
The Auction Algorithm for Assignment and Other Network Flow Problems: A Tutorial

Author(s): Dimitri P. Bertsekas

Source: Interfaces , Jul. - Aug., 1990, Vol. 20, No. 4, The Practice of Mathematical
Programming (Jul. - Aug., 1990), pp. 133-149

Published by: INFORMS

Stable URL: http://www.jstor.com/stable/25061377

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide
range of content in a trusted digital archive. We use information technology and tools to increase productivity and
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at
https://about.jstor.org/terms

INFORMS is collaborating with JSTOR to digitize, preserve and extend access to Interfaces

This content downloaded from
������������141.154.68.235 on Tue, 07 Jun 2022 16:10:31 UTC�������������

All use subject to https://about.jstor.org/terms

http://www.jstor.com/stable/25061377

 The Auction Algorithm for Assignment and
 Other Network Flow Problems: A Tutorial

 DlMITRI P. BERTSEKAS Department of Electrical Engineering and
 Computer Science

 Massachusetts Institute of Technology
 Cambridge, Massachusetts 02139

 The auction algorithm is an intuitive method for solving the
 classical assignment problem. It outperforms substantially its
 main competitors for important types of problems, both in the
 ory and in practice and is also naturally well suited for parallel
 computation. I derive the algorithm from first principles, ex
 plain its computational properties, and discuss its extensions to
 transportation and transshipment problems.

 In the classical assignment problem
 there are n persons and n objects that

 we have to match on a one-to-one basis.

 There is a benefit a{j for matching person i
 with object ;, and we want to assign per
 sons to objects so as to maximize the total
 benefit. Mathematically, we want to find a
 one-to-one assignment [a set of person
 object pairs (1, ;'i), . . ., (n, jn), such that
 the objects]\, . . ., ;? are all distinct] with

 maximum total benefit 2?=i %..

 The assignment problem is important in
 many practical contexts. The most obvious

 ones are resource allocation problems, such
 as assigning personnel to jobs, machines to

 tasks, and the like. There are also situa

 tions where the assignment problem ap

 pears as a subproblem in various methods
 for solving more complex problems; for ex
 ample, in an important method for solving
 traveling salesman problems [Held and
 Karp 1970, 1971].

 The assignment problem is also of great
 theoretical importance because, despite its
 simplicity, it embodies a fundamental lin
 ear programming structure. The most im

 portant type of linear programming prob

 lems, the linear network flow problem, can
 be reduced to the assignment problem by

 means of a simple reformulation [Bertsekas

 Copyright ? 1990, The Institute of Management Sciences
 0091 -2102/90/2004/0133$01.25
 This paper was refereed.

 PROGRAMMING?MATHEMATICAL
 NETWORKS/GRAPHS

 INTERFACES 20: 4 July-August 1990 (pp. 133-149)

This content downloaded from
������������141.154.68.235 on Tue, 07 Jun 2022 16:10:31 UTC�������������

All use subject to https://about.jstor.org/terms

 BERTSEKAS

 and Tsitsiklis 1989, p. 335; Papadimitriou
 and Steiglitz 1982, p. 149]. Thus, any

 method for solving the assignment prob

 lem can be generalized to solve the linear

 network flow problem. For this reason, the
 assignment problem has served as a conve
 nient starting point for important algo

 rithmic ideas in linear programming. For

 example, the primal-dual method [Ford
 and Fulkerson 1962; Minty 1960] was mo
 tivated and developed through Kuhn's

 Hungarian method [Kuhn 1955], the first
 specialized algorithm for the assignment
 problem. (The name of the algorithm hon
 ors its connection with the work of the

 Hungarian mathematician Egervary, dating
 to 1931.)

 In the 35 years since Kuhn's original
 proposal a plethora of algorithms for the

 assignment problem have been proposed;
 for a representative but incomplete sample,
 see Balinski [1985, 1986], Barr, Glover, and
 Klingman [1977], Balas et al. [1989], Bert
 sekas [1981], Carpaneto, Martello, and
 Toth [1988], Derigs [1985], Engquist [1982],
 Glover, Glover, and Klingman [1982],
 Goldfarb [1985], Hall [1956], Hung [1983],
 Jonker and Volegnant [1987], McGinnis
 [1983], and Thompson [1981]. All of these

 methods are based on iterative improve
 ment of some cost function; for example, a
 primal cost (as in primal simplex methods),
 or a dual cost (as in Hungarian-like meth
 ods, dual simplex methods, and relaxation
 methods).

 The auction algorithm, which I first pro

 posed in 1979 and discussed further in
 Bertsekas [1985, 1988], departs signifi
 cantly from the cost improvement idea; at
 any one iteration, it may deteriorate both

 the primal and the dual cost, although in

 the end it finds an optimal assignment. It is
 based on a notion of approximate optimal
 ly, called ^-complementary slackness, and

 while it implicitly tries to solve a dual

 problem, it actually attains a dual solution
 that is not quite optimal. I originally con
 ceived the auction algorithm as a method

 for massively parallel solution of the as
 signment problem, but it has also turned
 out to be very effective for serial

 computation.
 Prices and Equilibria

 To develop an intuitive understanding of
 the auction algorithm, it is helpful to intro

 duce an economic equilibrium problem
 that turns out to be equivalent to the

 assignment problem.
 Let us consider the possibility of match

 ing the n objects with the n persons

 through a market mechanism, viewing
 each person as an economic agent acting in
 his own best interest. Suppose that object ;
 has a price p; and that the person who re

 ceives the object must pay the price p;.
 Then, the (net) value of object ; for person
 i is atj ? Pj and each person i would logi
 cally want to be assigned to an object ;,
 with maximal value, that is, with

 aiji-Pii= max {aij-Pj}- (!)

 We will say that a person i is happy if this
 condition holds, and we will say that an

 assignment and a set of prices are at equi

 librium when all persons are happy.
 Equilibrium assignments and prices are

 naturally of great interest to economists,
 but there is also a fundamental relation

 with the assignment problem; it turns out
 that an equilibrium assignment offers max
 imum total benefit (and thus solves the

 INTERFACES 20:4 134

This content downloaded from
������������141.154.68.235 on Tue, 07 Jun 2022 16:10:31 UTC�������������

All use subject to https://about.jstor.org/terms

 THE AUCTION ALGORITHM

 assignment problem), while the corre
 sponding set of prices solves an associated
 dual optimization problem. This is a conse
 quence of the celebrated duality theorem
 of linear programming (see for example
 Dantzig [1963], Papadimitriou and Steiglitz
 [1982], Rockafellar [1984]; in the terminol

 ogy of linear programming, the "happi
 ness" relation (1) is known as complemen
 tary slackness). I provide a simple, first

 principles, proof of the relation of equilib
 ria to optimal assignments and dual opti

 mization in the appendix, but for simplic
 ity, I will not emphasize linear
 programming and duality in this paper.
 An Auction Process

 Let us consider now a natural process

 for finding an equilibrium assignment. I

 will call this process the naive auction algo
 rithm, because it has a serious flaw. None

 theless, this flaw will help motivate a more

 sophisticated and correct algorithm.

 The naive auction algorithm proceeds in
 "rounds" (or "iterations") starting with

 any assignment and any set of prices.
 There is an assignment and a set of prices
 at the beginning of each round, and if all

 persons are happy with these, the process
 terminates. Otherwise some person who is

 not happy is selected. This person, call him
 i, finds an object j? which offers maximal
 value, that is,

 //Earg max {fli;--p,-}, (2) j=l-n

 and then

 (a) Exchanges objects with the person as
 signed to ;,- at the beginning of the
 round,

 (b) Sets the price of the best object j? to the
 level at which he is indifferent be

 tween ji and the second best object,
 that is, he sets pj. to

 Vn + 1? (3)

 where

 Ji = Vi - w?, (4)

 Values a.. - p.
 of objects1}
 for person ?

 v. : The value of j?, the best object for person ?

 Bidding increment Y? of person i for its best
 object j.

 W: : The value of the second best object for person i

 Figure 1: In the naive auction algorithm, even after the price of /, is increased by the bidding
 increment yif j{ continues to be the preferred object, so the bidder i is happy following the
 round. However, 7, = 0 if there are two objects most preferred by the bidder i.

 July-August 1990 135

This content downloaded from
������������141.154.68.235 on Tue, 07 Jun 2022 16:10:31 UTC�������������

All use subject to https://about.jstor.org/terms

 BERTSEKAS

 Vi is the best object value,

 Vi = max {aij-pj}, (5) i

 and Wi is the second best object value

 Wi = max {ai} - Pj}. (6) Mi

 (Note that 7, is the largest increment

 by which the best object price p;- can
 be increased, with ;, still being the best
 object for person i.)

 This process is repeated in a sequence of
 rounds until all persons are happy.
 We may view this process as an auction;

 at each round the bidder i raises the price

 of his or her preferred object by the bid
 ding increment 7,. Note that 7, cannot be

 negative since v? > w? [compare equations

 (5) and (6)], so the object prices tend to in
 crease. The choice y? is illustrated in Figure

 1. Just as in a real auction, bidding incre
 ments and price increases spur competition
 by making the bidder's own preferred
 object less attractive to other potential
 bidders.

 Does this auction process work? Unfor
 tunately, not always. The difficulty is that

 the bidding increment 7, is zero when
 more than one object offers maximum
 value for the bidder i. As a result, a situa

 tion may be created where several persons

 contest a smaller number of equally desir
 able objects without raising their prices,

 thereby creating a never ending cycle
 (Figure 2).

 To break such cycles, we introduce a

 PERSONS

 Initially assigned
 to object 1

 Initially assigned
 to object 2

 Initially assigned
 to object 3

 OBJECTS

 1) Initial price = 0

 Initial price ? 0

 Initial price = 0

 Here ^ * C > 0 for all (i,j) with i * 1,2,3 and j = 1,2
 and ay - 0 for all (i.j) with i = 1,2,3 and j = 3

 At Start
 of Round # Object Prices

 0,0,0

 0.0,0

 0,0,0

 Assigned Pairs

 (1,1) (2,2) (3,3)

 (1,1) (2,3) (3,2)

 (1.1) (2,2) (3,3)

 Happy
 Persons

 1,2

 1.3

 1,2

 Bidder Preferred
 Object

 Bidding
 Increment

 Figure 2: Illustration of how the naive auction algorithm may never terminate for a three
 person and three-object problem. Here objects 1 and 2 offer benefit C > 0 to all persons, and
 object 3 offers benefit 0 to all persons. The algorithm cycles as persons 2 and 3 alternately bid
 for object 2 without changing its price because they prefer equally object 1 and object 2 (7, = 0;
 compare Figure 1).

 INTERFACES 20:4 136

This content downloaded from
������������141.154.68.235 on Tue, 07 Jun 2022 16:10:31 UTC�������������

All use subject to https://about.jstor.org/terms

 THE AUCTION ALGORITHM

 perturbation mechanism, motivated by real
 auctions where each bid for an object must

 raise its price by a minimum positive incre
 ment, and bidders must on occasion take

 risks to win their preferred objects. In par

 ticular, let us fix a positive scalar e and say

 that a person i is almost happy with an as
 signment and a set of prices if the value of

 its assigned object ;', is within e of being
 maximal, that is,

 aiU-Pu* max {aH-Pj} ~ - (7) M.?

 We will say that an assignment and a set

 of prices are almost at equilibrium when
 all persons are almost happy. The condi
 tion (7), introduced first in 1979 in con

 junction with the auction algorithm, is
 known as ^-complementary slackness and
 has played a central role in several algo
 rithmic contexts recently (see for example,

 Ahuja et al. [1988], Bertsekas [1986a], Bert
 sekas and Casta?on [1989b], Bertsekas and
 Eckstein [1987, 1988], Gabow and Tarjan

 [1987], and Goldberg and Tarjan [1987]).
 For = 0 it reduces to ordinary comple
 mentary slackness [compare equation (1)].
 We now reformulate the previous auc
 tion process so that the bidding increment

 is always at least equal to e. The resulting
 method, the auction algorithm, is the same
 as the naive auction algorithm, except that
 the bidding increment y? is

 y i = Vi - Wi + e, (8)

 [rather than y{ = v? ? Wi as in equation (4)].
 With this choice, the bidder of a round is

 almost happy at the end of the round
 (rather than happy), as illustrated in Figure
 3. The particular increment y, = i?, ? wx? -f e

 used in the auction algorithm is the maxi
 mum amount with this property. Smaller

 increments y? would also work as long as
 y i > e, but using the largest possible incre
 ment accelerates the algorithm. This is

 consistent with experience from real
 auctions, which tend to terminate faster

 when the bidding is aggressive.

 v. : The value of j?, the best object for person ?

 Bidding increment Y? of person i for its best
 object jj.

 Wj : The value of the second best object for person i

 Values a.. - p.
 of objects,Jj
 for person ?

 Figure 3: In the auction algorithm, even after the price of the preferred object /, is increased by
 the bidding increment yif jt will be within e from being most preferred, so the bidder i is
 almost happy following the round.

 July-August 1990 137

This content downloaded from
������������141.154.68.235 on Tue, 07 Jun 2022 16:10:31 UTC�������������

All use subject to https://about.jstor.org/terms

 BERTSEKAS

 We can now show that this reformulated

 auction process terminates in a finite num

 ber of rounds, necessarily with an assign
 ment and a set of prices that are almost at
 equilibrium. To see this, note that once an
 object receives a bid for the first time, then

 the person assigned to the object at every
 subsequent round is almost happy; the
 reason is that a person is almost happy just

 after acquiring an object through a bid,

 and continues to be almost happy as long
 as he holds the object (since the other ob
 ject prices cannot decrease in the course of
 the algorithm). Therefore, the persons that

 are not almost happy must be assigned to
 objects that have never received a bid. In

 particular, once each object receives at
 least one bid, the algorithm must termi
 nate. Next note that if an object receives a

 bid in m rounds, its price must exceed its

 initial price by at least me. Thus, for suffi

 ciently large m, the object will become "ex

 pensive" enough to be judged "inferior" to
 some object that has not received a bid so

 far. It follows that only for a limited num
 ber of rounds can an object receive a bid
 while some other object still has not yet re
 ceived any bid. Therefore, there are two

 possibilities: either (a) the auction termi
 nates in a finite number of rounds, with all

 persons almost happy, before every object
 receives a bid or (b) the auction continues
 until, after a finite number of rounds, all

 objects receive at least one bid, at which
 time the auction terminates. (This argu

 ment assumes that any person can bid for

 any object, but it can be generalized for
 the case where the set of feasible person

 object pairs is limited, as long as at least
 one feasible assignment exists.) Figure 4

 shows how the auction algorithm, based

 on the bidding increment (8), overcomes

 the cycling problem of the example of

 Figure 2.
 Optimality Properties at Termination

 When the auction algorithm terminates,
 we have an assignment that is almost at
 equilibrium, but does this assignment max
 imize the total benefit? The answer here

 depends strongly on the size of e. In a real
 auction, a prudent bidder would not place
 an excessively high bid for fear that he

 might win the object at an unnecessarily
 high price. Consistent with this intuition,
 we can show that if e is small, then the fi

 nal assignment will be "almost optimal."
 In particular, we can show that the total
 benefit of the final assignment is within ne

 of being optimal. A simple self-contained

 proof of this is given in the appendix; the
 idea is that an assignment and a set of

 prices that are almost at equilibrium may
 be viewed as being at equilibrium for a

 slightly different problem where all bene
 fits Uij are the same as before, except for

 the n benefits of the assigned pairs which
 are modified by an amount no more
 than e.

 Suppose now that the benefits ai} are all
 integer, which is the typical practical case
 (if Uij are rational numbers, they can be

 scaled up to integer by multiplication with
 a suitable common number). Then, the to
 tal benefit of any assignment is integer, so

 if ne < 1, a complete assignment that is
 within ne of being optimal must be
 optimal. It follows, that if e < 1/n, and the
 benefits ai; are all integer, then the assign
 ment obtained upon termination of the

 auction algorithm is optimal. [Actually,

 with a more careful analysis, we can show
 that for optimality of the final assignment,

 INTERFACES 20:4 138

This content downloaded from
������������141.154.68.235 on Tue, 07 Jun 2022 16:10:31 UTC�������������

All use subject to https://about.jstor.org/terms

 THE AUCTION ALGORITHM

 it is sufficient that e < l/(n - 1). This

 threshold cannot be further improved; my

 original paper [Bertsekas 1979] gives for

 every n > 2 an example where the auction
 algorithm terminates with a nonoptimal

 assignment when e = l/(n ? 1).]
 Duality and the Coordinate Descent
 Interpretation

 Just as the final assignment obtained

 from the auction algorithm is within ne of

 being optimal, it turns out that the final set

 of prices is within ne of being an optimal

 solution of a certain dual problem. As

 shown in the appendix, this dual problem
 is

 n n

 minimize 2 P; + 2 max {aij ~ Pj} ;'=1 z'=l i

 over all prices p]f j = 1, . . ., n. (9)

 Figure 5 shows the sequence of gener
 ated object prices for the example of Fig
 ures 2 and 4 in relation to the contours of

 the dual cost function of equation (9). It

 PERSONS

 Initially assigned ,
 to object 1

 Initially assigned ,
 to object 2

 Initially assigned,
 to object 3

 OBJECTS

 1) Initial price = 0

 2) Initial price = 0

 3 J Initial price = 0

 Here ay = C > 0 for all (i,j) with i = 1,2,3 a
 and ay = 0 for all (i.j) with i = 1,2,3 and j =

 1,2,3 and j-1,2
 3

 At Start
 of Round #

 6

 Object Prices

 0,0,0

 0,e, 0

 2e, e,0

 2e, 3e, 0

 4e, 3e, 0

 Assigned Pairs

 (1.1) (2,2) (3,3)

 (1,1) (2,3) (3,2)

 (1,2) (2,3) (3,1)

 (1,2) (2,1) (3,3)

 (1,3) (2,1) (3,2)

 Almost Happy
 Persons

 1,2

 1,3

 2,3

 1,2

 1,3

 Bidder Preferred
 Object

 Bidding
 Increment

 2e

 2e

 2e

 2e

 Figure 4: This figure shows how the auction algorithm overcomes the cycling problem for the
 example of Figure 2, by making the bidding increment at least equal to e. I give one possible
 sequence of bids and assignments generated by the auction algorithm, starting with all prices
 equal to 0. At each round except the last, the person assigned to object 3 bids for either object 1
 or 2, increasing its price by e in the first round and by 2e in each subsequent round. In the last
 round, after the prices of 1 and 2 rise at or above C, object 3 receives a bid and the auction
 terminates.

 July-August 1990 139

This content downloaded from
������������141.154.68.235 on Tue, 07 Jun 2022 16:10:31 UTC�������������

All use subject to https://about.jstor.org/terms

 BERTSEKAS

 can be seen from this figure that each bid
 has the effect of setting the price of the ob

 ject receiving the bid nearly equal (within
 e) to the price that minimizes the dual cost

 with respect to that price with all other
 prices held fixed. This observation can be

 rigorously established [Bertsekas 1988;
 Bertsekas and Tsitsiklis 1989]. Successive
 minimization of a cost function along sin
 gle coordinates is a central feature of coor
 dinate descent and relaxation methods,

 which are popular for unconstrained mini

 PERSONS

 Initially assigned (?j
 to object 1

 Initially assigned f p
 to object 2 l

 Initially assigned
 to object 3

 OBJECTS

 1 j Initial price ? 0

 2) Initial price ? 0

 3] Initial price ? 0

 Here ay C > 0 for all (i,j) with i 1,2,3 and j *
 and ay ? 0 for all (i.j) with i = 1,2,3 and j ? 3

 1,2

 Figure 5: Illustration of the sequence of prices generated by the auction algorithm for the
 example of Figure 4, in relation to the contours of the dual function
 3 3

 2 Pj + 2 max {ttij - pj),

 [compare equation (9)] viewed as a function of p1 and p2, with p3 held fixed at its initial price
 of 0.

 INTERFACES 20:4 140

This content downloaded from
������������141.154.68.235 on Tue, 07 Jun 2022 16:10:31 UTC�������������

All use subject to https://about.jstor.org/terms

 THE AUCTION ALGORITHM

 mization of smooth functions and for solv

 ing systems of smooth equations. The auc

 tion algorithm can be interpreted as an ap
 proximate coordinate descent method and
 as such, it is related to relaxation methods

 for network flow problems [Bertsekas

 1982; Bertsekas and Tseng 1985, 1988;
 Bertsekas and Tsitsiklis 1989], which also
 resemble coordinate descent methods.

 There is a fundamental difference here,

 however; the dual cost function is piece
 wise linear and thus it is not smooth. It is

 precisely for this reason that we had to in
 troduce the perturbations implicit in the

 "almost happiness" or e-complementary
 slackness condition (7).

 In the auction algorithm presented so

 far, only one person can bid at each round;
 this version of the auction algorithm is
 known as the one-at-a-time or Gauss-Seidel

 implementation, in view of its similarity
 with Gauss-Seidel relaxation methods for

 solving systems of equations [Ortega and
 Rheinboldt 1970]. An alternative is to cal
 culate at each round the bids of all unas

 signed persons simultaneously and to raise
 the prices of objects that receive a bid to

 the highest bid level. This version is
 known as the all-at-once or Jacobi imple
 mentation, in view of its similarity to Jacobi

 relaxation methods for solving systems of
 equations [Ortega and Rheinboldt 1970]. It
 is just as valid as the Gauss-Seidel version
 although it tends to terminate a little
 slower. It is, however, better suited for

 parallel computation.
 Computational Aspects?6-Scaling

 The auction algorithm exhibits interest
 ing computational behavior, and it is es
 sential to understand this behavior to

 implement the algorithm efficiently.

 First note that the amount of work to

 solve the problem can depend strongly on
 the value of e and on the maximum

 absolute object value

 C = max | aij |.

 Basically, for many types of problems, the

 number of bidding rounds up to termina

 tion tends to be proportional to C/e. This
 can be seen from the example of Figure 5,
 where the number of rounds up to termi

 nation is roughly C/e, starting from zero
 initial prices.
 Next consider the dependence of the

 computational requirements on the initial
 prices; if these prices are "near optimal,"
 we expect that the number of rounds to

 solve the problem will be relatively small.
 This can be seen from the example of Fig

 ure 5; if the initial prices satisfy px ? p3
 + C and p2 ? P3 + C, the number of
 rounds up to termination is quite small.

 The preceding observations suggest the
 idea of e-scaling, which consists of apply
 ing the algorithm several times, starting

 with a large value of e and successively re
 ducing e up to an ultimate value that is less
 than some critical value (for example, \/n,

 when the benefits a{j are integer). Each ap
 plication of the algorithm provides good
 initial prices for the next application. This
 is a very common idea in nonlinear pro

 gramming, encountered, for example, in
 barrier and penalty function methods. An

 alternative form of scaling, called cost scal
 ing, is based on successively representing
 the benefits a^ with an increasing number

 of bits while keeping e at a constant value.

 In practice, it is a good idea to at least
 consider scaling. For sparse assignment

 July-August 1990 141

This content downloaded from
������������141.154.68.235 on Tue, 07 Jun 2022 16:10:31 UTC�������������

All use subject to https://about.jstor.org/terms

 BERTSEKAS

 problems, that is, problems where the set
 of feasible assignment pairs is severely re
 stricted, scaling seems almost universally

 helpful. I convinced myself of this through
 extensive experimentation when I first pro

 posed the auction algorithm. A related
 (polynomial) computational complexity

 analysis of the auction algorithm was
 given in Bertsekas and Eckstein [1988], us
 ing some of the earlier ideas of an e-scaling

 analysis by Goldberg [1987], and Goldberg
 and Tarjan [1987], for a different but re
 lated method (the e-relaxation method, to

 be discussed shortly).
 A public domain code, called

 AUCTION, implements the auction algo
 rithm. Roughly, in this code the integer

 benefits a^ are first multiplied by n + 1 and

 the auction algorithm is applied with pro

 gressively lower values of e, to the point
 where e becomes 1 or smaller (because ai;
 has been scaled by n + 1, it is sufficient for
 optimality of the final assignment to have e
 < 1). The sequence of e values used is

 (k) = max{l/ A/0*}, k = 0, 1, . . .,

 where A and 6 are parameters set by the
 user with A > 0 and S > 1. (Typical values
 for sparse problems are C/5 < A < C/2
 and 4 < 6 < 10. For nonsparse problems,
 sometimes A = 1, which in effect bypasses
 e-scaling, works quite well.)

 Extensive computational experimenta
 tion with the AUCTION code has estab

 lished that the auction algorithm is very ef

 ficient in practice. For sparse problems, it

 substantially outperforms its principal

 competitors (see Bertsekas and Casta?on
 [1989b], which contains extensive compu
 tational results). Furthermore, the factor of

 superiority increases with the dimension n,

 indicating a superior practical computa
 tional complexity. For nonsparse problems,
 the auction algorithm is competitive with

 its rivals. The practical performance of the

 auction algorithm is also supported by
 theoretical computational complexity anal

 ysis [Bertsekas and Eckstein 1988;
 Bertsekas and Tsitsiklis 1989; Bertsekas

 and Casta?on 1989b], which gives it a sub
 stantial edge over other popular methods
 for large and sparse problems.

 Figures 6, 7, and 8 give some typical
 computational results, comparing the
 AUCTION code with the code of Jonker

 and Volegnant [1987] (abbreviated as JV),
 the code APS of Carpaneto, Martello, and
 Toth [1988], and the code RELAX-II that I

 developed with P. Tseng [Bertsekas and
 Tseng 1985, 1988]. Jonker and Volegnant's
 code has two phases. The first phase is an
 extensive initialization procedure based on
 my relaxation method [Bertsekas 1981],
 and it consists of a sequence of iterations

 of the naive auction algorithm. To over

 come the difficulty with finite termination
 of the naive auction algorithm, Jonker and

 Volegnant use a second phase. This phase
 is based on the Hungarian method and re
 fines the results obtained by the naive auc
 tion phase. APS is an efficient implementa
 tion of the Hungarian method without the
 use of the naive auction algorithm in an

 initialization phase. RELAX-II is an effi
 cient public domain implementation of my

 general linear network flow relaxation
 method [Bertsekas 1982; Bertsekas and
 Tseng 1985]. (RELAX-II is, of course, at a
 disadvantage here because it treats the as
 signment problem as a more general net
 work flow problem and ignores much of its
 _ special structure.)

 INTERFACES 20:4 142

This content downloaded from
������������141.154.68.235 on Tue, 07 Jun 2022 16:10:31 UTC�������������

All use subject to https://about.jstor.org/terms

 THE AUCTION ALGORITHM

 Average number of objects per person =5

 Benefits uniformly distributed in the range [0,1000]

 1000 2000 3000 4000
 Number of Persons n

 5000

 Figure 6: Computational results comparing various codes using a MAC-II on randomly gener
 ated problems. For all test problems, the number of feasible assignment pairs is 5n, where n is
 the number of persons, and the benefits ai; are integers chosen according to a uniform
 distribution from the range [0,1000].

 As illustrated in Figures 6-8, AUCTION
 is almost uniformly faster than the other

 codes and the factor of superiority in
 creases as the problem becomes more
 sparse. Note also that JV is greatly superior

 to APS. Since the Hungarian algorithms
 used by both codes are essentially equiva
 lent, the superiority of JV must be attrib

 uted to the use of the naive auction algo
 rithm for initialization. Indeed, typically,

 the vast majority of persons (85 to 100

 percent) are assigned by the naive auction
 part of this code.

 There have been a number of computa
 tional studies involving parallel implemen
 tation of the auction algorithm by

 Bertsekas and Casta?on [1989c], Casta?on,
 Smith, and Wilson [forthcoming],

 Kennington and Wang [1988], Kempa,
 Kennington, and Zaki [1989], Perry (pri
 vate communication), and Phillips and
 Zenios [1988]. Collectively, these studies
 indicate that the speedup that one can ob
 tain from parallelism is substantial (in the

 order of four to 10 for sparse problems,

 and considerably larger for nonsparse

 problems, depending on the implementa
 tion and the machine used). Note also that

 the Hungarian method has been paralle
 lized recently in an interesting way by
 Balas et al. [1989]. Their method also ad
 mits an asynchronous implementation as

 July-August 1990 143

This content downloaded from
������������141.154.68.235 on Tue, 07 Jun 2022 16:10:31 UTC�������������

All use subject to https://about.jstor.org/terms

 BERTSEKAS

 60 r

 50

 40

 ^ 30

 20 h

 W 10

 Average number of objects per person =15

 Benefits uniformly distributed in the range [0,1000]

 RELAX II

 1000 2000 3000
 Number of Persons n

 4000

 Figure 7: Computational results comparing various codes using a MAC-II on randomly gener
 ated problems. For all test problems, the number of feasible assignment pairs is 15?, where n
 is the number of persons, and the benefits ?/, are integers chosen according to a uniform
 distribution from the range [0,1000].

 shown in Bertsekas and Casta?on [1990].
 However, experimental results indicate a
 generally smaller speedup obtained from
 parallelization of the Hungarian method
 than from parallelization of auction.
 Variations

 A variation of the auction algorithm can

 be used for asymmetric assignment prob
 lems where the number of objects is larger
 than the number of persons and there is a

 requirement that all persons be assigned to
 some object. Naturally, the notion of an
 assignment must now be modified appro
 priately. To solve this problem, the auction
 algorithm need only be modified in the

 choice of initial conditions. It is sufficient

 to require that all initial prices be zero. A
 similar algorithm can be used for the case
 where there is no requirement that all per
 sons be assigned. Other variations handle
 efficiently the cases where there are several
 groups of "identical" persons or objects

 [Bertsekas and Casta?on 1989a].
 Parallel and Asynchronous
 Implementation

 Both the bidding and the assignment

 phases of the auction algorithm are highly
 parallelizable. This is particularly so for the
 all-at-once (Jacobi) version of the algo
 rithm, where the bidding and assignment

 INTERFACES 20:4 144

This content downloaded from
������������141.154.68.235 on Tue, 07 Jun 2022 16:10:31 UTC�������������

All use subject to https://about.jstor.org/terms

 THE AUCTION ALGORITHM

 40 r Average number of objects per person =50

 Benefits uniformly distributed in the range [0,1000]

 RELAX II

 1000 1200

 Number of Persons n
 Figure 8: Computational results comparing various codes using a MAC-II on randomly gener
 ated problems. For all test problems, the number of feasible assignment pairs is 50w, where n
 is the number of persons, and the benefits a^ are integers chosen according to a uniform
 distribution from the range [0,1000].

 can be carried out for all persons and ob

 jects simultaneously. Such an implementa
 tion can be termed synchronous. There are
 also totally asynchronous implementations
 of the auction algorithm, which are inter
 esting because they are quite flexible and
 also tend to result in faster solution in

 some types of parallel machines. To under
 stand these implementations, it is useful to
 think of a person as an autonomous deci

 sion maker who at unpredictable times ob

 tains information about the prices of the
 objects. Each person who is not almost

 happy makes a bid at arbitrary times on
 the basis of its current object price infor
 mation (that may be outdated because of

 communication delays).
 Bertsekas and Casta?on [1989c] give a

 careful formulation of the totally asynchro
 nous model, and a proof of its validity.
 They include also extensive computational
 results on a shared memory machine, con

 firming the advantage of asynchronous
 over synchronous implementations. There
 are also totally asynchronous models for
 extensions of the auction algorithms that

 apply to linear network flow problems
 [Bertsekas 1986a; Bertsekas and Eckstein

 1988; Bertsekas and Tsitsiklis 1989].

 Extension to Transportation and
 Minimum-Cost-Flow Problems

 David Casta?on and I have extended the

 July-August 1990 145

This content downloaded from
������������141.154.68.235 on Tue, 07 Jun 2022 16:10:31 UTC�������������

All use subject to https://about.jstor.org/terms

 BERTSEKAS

 auction algorithm to solve linear transpor
 tation problems [Bertsekas and Casta?on
 1989a]. The basic idea is to convert the

 transportation problem into an assignment
 problem by creating multiple copies of per
 sons (or objects) for each source (or sink

 respectively), and then to modify the auc
 tion algorithm to take advantage of the
 presence of the multiple copies. We give
 computational results with a code called
 TRANSAUCTION, showing that this auc
 tion algorithm is considerably faster than

 its chief competitors for important classes

 of transportation problems. Generally
 these problems are characterized by two

 properties, homogeneity and asymmetry. A

 homogeneous problem is one for which
 there are only few levels of supply and de

 mand. An asymmetric problem is one for
 which the number of sources is much

 larger than the number of sinks. For other

 types of transportation problems, the auc

 tion algorithm is outperformed by, for ex

 ample, the relaxation code RELAX-II. The
 computational complexity of transporta
 tion-auction is studied by Bertsekas and
 Casta?on [1989b].

 There are extensions of the auction algo
 rithm for linear minimum cost flow (trans

 shipment) problems. One such extension is
 the e-relaxation method first proposed in

 Bertsekas [1986a, 1986b]; see also
 Bertsekas and Eckstein [1987, 1988],

 Bertsekas and Tsitsiklis [1989], and
 Goldberg and Tarjan [1987] for a detailed
 description and analysis. This method has
 interesting theoretical properties and, like

 the auction algorithm, is well suited for

 parallelization. However, for general trans
 shipment problems, its practical perfor

 mance has yet to match that of relaxation

 methods (for example, the RELAX-II code);
 further research may change this
 assessment.

 Concluding Remarks
 The auction algorithm is an intuitive

 method based on new and interesting
 computational ideas. It performs very well
 on serial machines, and it is also well

 suited for implementation in parallel ma
 chines, in both a synchronous and an
 asynchronous mode. Auction-like algo
 rithms for network flow problems more

 general than assignment have been devel
 oped only recently. Much remains to be

 done to properly extend them and to

 realize their full potential.
 To foster research in the network opti

 mization area, I have placed the code
 AUCTION in the public domain. Paul
 Tseng and I have also placed the code
 RELAX-II in the public domain. You can
 obtain these codes from me at no cost.

 Acknowledgments
 This work was supported by the Army

 Research Office under Contract No. DAAL

 03-86-K-0171. The suggestions of Paul
 Tseng on the presentation style were very
 helpful and are greatly appreciated.
 Thanks are also due to David Casta?on for
 several useful comments.

 APPENDIX: Relation of Equilibria with
 Primal and Dual Optimality

 Let us fix > 0. In this appendix, we
 show that given an assignment {(/, /,) | i
 = 1, . . ., n) and a set of prices {pj\j = 1,
 . . . , n], which are almost at equilibrium (if
 > 0) or at equilibrium (if e = 0), then the

 assignment is within ne of maximizing the
 total benefit and is optimal if e = 0. Fur
 thermore, the set of prices is within ne of

 minimizing a certain dual cost function.
 Let 6 > 0. The total benefit of any assign

 INTERFACES 20:4 146

This content downloaded from
������������141.154.68.235 on Tue, 07 Jun 2022 16:10:31 UTC�������������

All use subject to https://about.jstor.org/terms

 THE AUCTION ALGORITHM

 ment {(i, k{)\i = 1, . . ., n} satisfies
 n n n

 2 aikt < 2 Pj + 2 niax {ai} - p;-},
 i'=l ;'=1 i=l /

 for any set of prices {pj\j = 1, . . ., n},
 since the second term of the right-hand
 side is no less than

 n

 2 fab - Pu),

 while the first term is equal to Z"=1 pkr
 Therefore,

 A* < D*,

 where A* is the optimal total assignment
 benefit

 A* = max 2 &iki
 fc?i=l, . . . ,n l=1
 kftkm if iV=m

 and
 f n

 D* = min
 Pi

 ;=i.?
 2 ft + 2 max {atj-pj}
 j=i i=i '

 On the other hand, since all persons are al
 most happy with the given assignment
 {(*'/ h) I ? = 1/ . / n} and set of prices
 {p)|; = 1, . . ., n}, we have

 max {ay - ft} - e <; aiU - ph,

 and by adding this relation over all /, we
 see that

 n

 P*^ 2 (Pu + mvxfaj-pj})

 < 2 % + ne < A* + ne.
 j=i

 Since we showed earlier that A* < D*, it
 follows that the total assignment bene
 fit 2?=i ?ij. is within ne of the optimal
 value A*.

 The function

 n n

 2 P>+ 2 max {fl/; -p7},
 7=1 f=l '

 appearing in the definition of D*, may be
 viewed as a dual function of the price vari
 ables pj, and its minimization may be
 viewed as a dual problem in the standard
 linear programming duality context; see
 Bertsekas [1988], Bertsekas and Tsitsiklis
 [1989], Dantzig [1963], Papadimitriou and
 Steiglitz [1982], and Rockafellar [1984]. It
 is seen from the preceding analysis, that
 the prices p; attain within ne the dual
 optimal value D*.

 If we let = 0 in the preceding argu
 ment, we see that A* = D* and that an as
 signment and a set of prices that are at
 equilibrium maximize the total benefit and
 minimize the dual function, respectively.
 References
 Ahuja, R. K.; Goldberg, A. V.; Orlin, J. B.; and

 Tarjan, R. E. 1988, "Finding minimum-cost
 flows by double scaling/' Sloan Working Pa
 per No. 2047-88, Massachusetts Institute of
 Technology, Cambridge, Massachusetts,
 (August).

 Balinski, M. L. 1985, "Signature methods for
 the assignment problem/' Operations
 Research, Vol. 33, No. 3, pp. 527-537.

 Balinski, M. L. 1986, "A competitive (dual) sim
 plex method for the assignment problem/'
 Mathematical Programming, Vol. 34, No. 2,
 pp. 125-141.

 Balas, E.; Miller, D.; Pekny, J.; and Toth, P.
 1989, "A parallel shortest path algorithm for
 the assignment problem," Management Sci
 ence Report MSRR 552, Carnegie-Mellon
 University, Pittsburgh, Pennsylvania, (April).

 Barr, R.; Glover, F.; and Klingman, D. 1977,
 "The alternating basis algorithm for assign
 ment problems," Mathematical Programming,
 Vol. 13, No. 1, pp. 1-13.

 Bertsekas, D. P. 1979, "A distributed algorithm
 for the assignment problem," Laboratory for
 Information and Decision Systems Working
 Paper, Massachusetts Institute of Technology,
 Cambridge, Massachusetts, (March).

 Bertsekas, D. P. 1981, "A new algorithm for the
 assignment problem," Mathematical Program
 ming, Vol. 21, No. 2, pp. 152-171.

 July-August 1990 147

This content downloaded from
������������141.154.68.235 on Tue, 07 Jun 2022 16:10:31 UTC�������������

All use subject to https://about.jstor.org/terms

 BERTSEKAS

 Bertsekas, D. P. 1982, "A unified framework for
 minimum cost network flow problems," Lab
 oratory for Information and Decision Systems
 Report LIDS-P-1245-A, Massachusetts Insti
 tute of Technology, Cambridge, Massachu
 setts; also in Mathematical Programming, 1985,
 Vol. 32, No. 2, pp. 125-145.

 Bertsekas, D. P. 1985, "A distributed asynchro
 nous relaxation algorithm for the assignment
 problem," Proceedings 24th IEEE Conference on
 Decision and Control, pp. 1703-1704.

 Bertsekas, D. P. 1986a, "Distributed asynchro
 nous relaxation methods for linear network

 flow problems," LIDS Report P-1606, Massa
 chusetts Institute of Technology, Cambridge,
 Massachusetts, (November).

 Bertsekas, D. P. 1986b, "Distributed relaxation
 methods for linear network flow problems,"
 Proceedings of 25th IEEE Conference on
 Decision and Control, pp. 2101-2106.

 Bertsekas, D. P. 1988, "The auction algorithm:
 A distributed relaxation method for the as

 signment problem," Annals of Operations
 Research, Vol. 14, pp. 105-123.

 Bertsekas, D. P. and Casta?on, D. A. 1989a,
 "The auction algorithm for transportation
 problems," Annals of Operations Research,
 Vol. 20, pp. 67-96.

 Bertsekas, D. P. and Casta?on, D. A. 1989b,
 "The auction algorithm for the minimum cost
 network flow problem," Laboratory for Infor
 mation and Decision Systems Report LIDS-P
 1925, Massachusetts Institute of Technology,
 Cambridge, Massachusetts, (November).

 Bertsekas, D. P. and Casta?on, D. A. 1989c,
 "Parallel synchronous and asynchronous im
 plementations of the auction algorithm," Al
 phatech Report, Burlington, Massachusetts,
 (November), to appear in Parallel Computing.

 Bertsekas, D. P. and Casta?on, D. A. 1990,
 "Parallel asynchronous Hungarian methods
 for the assignment problem," Alphatech Re
 port, Burlington, Massachusetts, (January).

 Bertsekas, D. P. and Eckstein, J. 1987, "Distrib
 uted asynchronous relaxation methods for
 linear network flow problems," Proceedings of
 IFAC '87, Munich, Germany, (July).

 Bertsekas, D. P. and Eckstein, J. 1988, "Dual co
 ordinate step methods for linear network flow
 problems," Mathematical Programming, Series
 B, Vol. 42, No. 2, pp. 203-243.

 Bertsekas, D. P. and Tseng, P. 1985, "Relaxa

 tion methods for minimum cost ordinary and
 generalized network flow problems," LIDS
 Report P-1462, Massachusetts Institute of
 Technology, Cambridge, Massachusetts,
 (May); also Operations Research, 1988, Vol.
 36, No. 1, pp. 93-114.

 Bertsekas, D. P. and Tseng, P. 1988, "RELAX: A
 computer code for minimum cost network
 flow problems," Annals of Operations
 Research, Vol. 13, pp. 127-190.

 Bertsekas, D. P. and Tsitsiklis, J. N. 1989, Paral
 lel and Distributed Computation: Numerical

 Methods, Prentice-Hall, Englewood Cliffs,
 New Jersey.

 Carpaneto, G.; Martello, S.; and Toth, P. 1988,
 "Algorithms and codes for the assignment
 problem," Annals of Operations Research, Vol.
 13, pp. 193-223.

 Casta?on, D.; Smith, B.; and Wilson, A. forth
 coming, "Performance of parallel assignment
 algorithms on different multiprocessor archi
 tectures," Argonne National Laboratory
 Report.

 Dantzig, G. B. 1963, Linear Programming and
 Extensions, Princeton University Press,
 Princeton, New Jersey.

 Derigs, U. 1985, "The shortest augmenting path
 method for solving assignment problems?
 Motivation and computational experience,"
 Annals of Operations Research, Vol. 4, pp. 57
 102.

 Engquist, M. 1982, "A successive shortest path
 algorithm for the assignment problem,"
 INFOR, Vol. 20, No. 4, pp. 370-384.

 Ford, L. R., Jr. and Fulkerson, D. R. 1962, Flow
 in Networks, Princeton University Press,
 Princeton, New Jersey.

 Gabow, H. N. and Tarjan, R. E. 1987, "Faster
 scaling algorithms for graph matching,"

 working paper.
 Glover, F.; Glover, R.; and Klingman, D. 1982,

 "Threshold assignment algorithm," Center
 for Business Decision Analysis Report CBDA
 107, Graduate School of Business, University
 of Texas at Austin, (September).

 Goldberg, A. V. 1987, "Efficient graph algo
 rithms for sequential and parallel computers,"
 Tech. Report TR-374, Laboratory for Com
 puter Science, Massachusetts Institute of
 Technology, Cambridge, Massachusetts,
 (February).

 Goldberg, A. V. and Tarjan, R. E. 1987, "Solv

 INTERFACES 20:4 148

This content downloaded from
������������141.154.68.235 on Tue, 07 Jun 2022 16:10:31 UTC�������������

All use subject to https://about.jstor.org/terms

 THE AUCTION ALGORITHM

 ing minimum cost flow problems by succes
 sive approximation/' Proceedings 19th ACM
 STOC, (May).

 Goldfarb, D. 1985, "Efficient dual simplex
 methods for the assignment problem/' Math
 ematical Programming, Vol. 33, No. 2, pp.
 187-203.

 Hall, M., Jr. 1956, "An algorithm for distinct
 repr?sentatives/' American Mathematical

 Monthly, Vol. 51, No. 9, pp. 716-717.
 Held, M. and Karp, R. M. 1970, "The traveling

 salesman problem and minimal spanning
 trees," Operations Research, Vol. 18, No. 6,
 pp. 1138-1162.

 Held, M. and Karp, R. M. 1971, "The traveling
 salesman problem and minimal spanning
 trees: Part II," Mathematical Programming,
 Vol. 1, No. 1, pp. 6-25.

 Hung, M. 1983, "A polynomial simplex method
 for the assignment problem," Operations Re
 search, Vol. 31, No. 3, pp. 595-600.

 Jonker, R. and Volegnant, A. 1987, "A shortest
 augmenting path algorithm for dense and
 sparse linear assignment problems,"
 Computing, Vol. 38, No. 4, pp. 325-340.

 Kempa, D.; Kennington, J.; and Zaki, H. 1989,
 "Performance characteristics of the Jacobi
 and Gauss-Seidel versions of the auction al

 gorithm on the Alliant FX/8," Report OR-89
 008, Department of Mechanical and Indus
 trial Engineering, University of Illinois,
 Champaign-Urbana, Illinois.

 Kennington, J. and Wang, Z. 1988, "Solving
 dense assignment problems on a shared
 memory multiprocessor," Tech. Report 88
 OR-16, Department of Operations Research
 and Applied Science, Southern Methodist
 University, (October).

 Kuhn, H. W. 1955, "The Hungarian method for
 the assignment problem," Naval Research
 Logistics Quarterly, Vol. 2, No. 1, pp. 83-97.

 McGinnis, L. F. 1983, "Implementation and
 testing of a primal-dual algorithm for the as
 signment problem," Operations Research, Vol.
 31, No. 2, pp. 277-291.

 Minty, G. J. 1960, "Monotone networks," Pro
 ceedings Royal Society of London, A, Vol. 257,
 No. 1289, pp. 194-212.

 Ortega, J. M. and Rheinboldt, W. C. 1970, Itera
 tive Solution of Nonlinear Equations in Several
 Variables, Academic Press, New York.

 Papadimitriou, C. H. and Steiglitz, K. 1982,

 Combinatorial Optimization: Algorithms and
 Complexity, Prentice-Hall, Englewood Cliffs,
 New Jersey.

 Perry, E. L., private communication.
 Phillips, C. and Zenios, S. A. 1988, "Experi

 ences with large scale network optimization
 on the Connection Machine/' Report 88-11
 05, Department of Decision Sciences, The

 Wharton School, University of Pennsylvania,
 Philadelphia, Pennsylvania, (November).

 Rockafellar, R. T. 1984, Network Flows and
 Monotropic Programming, Wiley-Interscience,
 New York.

 Thompson, G. L. 1981, "A recursive method for
 solving assignment problems," in Studies on
 Graphs and Discrete Programming, ed. P.
 Hansen, North-Holland Publishing
 Company, Amsterdam, pp. 319-343.

 July-August 1990 149

This content downloaded from
������������141.154.68.235 on Tue, 07 Jun 2022 16:10:31 UTC�������������

All use subject to https://about.jstor.org/terms

	Contents
	[133]
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149

	Issue Table of Contents
	Interfaces, Vol. 20, No. 4, The Practice of Mathematical Programming (Jul. - Aug., 1990), pp. 1-186
	Front Matter
	Introduction to the Special Issue on the Practice of Mathematical Programming [pp. 1-2]
	In Memory of Darwin Klingman: A Tribute to an Esteemed Colleague and Friend [pp. 3-4]
	In Memory of William Orchard-Hays [pp. 5-6]
	Netform Modeling and Applications [pp. 7-27]
	Southern California Gas Company Uses Special Ordered Sets to Model Regulatory Guidelines [pp. 28-42]
	The Diet Problem [pp. 43-47]
	A Multi-Refinery, Multi-Period Modeling System for the Turkish Petroleum Refining Industry [pp. 48-60]
	History of the Development of LP Solvers [pp. 61-73]
	Tabu Search: A Tutorial [pp. 74-94]
	Supply and Distribution Planning Support for Amoco (U.K.) Limited [pp. 95-104]
	Interior Point Methods for Linear Programming: Just Call Newton, Lagrange, and Fiacco and McCormick! [pp. 105-116]
	A History of Mathematical Programming in the Petroleum Industry [pp. 117-127]
	Model World: In the Beginning There Was Linear Programming [pp. 128-132]
	The Auction Algorithm for Assignment and Other Network Flow Problems: A Tutorial [pp. 133-149]
	Shadow Prices: Tips and Traps for Managers and Instructors [pp. 150-157]
	Some Thoughts on Math Programming Practice in the '90s [pp. 158-165]
	To the Editor [pp. 166-167]
	Erratum: A Survey of High-Technology Transfer Practices in Japan and in the United States [p. 167-167]
	Book Reviews
	Review: untitled [pp. 168-169]
	Review: untitled [pp. 170-172]
	Review: untitled [pp. 172-173]
	Review: untitled [pp. 173-175]
	Review: untitled [pp. 175-176]
	Review: untitled [pp. 176-177]
	Review: untitled [pp. 177-178]
	Review: untitled [pp. 178-179]
	Review: untitled [pp. 179-180]
	Review: untitled [pp. 181-182]
	Books Received for Review [pp. 182-183]

	Back Matter

