the person assigned to j (in the case j t), but not

changing the price p,.

D
ow

nl
oa

de
d

10
/3

0/
14

 to
 1

28
.3

1.
7.

81
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

AUCTION FOR SHORTEST PATHS 443

It can now be shown that the naive auction algorithm under the preceding
conditions is equivalent to the (forward) shortest path algorithm of 2. In particular,
the following can be verified by induction:

(a) The CS condition (37) is preserved by the naive auction algorithm.
(b) Each assignment generated by the algorithm consists of a sequence of the form

(38) (1’, il), (i, i2),’’’, (i-1, ik),

together with the additional arcs

i’, i) for il, ik, t,

and corresponds to a path P (1, il, , ik) generated by the shortest path algorithm.
As long as ik t, the (unique) unassigned person in the naive auction algorithm is
person i, corresponding to the terminal node of the path. When ik t, a feasible
assignment results, in which case the naive auction algorithm terminates, consistently
with the termination criterion for the shortest path algorithm.

(c) In an iteration corresponding to an unassigned person i’ with i 1, the
arc (i’, i) is always a best arc; this is a consequence of the complementary slackness
condition (37). Furthermore, there are three possibilities: (1) (i’, i) is the unique best
arc, in which case (i’, i) is added to the assignment, and the price Pi is increased by

min { c./ +p} p
(/,j)

this corresponds to contracting the current path by the terminal node i. (2) There is
an arc (i’, ji) with ji t, which is equally preferred to (i’, i), that is,

Pi aiji "]"

in which case, in view of the tie-breaking rule specified earlier, (i’,ji) is added to the
assignment and the price pj, remains the same. Furthermore, the object ji must have
been assigned to j at the start of the iteration, so adding (i’,ji) to the assignment (and
removing (j,ji)) corresponds to extending the current path by node j. (The positivity
assumption on the cycle lengths is crucial for this property to hold.) (3) The arc (i’, t)
is equally preferred to (i’, i), in which case the heretofore unassigned object is
assigned to i’, thereby terminating the naive auction algorithm; this corresponds to
the destination becoming the terminal node of the current path, thereby terminating
the shortest path algorithm.

We have thus seen that the shortest path algorithm may be viewed as an instance
of the naive auction algorithm. However, the properties of the former algorithm do
not follow from generic properties of the latter. As mentioned earlier, the naive auction
algorithm need not terminate, in general. In the present context, it does terminate
thanks to the special structure of the corresponding assignment problem, and also
thanks to the positivity assumption on all cycle lengths.

6.2. Relation to dual coordinate ascent. We next explain how the single origin-
single destination algorithm can be viewed as a dual coordinate ascent method. The
shortest path problem can be written in the minimum cost flow format

(LNF) minimize , aoxo
(i,j)

(39) subject to xo xi s Vi /’,
{jl(i,j)} {jl(j,i)}

(40) 0 <-- xo V(i, j) ,91,

D
ow

nl
oa

de
d

10
/3

0/
14

 to
 1

28
.3

1.
7.

81
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

444 DIMITRI P. BERTSEKAS

where

S 1, S =-1,

si=O fi # l, t,

and is the given destination.
The standard linear programming dual problem is

maximize Pl -P,
(41)

subject to Pi Pj -< aij ’(i, j) 4,

and by a classical duality theorem [Chv83], [Dan63], [PaS82], [Roc84], the optimal
primal cost is equal to the optimal dual cost.

Let us associate with a given path P (1, il, i2,’’ ", ik) the flow

Xij__fl if andj are successive nodes in P,
[0 otherwise.

Then, the CS conditions (la) and (lb) are equivalent to the usual linear programming
complementary slackness conditions

p<aij+p t(i,j),

0<x =:> p ao + p. l i, j .
For a pair (x, p), the above conditions, together with primal feasibility (the conservation
of flow constraint (39) for all i V, which in our case translates to the terminal node
of the path P being the destination node) are the necessary and sufficient conditions
for x to be primal-optimal and p to be dual-optimal. Thus, upon termination of our
shortest path algorithm, the price vector p is an optimal-dual solution.

To interpret the algorithm as a dual ascent method, note that a path contraction
and an attendant price increase of the terminal node of P, corresponds to a step
along the price coordinate Pi that leaves the dual cost Pl-Pt unchanged if iS 1.
Furthermore, an increase of the origin price p by an increment 3 improves the dual
cost by 3. Thus the algorithm may be viewed as a finitely terminating dual coordinate
ascent algorithm, except that true ascent steps occur only when the origin price
increases; all other ascent steps are "degenerate," producing a price increase but no
change in dual cost.

7. Computational results. The combined (forward and reverse) version of the
algorithm without arc length scaling was implemented in a code called AUCTION_SP.
This code solves the problem with a single origin and a selected set of destinations.
It operates in cycles of iterations, alternating between the origin and one of the
destinations. In particular, the algorithm first performs a group of (forward) iterations
starting with the origin and proceeding up to the point where the origin again becomes
the terminal node of the forward path; then the algorithm performs a group of (reverse)
iterations starting at some destination, call it t, and proceeding up to the point where
becomes again the terminal node of the reverse path. The process is then repeated,

starting again at the origin and then starting at another destination, and so on. The
destinations are taken up cyclically, except that once the reverse path of some destina-
tion meets the forward path (in which case a shortest path for the given destination
has been found), this destination is not iterated upon any further. Naturally, the same
price vector p is used for the forward and all the reverse paths. The algorithm uses
the default initialization (p 0, P (1), R (t), for all destinations t), and terminates
when each of the reverse paths have met the forward path.

D
ow

nl
oa

de
d

10
/3

0/
14

 to
 1

28
.3

1.
7.

81
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

AUCTION FOR SHORTEST PATHS 445

We compared our code with the shortest path code SHEAP, due to Gallo and
Pallotino [GaP88]. This is an implementation of Dijkstra’s method that uses a binary
heap to store the nodes which are not yet permanently labeled. We made a simple
modification to this code so that it terminates when all the destinations (rather than
all the nodes) become permanently labeled. Our informal comparison with other
shortest path codes agrees with the conclusion of [GaP88] that SHEAP is a very
efficient state-of-the-art code for a broad variety of types of shortest path problems.
While other shortest path codes may produce faster solution times than SHEAP, we
believe that the differences are not sufficiently large to invalidate the qualitative nature
of our comparisons. We did not test our code against label correcting methods such
as the threshold algorithm [GKP85], [GAP88], since these methods are at a disadvantage
in the case of only a few origin-destination pairs.

We restricted our experiments to randomly generated shortest path problems
obtained using the widely available NETGEN program [KNS74]. Problems were
generated by specifying the number of nodes N, the number of arcs A, the length
range [1, L], and a single source and sink (automatically chosen by NETGEN to be
nodes 1 and N). The times required by the two codes on a Macintosh II are shown
in Tables 1 and 2, for the cases of one destination and four destinations, respectively.
The tables show that AUCTION_SP is much faster than SHEAP on NETGEN prob-
lems; this was confirmed by extensive additional testing.

For the case of a single destination, we have also experimented with a version of
SHEAP, called TWO_TREE_SHEAP, that builds a shortest path tree from the origin
and another shortest path tree from the destination. Recent computational research
[HKS88], [HKS89] has confirmed that using two trees in Dijkstra’s method, as
originally suggested in [Nic66], typically accelerates convergence, and our experience
agrees with this conclusion. Still, however, AUCTION_SP was substantially faster
than TWO_TREE_SHEAP, as shown in Table 1.

For multiple destination problems, we know of no Dijkstra-like algorithm that
uses multiple trees; one has to run a two-sided algorithm separately for each origin-
destination pair. Thus, in contrast with our algorithm, the advantage of a two-sided
Dijkstra algorithm is dissipated quickly as the number of destinations increases from
one. Therefore, based on our computational experience, we conclude that AUC-
TION_SP is by far the fastest code for random problems of the type generated by
NETGEN and for few destinations (more than one, but much less than the maximum
possible).

We note that for "one-to-all" problems, where there is a single origin and all other
nodes are destinations, AUCTION_SP has been running slower than the best label
correcting methods, including SHEAP. However, the differences in performance were
not overwhelming (a factor of the order of two to three), and it will be interesting to
make the corresponding comparison in a parallel computing environment.

The reader is warned that the computational results of the table are far from
conclusive. Clearly, one can find problems where AUCTION_SP is vastly inferior to
SHEAP in view of its inferior computational complexity, cf. Fig. 2 (although such a
problem was never encountered in our experiments with randomly generated problems).
An important issue is to delineate, through average complexity analysis and computa-
tional experimentation, the types of practical problems for which our algorithm is
substantially better than the best label setting and label correcting methods. We find
our computational results very encouraging, but further research and testing with both
serial and parallel machines must be done before we can reach solid conclusions on
the merits of our algorithm. We also note that the ideas in this paper are new and

D
ow

nl
oa

de
d

10
/3

0/
14

 to
 1

28
.3

1.
7.

81
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

446 DIMITRI P. BERTSEKAS

TABLE
Solution times in secs ofshortest path codes on a Mac H using problems generated by NETGEN

with one destination (node N). The lengths of all arcs were randomly generated from the range
1, 1000].

N A AUCTION_SP SHEAP TWO_TREE_SHEAP

1,000 4,000 0.033 0.250 0.033
1,000 10,000 0.050 0.200 0.133
2,000 8,000 0.017 0.017 0.017
2,000 20,000 0.067 0.867 0.150
3,000 12,000 0.067 0.983 0.100
3,000 30,000 0.033 1.117 0.100
4,000 16,000 0.067 1.233 0.100
4,000 40,000 0.033 0.383 0.100
5,000 20,000 0.050 1.383 0.083
5,000 50,000 0.033 0.550 0.100

TABLE 2
Solution times in secs of shortest path codes on a Mac H using

problems generated by NETGEN with four destinations (nodes N, N-
100, N- 200, N- 300). The lengths ofall arcs were randomly generated
from the range 1, 1000].

N A AUCTION_SP SHEAP

1,000 4,000 0.050 0.250
1,000 10,000 0.080 0.383
2,000 8,000 0.100 0.667
2,000 20,000 0.233 0.883
3,000 12,000 0.117 1.100
3,000 30,000 0.167 1.117
4,000 16,000 0.100 1.233
4,000 40,000 0.117 1.883
5,000 20,000 0.150 1.533
5,000 50,000 0.183 1.833

their potential is not yet fully developed. It is likely that as these ideas are better
understood, more efficient codes will become available.

[AMOS9]

[Ber79]

Ber81

[Ber82]

[Ber86]

[Ber88]

REFERENCES

R. K. AHUJA, T. L. MAGNANTI, AND J. B. ORLIN, Networkflows, Sloan Working Paper No.
2059-88, Sloan School of Management, Cambridge, MA, March 1989; also in Handbooks
in Operations Research and Management Science, Vol. 1, Optimization, G. L. Nemhauser,
A. H. G. Rinnooy-Kan, and M. J. Todd, eds., North-Holland, Amsterdam, 1989.

D. P. BERTSEKAS, A distributed algorithmfor the assignment problem, Laboratory for Informa-
tion and Decision Systems Working Paper, Massachusetts Institute of Technology,
Cambridge, MA, March 1979.
, A new algorithm for the assignment problem, Math. Programming, 21 (1981),

pp. 152-171.
, Distributed dynamic programming, IEEE Trans. Automat. Control, 27(1982),

pp. 610-616.
, Distributed relaxation methods for linear network flow problems, in Proc. 25th IEEE

Conference on Decision and Control, 1986, pp. 2101-2106.
, The auction algorithm: A distributed relaxation methodfor the assignmentproblem, Ann.

Oper. Res. 14 (1988), pp. 105-123.

D
ow

nl
oa

de
d

10
/3

0/
14

 to
 1

28
.3

1.
7.

81
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

AUCTION FOR SHORTEST PATHS 447

[Ber90]

[BEE88]

[BeT89]

[Chv83]
[Dan63]

[DGK79]

[Dia69]

[GAP86]

[GAP88]
[GKP85]

[HKS88]

[HKS89]

[JoV87]

[KNS74]

Ker81
[Law76]

[Nic66]

[Pap74]

[PASS2]

[Po191]

[Roc84]

[ShW81]

The auction algorithm for assignment and other network flow problems: A tutorial,
Interfaces, 20 (1990), pp. 133-149.

D. P. BERTSEKAS AND J. ECKSTEIN, Dual coordinate step methods for linear network flow
problems, Math. Programming Ser. B, 42 (1988), pp. 203-243.

D. P. BERTSEKAS AND J. N. TSITSIKLIS, Parallel and Distributed Computation: Numerical
Methods, Prentice-Hall, Englewood Cliffs, NJ, 1989.

V. CHVATAL, Linear Programming, W. H. Freeman, New York, 1983.
G. B. DANTZIG, Linear Programming and Extensions, Princeton University Press, Princeton,

NJ, 1963.
R. DIAL, F. GLOVER, D. KARNEY, AND D. KLINGMAN, A computational analysis ofalternative

algorithms and labeling techniques for finding shortest path trees, Networks, 9 (1979),
pp. 215-248.

R. B. DIAL, Algorithm 360: Shortest path forest with topological ordering, Comm. ACM, 12
(1969), pp. 632-633.

G. GALLO AND S. PALLOTINO, Shortest path methods: A unified approach, Math. Programming
Stud., 26 (1986), pp. 38-64.

G. GALLO AND S. PALLOTINO, Shortest path algorithms, Ann. Oper. Res., 7 (1988), pp. 3-79.
F. GLOVER, D. KLINGMAN, N. PHILLIPS, AND R. F. SCHNEIDER, New polynomial shortest

path algorithms and their computational attributes, Management Science, 31 (1985),
pp. 1106-1128.

R. V. HELGASON, J. L. KENNINGTON, AND B. D. STEWART, Dijkstra’s two-tree shortest path
algorithm, Tech. Report 89-CSE-32, Department of Computer Science and Engineering,
Southern Methodist University, Dallas, TX, 1988.

R. V. HELGASON, J. L. KENNINGTON, AND B. D. STEWART, Computational comparison of
sequential and parallel algorithms for the one-to-one shortest-path problem, Tech. Report
89-CSE-32, Department of Computer Science and Engineering, Southern Methodist
University, Dallas, TX, 1989.

R. JONKER AND A. VOLEGNANT, A shortest augmenting path algorithm for dense and sparse
linear assignment problems, Computing, 38 (1987), pp. 325-340.

D. KLINGMAN, m. NAPIER, AND J. STUTZ, NETGEN--A program for generating large scale
(un) capacitated assignment, transportation, and minimum cost flow network problems,
Management Science, 20 (1974), pp. 814-822.

A. KERSHENBAUM, A note on finding shortest path trees, Networks, 11 (1981), pp. 399-400.
E. LAWLER, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart, and Winston,

New York, 1976.
T. NICHOLSON, Finding the shortest route between two points in a network, Comput. J., 9 (1966),

pp. 275-280.
U. PAPE, Implementation and efficiency ofMoore-algorithmsfor the shortest path problem, Math.

Programming, 7 (1974), pp. 212-222.
C. H. PAPADIMITRIOU AND K. STEIGLITZ, Combinatorial Optimization: Algorithms and

Complexity, Prentice-Hall, Englewood Cliffs, NJ, 1982.
L. POLYMENAKOS, Analysis of parallel asynchronous schemes for the auction shortest path

algorithm, Master’s thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, MA, 1991.

R. T. ROCKAFELLAR, Network flows and monotropic programming, Wiley-Interscience, New
York, 1984.

D. R. SHIER AND C. WITZGALL, Properties of labeling methods for determining shortest path
trees, J. Res. Nat. Bur. Standards, 86 (1981), p. 317.

D
ow

nl
oa

de
d

10
/3

0/
14

 to
 1

28
.3

1.
7.

81
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

