
APPENDIX A:

Notation and Mathematical
Conventions

In this appendix we collect our notation, and some related mathematical
facts and conventions.

A.1 SET NOTATION AND CONVENTIONS

If X is a set and x is an element of X, we write x 2 X. A set can be
specified in the form X = {x | x satisfies P}, as the set of all elements
satisfying property P . The union of two sets X1 and X2 is denoted by
X1 [X2, and their intersection by X1 \X2. The empty set is denoted by
Ø. The symbol 8 means “for all.”

The set of real numbers (also referred to as scalars) is denoted by <.
The set of extended real numbers is denoted by <*:

<* = < [ {1,�1}.

We write �1 < x < 1 for all real numbers x, and �1  x  1 for all
extended real numbers x. We denote by [a, b] the set of (possibly extended)
real numbers x satisfying a  x  b. A rounded, instead of square, bracket
denotes strict inequality in the definition. Thus (a, b], [a, b), and (a, b)
denote the set of all x satisfying a < x  b, a  x < b, and a < x < b,
respectively.

Generally, we adopt standard conventions regarding addition and
multiplication in <*, except that we take

1�1 = �1+1 = 1,
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and we take the product of 0 and 1 or �1 to be 0. In this way the sum
and product of two extended real numbers is well-defined. Division by 0 or
1 does not appear in our analysis. In particular, we adopt the following
rules in calculations involving 1 and �1:

↵ +1 = 1+ ↵ = 1, 8 ↵ 2 <*,

↵�1 = �1+ ↵ = �1, 8 ↵ 2 [�1,1),

↵ ·1 = 1, ↵ · (�1) = 1, 8 ↵ 2 (0,1],

↵ ·1 = �1, ↵ · (�1) = �1, 8 ↵ 2 [�1, 0),

0 ·1 = 1 · 0 = 0 = 0 · (�1) = (�1) · 0, �(�1) = 1.

Under these rules, the following laws of arithmetic are still valid within <*:

↵1 + ↵2 = ↵2 + ↵1, (↵1 + ↵2) + ↵3 = ↵1 + (↵2 + ↵3),

↵1↵2 = ↵2↵1, (↵1↵2)↵3 = ↵1(↵2↵3).

We also have
↵(↵1 + ↵2) = ↵↵1 + ↵↵2

if either ↵ � 0 or else (↵1 + ↵2) is not of the form 1�1.

Inf and Sup Notation

The supremum of a nonempty set X ⇢ <*, denoted by supX, is defined as
the smallest y 2 <* such that y � x for all x 2 X. Similarly, the infimum
of X, denoted by inf X, is defined as the largest y 2 <* such that y  x
for all x 2 X. For the empty set, we use the convention

supØ = �1, inf Ø = 1.

If supX is equal to an x 2 <* that belongs to the set X, we say
that x is the maximum point of X and we write x = maxX. Similarly, if
inf X is equal to an x 2 <* that belongs to the set X, we say that x is
the minimum point of X and we write x = minX. Thus, when we write
maxX (or minX) in place of supX (or inf X, respectively), we do so just
for emphasis: we indicate that it is either evident, or it is known through
earlier analysis, or it is about to be shown that the maximum (or minimum,
respectively) of the set X is attained at one of its points.
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A.2 FUNCTIONS

If f is a function, we use the notation f : X 7! Y to indicate the fact that
f is defined on a nonempty set X (its domain) and takes values in a set
Y (its range). Thus when using the notation f : X 7! Y , we implicitly
assume that X is nonempty. We will often use the unit function e : X 7! <,
defined by

e(x) = 1, 8 x 2 X.

Given a set X, we denote by R(X) the set of real-valued functions
J : X 7! <, and by E(X) the set of all extended real-valued functions
J : X 7! <*. For any collection {J� | � 2 �} ⇢ E(X), parameterized by
the elements of a set �, we denote by inf�2� J� the function taking the
value inf�2� J�(x) at each x 2 X.

For two functions J1, J2 2 E(X), we use the shorthand notation
J1  J2 to indicate the pointwise inequality

J1(x)  J2(x), 8 x 2 X.

We use the shorthand notation infi2I Ji to denote the function obtained
by pointwise infimum of a collection {Ji | i 2 I} ⇢ E(X), i.e.,✓

inf
i2I

Ji

◆
(x) = inf

i2I
Ji(x), 8 x 2 X.

We use similar notation for sup.
Given subsets S1, S2, S3 ⇢ E(X) and mappings T1 : S1 7! S3 and

T2 : S2 7! S1, the composition of T1 and T2 is the mapping T1T2 : S2 7! S3

defined by

(T1T2J)(x) =
�
T1(T2J)

�
(x), 8 J 2 S2, x 2 X.

In particular, given a subset S ⇢ E(X) and mappings T1 : S 7! S and
T2 : S 7! S, the composition of T1 and T2 is the mapping T1T2 : S 7! S
defined by

(T1T2J)(x) =
�
T1(T2J)

�
(x), 8 J 2 S, x 2 X.

Similarly, given mappings Tk : S 7! S, k = 1, . . . , N , their composition is
the mapping (T1 · · ·TN ) : S 7! S defined by

(T1T2 · · ·TNJ)(x) =
�
T1(T2(· · · (TNJ)))

�
(x), 8 J 2 S, x 2 X.

In our notation involving compositions we minimize the use of parentheses,
as long as there is no ambiguity. Thus we write T1T2J instead of (T1T2J)
or (T1T2)J or T1(T2J), but we write (T1T2J)(x) to indicate the value of
T1T2J at x 2 X.

If X and Y are nonempty sets, a mapping T : S1 7! S2, where
S1 ⇢ E(X) and S2 ⇢ E(Y ), is said to be monotone if for all J, J 0 2 S1,

J  J 0 ) TJ  TJ 0.
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Sequences of Functions

For a sequence of functions {Jk} ⇢ E(X) that converges pointwise, we de-
note by limk!1 Jk the pointwise limit of {Jk}. We denote by lim supk!1 Jk

(or lim infk!1 Jk) the pointwise limit superior (or inferior, respectively) of
{Jk}. If {Jk} ⇢ E(X) converges pointwise to J , we write Jk ! J . Note
that we reserve this notation for pointwise convergence. To denote conver-
gence with respect to a norm k · k, we write kJk � Jk ! 0.

A sequence of functions {Jk} ⇢ E(X) is said to be monotonically
nonincreasing (or monotonically nondecreasing) if Jk+1  Jk for all k (or
Jk+1 � Jk for all k, respectively). Such a sequence always has a (pointwise)
limit within E(X). We write Jk # J (or Jk " J) to indicate that {Jk} is
monotonically nonincreasing (or monotonically nonincreasing, respectively)
and that its limit is J .

Let {Jmn} ⇢ E(X) be a double indexed sequence, which is monoton-
ically nonincreasing separately for each index in the sense that

J(m+1)n  Jmn, Jm(n+1)  Jmn, 8 m,n = 0, 1, . . . .

For such sequences, a useful fact is that

lim
m!1

⇣
lim

n!1
Jmn

⌘
= lim

m!1
Jmm.

There is a similar fact for monotonically nondecreasing sequences.

Expected Values

Given a random variable w defined over a probability space ⌦, the expected
value of w is defined by

E{w} = E{w+} + E{w�},

where w+ and w� are the positive and negative parts of w,

w+(!) = max
�
0, w(!)

 
, w�(!) = min

�
0, w(!)

 
.

In this way, taking also into account the rule 1�1 = 1, the expected
value E{w} is well-defined if ⌦ is finite or countably infinite. In more gen-
eral cases, E{w} is similarly defined by the appropriate form of integration,
as will be discussed in more detail at specific points as needed.



APPENDIX B:

Contraction Mappings

B.1 CONTRACTION MAPPING FIXED POINT THEOREMS

The purpose of this appendix is to provide some background on contraction
mappings and their properties. Let Y be a real vector space with a norm
k · k, i.e., a real-valued function satisfying for all y 2 Y , kyk � 0, kyk = 0
if and only if y = 0, and

kayk = |a|kyk, 8 a 2 <, ky + zk  kyk+ kzk, 8 y, z 2 Y.

Let Ȳ be a closed subset of Y . A function F : Ȳ 7! Ȳ is said to be a
contraction mapping if for some ⇢ 2 (0, 1), we have

kFy � Fzk  ⇢ky � zk, 8 y, z 2 Ȳ .

The scalar ⇢ is called the modulus of contraction of F .

Example B.1 (Linear Contraction Mappings in <n)

Consider the case of a linear mapping F : <n 7! <n of the form

Fy = b + Ay,

where A is an n ⇥ n matrix and b is a vector in <n. Let �(A) denote the
spectral radius of A (the largest modulus among the moduli of the eigenvalues
of A). Then it can be shown that A is a contraction mapping with respect to
some norm if and only if �(A) < 1.

Specifically, given ✏ > 0, there exists a norm k · ks such that

kAyks 
�
�(A) + ✏

�
kyks, 8 y 2 <n. (B.1)
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Thus, if �(A) < 1 we may select ✏ > 0 such that ⇢ = �(A)+ ✏ < 1, and obtain
the contraction relation

kFy � Fzks =
��A(y � z)

��
s
 ⇢ky � zks, 8 y, z 2 <n. (B.2)

The norm k · ks can be taken to be a weighted Euclidean norm, i.e., it may
have the form kyks = kMyk, where M is a square invertible matrix, and k · k
is the standard Euclidean norm, i.e., kxk =

p
x0x. †

Conversely, if Eq. (B.2) holds for some norm k · ks and all real vectors
y, z, it also holds for all complex vectors y, z with the squared norm kck2s of
a complex vector c defined as the sum of the squares of the norms of the real
and the imaginary components. Thus from Eq. (B.2), by taking y � z = u,
where u is an eigenvector corresponding to an eigenvalue � with |�| = �(A),
we have �(A)kuks = kAuks  ⇢kuks. Hence �(A)  ⇢, and it follows that if
F is a contraction with respect to a given norm, we must have �(A) < 1.

A sequence {yk} ⇢ Y is said to be a Cauchy sequence if kym�ynk ! 0
as m,n !1, i.e., given any ✏ > 0, there exists N such that kym� ynk  ✏
for all m,n � N . The space Y is said to be complete under the norm k ·k if
every Cauchy sequence {yk} ⇢ Y is convergent, in the sense that for some
ȳ 2 Y , we have kyk � ȳk ! 0. Note that a Cauchy sequence is always
bounded. Also, a Cauchy sequence of real numbers is convergent, implying
that the real line is a complete space and so is every real finite-dimensional
vector space. On the other hand, an infinite dimensional space may not be
complete under some norms, while it may be complete under other norms.

When Y is complete and Ȳ is a closed subset of Y , an important
property of a contraction mapping F : Ȳ 7! Ȳ is that it has a unique fixed
point within Ȳ , i.e., the equation

y = Fy

has a unique solution y⇤ 2 Ȳ , called the fixed point of F . Furthermore, the
sequence {yk} generated by the iteration

yk+1 = Fyk

† We may show Eq. (B.1) by using the Jordan canonical form of A, which is
denoted by J . In particular, if P is a nonsingular matrix such that P�1AP = J
and D is the diagonal matrix with 1, �, . . . , �n�1 along the diagonal, where � > 0,
it is straightforward to verify that D�1P�1APD = Ĵ , where Ĵ is the matrix
that is identical to J except that each nonzero o↵-diagonal term is replaced by �.
Defining P̂ = PD, we have A = P̂ ĴP̂�1. Now if k · k is the standard Euclidean
norm, we note that for some � > 0, we have kĴzk 

�
�(A) + ��

�
kzk for all

z 2 <n and � 2 (0, 1]. For a given � 2 (0, 1], consider the weighted Euclidean
norm k · ks defined by kyks = kP̂�1yk. Then we have for all y 2 <n,

kAyks = kP̂�1Ayk = kP̂�1P̂ ĴP̂�1yk = kĴ P̂�1yk 
�
�(A) + ��

�
kP̂�1yk,

so that kAyks 
�
�(A) + ��

�
kyks, for all y 2 <n. For a given ✏ > 0, we choose

� = ✏/�, so the preceding relation yields Eq. (B.1).
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converges to y⇤, starting from an arbitrary initial point y0.

Proposition B.1: (Contraction Mapping Fixed-Point Theo-
rem) Let Y be a complete vector space and let Ȳ be a closed subset
of Y . Then if F : Ȳ 7! Ȳ is a contraction mapping with modulus
⇢ 2 (0, 1), there exists a unique y⇤ 2 Ȳ such that

y⇤ = Fy⇤.

Furthermore, the sequence {F ky} converges to y⇤ for any y 2 Ȳ , and
we have

kF ky � y⇤k  ⇢kky � y⇤k, k = 1, 2, . . . .

Proof: Let y 2 Ȳ and consider the iteration yk+1 = Fyk starting with
y0 = y. By the contraction property of F ,

kyk+1 � ykk  ⇢kyk � yk�1k, k = 1, 2, . . . ,

which implies that

kyk+1 � ykk  ⇢kky1 � y0k, k = 1, 2, . . . .

It follows that for every k � 0 and m � 1, we have

kyk+m � ykk 
mX

i=1

kyk+i � yk+i�1k

 ⇢k(1 + ⇢ + · · · + ⇢m�1)ky1 � y0k

 ⇢k

1� ⇢
ky1 � y0k.

Therefore, {yk} is a Cauchy sequence in Ȳ and must converge to a limit
y⇤ 2 Ȳ , since Y is complete and Ȳ is closed. We have for all k � 1,

kFy⇤ � y⇤k  kFy⇤ � ykk+ kyk � y⇤k  ⇢ky⇤ � yk�1k+ kyk � y⇤k

and since yk converges to y⇤, we obtain Fy⇤ = y⇤. Thus, the limit y⇤ of yk

is a fixed point of F . It is a unique fixed point because if ỹ were another
fixed point, we would have

ky⇤ � ỹk = kFy⇤ � F ỹk  ⇢ky⇤ � ỹk,

which implies that y⇤ = ỹ.
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To show the convergence rate bound of the last part, note that

kF ky � y⇤k =
��F ky � Fy⇤

��  ⇢kF k�1y � y⇤k.

Repeating this process for a total of k times, we obtain the desired result.
Q.E.D.

The convergence rate exhibited by F ky in the preceding proposition
is said to be geometric, and F ky is said to converge to its limit y⇤ geomet-
rically . This is in reference to the fact that the error kF ky� y⇤k converges
to 0 faster than some geometric progression (⇢kky � y⇤k in this case).

In some contexts of interest to us one may encounter mappings that
are not contractions, but become contractions when iterated a finite num-
ber of times. In this case, one may use a slightly di↵erent version of the
contraction mapping fixed point theorem, which we now present.

We say that a function F : Ȳ 7! Ȳ is an m-stage contraction mapping
if there exists a positive integer m and some ⇢ < 1 such that

��Fmy � Fmy0
��  ⇢ky � y0k, 8 y, y0 2 Ȳ ,

where Fm denotes the composition of F with itself m times. Thus, F is
an m-stage contraction if Fm is a contraction. Again, the scalar ⇢ is called
the modulus of contraction. We have the following generalization of Prop.
B.1.

Proposition B.2: (m-Stage Contraction Mapping Fixed-Point
Theorem) Let Y be a complete vector space and let Ȳ be a closed
subset of Y . Then if F : Ȳ 7! Ȳ is an m-stage contraction mapping
with modulus ⇢ 2 (0, 1), there exists a unique y⇤ 2 Ȳ such that

y⇤ = Fy⇤.

Furthermore, {F ky} converges to y⇤ for any y 2 Ȳ .

Proof: Since Fm maps Ȳ into Ȳ and is a contraction mapping, by Prop.
B.1, it has a unique fixed point in Ȳ , denoted y⇤. Applying F to both sides
of the relation y⇤ = Fmy⇤, we see that Fy⇤ is also a fixed point of Fm, so
by the uniqueness of the fixed point, we have y⇤ = Fy⇤. Therefore y⇤ is a
fixed point of F . If F had another fixed point, say ỹ, then we would have
ỹ = Fmỹ, which by the uniqueness of the fixed point of Fm implies that
ỹ = y⇤. Thus, y⇤ is the unique fixed point of F .

To show the convergence of {F ky}, note that by Prop. B.1, we have
for all y 2 Ȳ ,

lim
k!1

kFmky � y⇤k = 0.
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Using F `y in place of y, we obtain

lim
k!1

kFmk+`y � y⇤k = 0, ` = 0, 1, . . . ,m� 1,

which proves the desired result. Q.E.D.

B.2 WEIGHTED SUP-NORM CONTRACTIONS

In this section, we will focus on contraction mappings within a specialized
context that is particularly important in DP. Let X be a set (typically the
state space in DP), and let v : X 7! < be a positive-valued function,

v(x) > 0, 8 x 2 X.

Let B(X) denote the set of all functions J : X 7! < such that J(x)/v(x)
is bounded as x ranges over X. We define a norm on B(X), called the
weighted sup-norm, by

kJk = sup
x2X

|J(x)|
v(x)

. (B.3)

It is easily verified that k·k thus defined has the required properties for
being a norm. Furthermore, B(X) is complete under this norm. To see this,
consider a Cauchy sequence {Jk} ⇢ B(X), and note that kJm � Jnk ! 0
as m,n ! 1 implies that for all x 2 X, {Jk(x)} is a Cauchy sequence of
real numbers, so it converges to some J*(x). We will show that J* 2 B(X)
and that kJk � J*k ! 0. To this end, it will be su�cient to show that
given any ✏ > 0, there exists a K such that

|Jk(x)� J*(x)|
v(x)

 ✏, 8 x 2 X, k � K.

This will imply that

sup
x2X

|J*(x)|
v(x)

 ✏ + kJkk, 8 k � K,

so that J* 2 B(X), and will also imply that kJk � J*k  ✏, so that
kJk � J*k ! 0. Assume the contrary, i.e., that there exists an ✏ > 0 and a
subsequence {xm1 , xm2 , . . .} ⇢ X such that mi < mi+1 and

✏ <

��Jmi(xmi)� J*(xmi)
��

v(xmi)
, 8 i � 1.

The right-hand side above is less or equal to��Jmi(xmi)� Jn(xmi)
��

v(xmi)
+
��Jn(xmi)� J*(xmi)

��
v(xmi)

, 8 n � 1, i � 1.
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The first term in the above sum is less than ✏/2 for i and n larger than some
threshold; fixing i and letting n be su�ciently large, the second term can
also be made less than ✏/2, so the sum is made less than ✏ - a contradiction.
In conclusion, the space B(X) is complete, so the fixed point results of
Props. B.1 and B.2 apply.

In our discussions, we will always assume that B(X) is equipped
with the weighted sup-norm above, where the weight function v will be
clear from the context. There will be frequent occasions where the norm
will be unweighted, i.e., v(x) ⌘ 1 and kJk = maxx2X

��J(x)
��, in which case

we will explicitly state so.

Finite-Dimensional Cases

Let us now focus on the finite-dimensional case X = {1, . . . , n}. Consider
a linear mapping F : <n 7! <n of the form

Fy = b + Ay,

where A is an n ⇥ n matrix with components aij , and b is a vector in
<n (cf. Example B.1). Then it can be shown (see the following proposi-
tion) that F is a contraction with respect to the weighted sup-norm kyk =
maxi=1,...,n |yi|/v(i) if and only ifPn

j=1 |aij | v(j)
v(i)

< 1, i = 1, . . . , n.

Let us also denote by |A| the matrix whose components are the abso-
lute values of the components of A and let �

�
|A|
�

denote the spectral radius
of |A|. Then it can be shown that F is a contraction with respect to some
weighted sup-norm if and only if �

�
|A|
�

< 1. A proof of this may be found
in [BeT89], Ch. 2, Cor. 6.2. Thus any substochastic matrix P (pij � 0 for
all i, j, and

Pn
j=1 pij  1, for all i) is a contraction with respect to some

weighted sup-norm if and only if �(P ) < 1.
Finally, let us consider a nonlinear mapping F : <n 7! <n that has

the property
|Fy � Fz|  P |y � z|, 8 y, z 2 <n,

for some matrix P with nonnegative components and �(P ) < 1. Here, we
generically denote by |w| the vector whose components are the absolute
values of the components of w, and the inequality is componentwise. Then
we claim that F is a contraction with respect to some weighted sup-norm.
To see this note that by the preceding discussion, P is a contraction with
respect to some weighted sup-norm kyk = maxi=1,...,n |yi|/v(i), and we
have �

|Fy � Fz|
�
(i)

v(i)

�
P |y � z|

�
(i)

v(i)
 ↵ ky � zk, 8 i = 1, . . . , n,
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for some ↵ 2 (0, 1), where
�
|Fy � Fz|

�
(i) and

�
P |y � z|

�
(i) are the ith

components of the vectors |Fy � Fz| and P |y � z|, respectively. Thus, F
is a contraction with respect to k · k. For additional discussion of linear
and nonlinear contraction mapping properties and characterizations such
as the one above, see the book [OrR70].

Linear Mappings on Countable Spaces

The case where X is countable (or, as a special case, finite) is frequently
encountered in DP. The following proposition provides some useful criteria
for verifying the contraction property of mappings that are either linear or
are obtained via a parametric minimization of other contraction mappings.

Proposition B.3: Let X = {1, 2, . . .}.
(a) Let F : B(X) 7! B(X) be a linear mapping of the form

(FJ)(i) = bi +
X
j2X

aijJ(j), i 2 X,

where bi and aij are some scalars. Then F is a contraction with
modulus ⇢ with respect to the weighted sup-norm (B.3) if and
only if P

j2X |aij | v(j)
v(i)

 ⇢, i 2 X. (B.4)

(b) Let F : B(X) 7! B(X) be a mapping of the form

(FJ)(i) = inf
µ2M

(FµJ)(i), i 2 X,

where M is parameter set, and for each µ 2 M , Fµ is a contrac-
tion mapping from B(X) to B(X) with modulus ⇢. Then F is a
contraction mapping with modulus ⇢.

Proof: (a) Assume that Eq. (B.4) holds. For any J, J 0 2 B(X), we have

kFJ � FJ 0k = sup
i2X

���Pj2X aij
�
J(j)� J 0(j)

����
v(i)

 sup
i2X

P
j2X

��aij

�� v(j)
⇣��J(j)� J 0(j)

��/v(j)
⌘

v(i)

 sup
i2X

P
j2X

��aij

�� v(j)
v(i)

��J � J 0
��
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 ⇢ kJ � J 0k,
where the last inequality follows from the hypothesis.

Conversely, arguing by contradiction, let’s assume that Eq. (B.4) is
violated for some i 2 X. Define J(j) = v(j) sgn(aij) and J 0(j) = 0 for all
j 2 X. Then we have kJ � J 0k = kJk = 1, and��(FJ)(i)� (FJ 0)(i)

��
v(i)

=
P

j2X |aij | v(j)
v(i)

> ⇢ = ⇢ kJ � J 0k,

showing that F is not a contraction of modulus ⇢.

(b) Since Fµ is a contraction of modulus ⇢, we have for any J, J 0 2 B(X),

(FµJ)(i)
v(i)

 (FµJ 0)(i)
v(i)

+ ⇢ kJ � J 0k, i 2 X,

so by taking the infimum over µ 2 M ,

(FJ)(i)
v(i)

 (FJ 0)(i)
v(i)

+ ⇢ kJ � J 0k, i 2 X.

Reversing the roles of J and J 0, we obtain��(FJ)(i)� (FJ 0)(i)
��

v(i)
 ⇢ kJ � J 0k, i 2 X,

and by taking the supremum over i, the contraction property of F is proved.
Q.E.D.

The preceding proposition assumes that FJ 2 B(X) for all J 2 B(X).
The following proposition provides conditions, particularly relevant to the
DP context, which imply this assumption.

Proposition B.4: Let X = {1, 2, . . .}, let M be a parameter set, and
for each µ 2 M , let Fµ be a linear mapping of the form

(FµJ)(i) = bi(µ) +
X
j2X

aij(µ)J(j), i 2 X.

(a) We have FµJ 2 B(X) for all J 2 B(X) provided b(µ) 2 B(X)
and V (µ) 2 B(X), where

b(µ) =
�
b1(µ), b2(µ), . . .

 
, V (µ) =

�
V1(µ), V2(µ), . . .

 
,

with
Vi(µ) =

X
j2X

��aij(µ)
�� v(j), i 2 X.
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(b) Consider the mapping F

(FJ)(i) = inf
µ2M

(FµJ)(i), i 2 X.

We have FJ 2 B(X) for all J 2 B(X), provided b 2 B(X) and
V 2 B(X), where

b =
�
b1, b2, . . .

 
, V = {V1, V2, . . .},

with bi = supµ2M bi(µ) and Vi = supµ2M Vi(µ).

Proof: (a) For all µ 2 M , J 2 B(X) and i 2 X, we have

(FµJ)(i) 
��bi(µ)

��+ X
j2X

��aij(µ)
�� ��J(j)/v(j)

�� v(j)


��bi(µ)

��+ kJk
X
j2X

��aij(µ)
�� v(j)

=
��bi(µ)

��+ kJkVi(µ),

and similarly (FµJ)(i) � �
��bi(µ)

��� kJkVi(µ). Thus

��(FµJ)(i)
��  ��bi(µ)

��+ kJkVi(µ), i 2 X.

By dividing this inequality with v(i) and by taking the supremum over
i 2 X, we obtain

kFµJk  kbµk+ kJk kVµk < 1.

(b) By doing the same as in (a), but after first taking the infimum of
(FµJ)(i) over µ, we obtain

kFJk  kbk+ kJk kV k < 1.

Q.E.D.



APPENDIX C:

Measure Theoretic Issues

A general theory of stochastic dynamic programming must deal with the
formidable mathematical questions that arise from the presence of uncount-
able probability spaces. The purpose of this appendix is to motivate the
theory and to provide some mathematical background to the extent needed
for the development of Chapter 5. The research monograph by Bertsekas
and Shreve [BeS78] (freely available from the internet), contains a detailed
development of mathematical background and terminology on Borel spaces
and related subjects. We will explore here the main questions by means
of a simple two-stage example described in Section C.1. In Section C.2,
we develop a framework, based on universally measurable policies, for the
rigorous mathematical development of the standard DP results for this
example and for more general finite horizon models.

C.1 A TWO-STAGE EXAMPLE

Suppose that the initial state x0 is a point on the real line <. Knowing
x0, we must choose a control u0 2 <. Then the new state x1 is generated
according to a transition probability measure p(dx1 | x0, u0) on the Borel
�-algebra of < (the one generated by the open sets of <). Then, knowing
x1, we must choose a control u1 2 < and incur a cost g(x1, u1), where g is
a real-valued function that is bounded either above or below. Thus a cost
is incurred only at the second stage.

A policy ⇡ = {µ0, µ1} is a pair of functions from state to control, i.e.,
if ⇡ is employed and x0 is the initial state, then u0 = µ0(x0), and if x1 is
the subsequent state, then u1 = µ1(x1). The expected value of the cost
corresponding to ⇡ when x0 is the initial state is given by

J⇡(x0) =
Z

g
�
x1, µ1(x1)

�
p
�
dx1 | x0, µ0(x0)

�
. (C.1)

216
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We wish to find ⇡ to minimize J⇡(x0).
To formulate the problem properly, we must insure that the integral

in Eq. (C.1) is defined. Various su�cient conditions can be used for this;
for example it is su�cient that g, µ0, and µ1 be Borel measurable, and
that p(B | x0, u0) is a Borel measurable function of (x0, u0) for every Borel
set B (see [BeS78]). However, our aim in this example is to discuss the
necessary measure theoretic framework not only for the cost J⇡(x0) to be
defined, but also for the major DP-related results to hold. We thus leave
unspecified for the moment the assumptions on the problem data and the
measurability restrictions on the policy ⇡.

The optimal cost is

J*(x0) = inf
⇡

J⇡(x0),

where the infimum is over all policies ⇡ = {µ0, µ1} such that µ0 and µ1 are
measurable functions from < to < with respect to �-algebras to be specified
later. Given ✏ > 0, a policy ⇡ is ✏-optimal if

J⇡(x0)  J*(x0) + ✏, 8 x0 2 <.

A policy ⇡ is optimal if

J⇡(x0) = J*(x0), 8 x0 2 <.

The DP Algorithm

The DP algorithm for the preceding two-stage problem takes the form

J1(x1) = inf
u12<

g(x1, u1), 8 x1 2 <, (C.2)

J0(x0) = inf
u02<

Z
J1(x1) p

�
dx1 | x0, u0), 8 x0 2 <, (C.3)

and assuming that

J0(x0) > �1, 8 x0 2 <, J1(x1) > �1, 8 x1 2 <,

the results we expect to be able to prove are:

R.1: There holds
J*(x0) = J0(x0), 8 x0 2 <.

R.2: Given any ✏ > 0, there is an ✏-optimal policy.

R.3: If µ⇤1(x1) and µ⇤0(x0) attain the infimum in the DP algorithm (C.2),
(C.3) for all x1 2 < and x0 2 <, respectively, then ⇡⇤ = {µ⇤0, µ⇤1} is
optimal.
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We will see that to establish these results, we will need to address
two main issues:

(1) The cost function J⇡ of a policy ⇡, and the functions J0 and J1 pro-
duced by DP should be well-defined, with a mathematical framework,
which ensures that the integrals in Eqs. (C.1)-(C.3) make sense.

(2) Since J0(x0) is easily seen to be a lower bound to J⇡(x0) for all x0

and ⇡ = {µ0, µ1}, the equality of J0 and J* will be ensured if the
class of policies has an ✏-selection property, which guarantees that
the minima in Eqs. (C.2) and (C.3) can be nearly attained by µ1(x1)
and µ0(x0) for all x1 and x0, respectively.

To get a better sense of these issues, consider the following informal deriva-
tion of R.1:

J*(x0) = inf
⇡

J⇡(x0)

= inf
µ0

inf
µ1

Z
g
�
x1, µ1(x1)

�
p
�
dx1 | x0, µ0(x0)

�
(C.4a)

= inf
µ0

Z ⇢
inf
µ1

g
�
x1, µ1(x1)

��
p
�
dx1 | x0, µ0(x0)

�
(C.4b)

= inf
µ0

Z ⇢
inf
u1

g(x1, u1)
�

p
�
dx1 | x0, µ0(x0)

�

= inf
µ0

Z
J1(x1) p

�
dx1 | x0, µ0(x0)

�
(C.4c)

= inf
u0

Z
J1(x1) p(dx1 | x0, u0) (C.4d)

= J0(x0).

In order to make this derivation meaningful and mathematically rigorous,
the following points need to be justified:

(a) g and µ1 must be such that g
�
x1, µ1(x1)

�
can be integrated in a well-

defined manner in Eq. (C.4a).

(b) The interchange of infimization and integration in Eq. (C.4b) must
be legitimate.

(c) g must be such that the function

J1(x1) = inf
u1

g(x1, u1)

can be integrated in a well-defined manner in Eq. (C.4c).

We first discuss these points in the easier context where the state space is
essentially countable.
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Countable Space Problems

We observe that if for each (x0, u0), the measure p(dx1 | x0, u0) has count-
able support , i.e., is concentrated on a countable number of points, then for
a fixed policy ⇡ and initial state x0, the integral defining the cost J⇡(x0)
of Eq. (C.1) is defined in terms of (possibly infinite) summation. Simi-
larly, the DP algorithm (C.2), (C.3) is defined in terms of summation, and
the same is true for the integrals in Eqs. (C.4a)-(C.4d). Thus, there is no
need to impose measurability restrictions of any kind for the integrals to
make sense, and for the summations/integrations to be well-defined, it is
su�cient that g is bounded either above or below.

It can also be shown that the interchange of infimization and sum-
mation in Eq. (C.4b) is justified in view of the assumption

inf
u1

g(x1, u1) > �1, 8 x1 2 <.

To see this, for any ✏ > 0, select µ̄1 : < 7! < such that

g
�
x1, µ̄1(x1)

�
 inf

u1
g(x1, u1) + ✏, 8 x1 2 <. (C.5)

Then

inf
µ1

Z
g
�
x1, µ1(x1)

�
p
�
dx1 | x0, µ0(x0)

�


Z

g
�
x1, µ̄1(x1)

�
p
�
dx1 | x0, µ0(x0)

�


Z

inf
u1

g(x1, u1) p
�
dx1 | x0, µ0(x0)

�
+ ✏.

Since ✏ > 0 is arbitrary, it follows that

inf
µ1

Z
g
�
x1, µ1(x1)

�
p
�
dx1 | x0, µ0(x0)

�

Z

inf
u1

g(x1, u1) p
�
dx1 | x0, µ0(x0)

�
.

The reverse inequality also holds, since for all µ1, we can write
Z

inf
u1

g(x1, u1) p
�
dx1 | x0, µ0(x0)

�

Z

g
�
x1, µ1(x1)

�
p
�
dx1 | x0, µ0(x0)

�
,

and then we can take the infimum over µ1. It follows that the interchange
of infimization and summation in Eq. (C.4b) is justified, with the ✏-optimal
selection property of Eq. (C.5) being the key step in the proof.

We have thus shown that when the measure p(dx1 | x0, u0) has count-
able support, g is bounded either above or below, and J0(x0) > �1 for
all x0 and J1(x1) > �1 for all x1, the derivation of Eq. (C.4) is valid and
proves that the DP algorithm produces the optimal cost function J* (cf.
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property R.1). † A similar argument proves the existence of an ✏-optimal
policy (cf. R.2); it uses the ✏-optimal selection (C.5) for the second stage
and a similar ✏-optimal selection for the first stage, i.e., the existence of a
µ̄0 : < 7! < such that
Z

J1(x1) p
�
dx1 | x0, µ̄0(x0)

�
 inf

u0

Z
J1(x1) p(dx1 | x0, u0) + ✏. (C.6)

Also R.3 follows easily using the fact that there are no measurability re-
strictions on µ0 and µ1.

Approaches for Uncountable Space Problems

To address the case where p(dx1 | x0, u0) does not have countable support,
two approaches have been used. The first is to expand the notion of inte-
gration, and the second is to place appropriate measurability restrictions
on g, p, and {µ0, µ1}. Expanding the notion of integration is possible by
interpreting the integrals appearing in the preceding equations as outer
integrals. Since the outer integral can be defined for any function, mea-
surable or not, there is no need to impose any measurability assumptions,
and the arguments given above go through just as in the countable distur-
bance case. We do not discuss this approach further except to mention that
the book [BeS78] shows that the basic results for finite and infinite hori-
zon problems of perfect state information carry through within an outer
integration framework. However, there are inherent limitations in this ap-
proach centering around the pathologies of outer integration, as discussed
in [BeS78].

The second approach is to impose a suitable measurability structure
that allows the key proof steps of the validity of the DP algorithm. These
are:

(a) Properly interpreting the integrals in the definition (C.2)-(C.3) of the
DP algorithm and the derivation (C.4).

(b) The ✏-optimal selection property (C.5), which in turn justifies the
interchange of infimization and integration in Eq. (C.4b).

To enable (a), the required properties of the problem structure must include
the preservation of measurability under partial minimization. In particu-
lar, it is necessary that when g is measurable in some sense, the partial
minimum function

J1(x1) = inf
u1

g(x1, u1)

† The condition that g is bounded either above or below may be replaced by
any condition that guarantees that the infinite sum/integral of J1 in Eq. (C.3)
is well-defined. Note also that if g is bounded below, then the assumption that
J0(x0) > �1 for all x0 and J1(x1) > �1 for all x1 is automatically satisfied.
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is also measurable in the same sense, so that the integration in Eq. (C.3) is
well-defined. It turns out that this is a major di�culty with Borel measur-
ability, which may appear to be a natural framework for formulating the
problem: J1 need not be Borel measurable even when g is Borel measurable.
For this reason it is necessary to pass to a larger class of measurable func-
tions, which is closed under the key operation of partial minimization (and
also under some other common operations, such as addition and functional
composition). †

One such class is lower semianalytic functions and the related class
of universally measurable functions, which will be the focus of the next
section. They are the basis for a problem formulation that enables a DP
theory as powerful as the one for problems where measurability is of no
concern (e.g., those where the state and control spaces are countable).

C.2 RESOLUTION OF THE MEASURABILITY ISSUES

The example of the preceding section indicates that if measurability re-
strictions are necessary for the problem data and policies, then measurable
selection and preservation of measurability under partial minimization, be-
come crucial parts of the analysis. We will discuss measurability frame-
works that are favorable in this regard, and to this end, we will use the
theory of Borel spaces.

Borel Spaces and Analytic Sets

Given a topological space Y , we denote by BY the �-algebra generated by
the open subsets of Y , and refer to the members of BY as the Borel subsets
of Y . A topological space Y is a Borel space if it is homeomorphic to a
Borel subset of a complete separable metric space. The concept of Borel
space is quite broad, containing any “reasonable” subset of n-dimensional
Euclidean space. Any Borel subset of a Borel space is again a Borel space,
as is any homeomorphic image of a Borel space and any finite or countable

† It is also possible to use a smaller class of functions that is closed under the
same operations. This has led to the so-called semicontinuous models, where the
state and control spaces are Borel spaces, and g and p have certain semicontinu-
ity and other properties. These models are also analyzed in detail in the book
[BeS78] (Section 8.3). However, they are not as useful and widely applicable as
the universally measurable models we will focus on, because they involve assump-
tions that may be restrictive and/or hard to verify. By contrast, the universally
measurable models are simple and very general. They allow a problem formula-
tion that brings to bear the power of DP analysis under minimal assumptions.
This analysis can in turn be used to prove more specific results based on special
characteristics of the model.
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Cartesian product of Borel spaces. Let Y and Z be Borel spaces, and
consider a function h : Y 7! Z. We say that h is Borel measurable if
h�1(B) 2 BY for every B 2 BZ .

Borel spaces have a deficiency in the context of optimization: even in
the unit square, there exist Borel sets whose projections onto an axis are
not Borel subsets of that axis. In fact, this is the source of the di�culty
we mentioned earlier regarding Borel measurability in the DP context: if
g(x1, u1) is Borel measurable, the partial minimum function

J1(x1) = inf
u1

g(x1, u1)

need not be, because its level sets are defined in terms of projections of the
level sets of g as�

x1 | J1(x1) < c
 

= P
⇣�

(x1, u1) | g(x1, u1) < c
 ⌘

,

where c is a scalar and P (·) denotes projection on the space of x1. As an
example, take g to be the indicator of a Borel subset of the unit square
whose projection on the x1-axis is not Borel. Then J1 is the indicator
function of this projection, so it is not Borel measurable. This leads us to
the notion of an analytic set.

A subset A of a Borel space Y is said to be analytic if there exists
a Borel space Z and a Borel subset B of Y ⇥ Z such that A = projY (B),
where projY is the projection mapping from Y ⇥ Z to Y . It is clear that
every Borel subset of a Borel space is analytic.

Analytic sets have many interesting properties, which are discussed
in detail in [BeS78]. Some of these properties are particularly relevant to
DP analysis. For example, let Y and Z be Borel spaces. Then:

(i) If A ⇢ Y is analytic and h : Y 7! Z is Borel measurable, then h(A)
is analytic. In particular, if Y is a product of Borel spaces Y1 and
Y2, and A ⇢ Y1 ⇥ Y2 is analytic, then projY1

(A) is analytic. Thus,
the class of analytic sets is closed with respect to projection, a critical
property for DP, which the class of Borel sets is lacking, as mentioned
earlier.

(ii) If A ⇢ Z is analytic and h : Y 7! Z is Borel measurable, then h�1(A)
is analytic.

(iii) If A1, A2, . . . are analytic subsets of Y , then [1k=1 Ak and \1k=1 Ak

are analytic.

However, the complement of an analytic set need not be analytic, so the
collection of analytic subsets of Y need not be a �-algebra.

Lower Semianalytic Functions

Let Y be a Borel space and let h : Y 7! [�1,1] be a function. We say
that h is lower semianalytic if the level set

{y 2 Y | h(y) < c}
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is analytic for every c 2 <. The following proposition states that lower
analyticity is preserved under partial minimization, a key result for our
purposes. The proof follows from the preservation of analyticity of a subset
of a product space under projection onto one of the component spaces, as
in (i) above (see [BeS78], Prop. 7.47).

Proposition C.1: Let Y and Z be Borel spaces, and let h : Y ⇥Z 7!
[�1,1] be lower semianalytic. Then h⇤ : Y 7! [�1,1] defined by

h⇤(y) = inf
z2Z

h(y, z)

is lower semianalytic.

By comparing the DP equation J1(x1) = infu1 g(x1, u1) [cf. Eq. (C.2)]
and Prop. C.1, we see how lower semianalytic functions can arise in DP. In
particular, J1 is lower semianalytic if g is. Let us also give two additional
properties of lower semianalytic functions that play an important role in
DP (for a proof, see [BeS78], Lemma 7.40).

Proposition C.2: Let Y be a Borel space, and let h : Y 7! [�1,1]
and l : Y 7! [�1,1] be lower semianalytic. Suppose that for every
y 2 Y , the sum h(y) + l(y) is defined, i.e., is not of the form 1�1.
Then h + l is lower semianalytic.

Proposition C.3: Let Y and Z be Borel spaces, let h : Y 7! Z be
Borel measurable, and let l : Z 7! [�1,1] be lower semianalytic.
Then the composition l � h is lower semianalytic.

Universal Measurability

To address questions relating to the definition of the integrals appearing in
the DP algorithm, we must discuss the measurability properties of lower
semianalytic functions. In addition to the Borel �-algebra BY mentioned
earlier, there is the universal �-algebra UY , which is the intersection of all
completions of BY with respect to all probability measures. Thus, E 2 UY

if and only if, given any probability measure p on (Y,BY ), there is a Borel
set B and a p-null set N such that E = B [N . Clearly, we have BY ⇢ UY .
It is also true that every analytic set is universally measurable (for a proof,
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see [BeS78], Corollary 7.42.1), and hence the �-algebra generated by the
analytic sets, called the analytic �-algebra, and denoted AY , is contained
in UY :

BY ⇢ AY ⇢ UY .

Let X, Y , and Z be Borel spaces, and consider a function h : Y 7! Z.
We say that h is universally measurable if h�1(B) 2 UY for every B 2 BZ .
It can be shown that if U ⇢ Z is universally measurable and h is universally
measurable, then h�1(U) is also universally measurable. As a result, if
g : X 7! Y , h : Y 7! Z are universally measurable functions, then the
composition (g � h) : X 7! Z is universally measurable.

We say that h : Y 7! Z is analytically measurable if h�1(B) 2 AY

for every B 2 BZ . It can be seen that every lower semianalytic function is
analytically measurable, and in view of the inclusion AY ⇢ UY , it is also
universally measurable.

Integration of Lower Semianalytic Functions

If p is a probability measure on (Y,BY ), then p has a unique extension to a
probability measure p̄ on (Y,UY ). We write simply p instead of p̄ and

R
hdp

in place of
R

hdp̄. In particular, if h is lower semianalytic, then
R

hdp is
interpreted in this manner.

Let Y and Z be Borel spaces. A stochastic kernel q(dz | y) on Z given
Y is a collection of probability measures on (Z,BZ) parameterized by the
elements of Y . If for each Borel set B 2 BZ , the function q(B | y) is Borel
measurable (universally measurable) in y, the stochastic kernel q(dz | y)
is said to be Borel measurable (universally measurable, respectively). The
following proposition provides another basic property for the DP context
(for a proof, see [BeS78], Props. 7.46 and 7.48). †

† We use here a definition of integral of an extended real-valued function
that is always defined as an extended real number (see also Appendix A). In
particular. for a probability measure p, the integral of an extended real-valued
function f , with positive and negative parts f+ and f�, is defined as

Z
fdp =

Z
f+dp�

Z
f�dp,

where we adopts the rule 1 � 1 = 1 for the case where
R

f+dp = 1 andR
f�dp = 1. With this expanded definition, the integral of an extended real-

valued function is always defined as an extended real number (consistently also
with Appendix A).
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Proposition C.4: Let Y and Z be Borel spaces, and let q(dz | y) be
a stochastic kernel on Z given Y . Let also h : Y ⇥Z 7! [�1,1] be a
function.

(a) If q is Borel measurable and h is lower semianalytic, then the
function l : Y 7! [�1,1] given by

l(y) =
Z

Z
h(y, z)q(dz | y)

is lower semianalytic.

(b) If q is universally measurable and h is universally measurable,
then the function l : Y 7! [�1,1] given by

l(y) =
Z

Z
h(y, z)q(dz | y)

is universally measurable.

Returning to the DP algorithm (C.2)-(C.3) of Section C.1, note that
if the cost function g is lower semianalytic and bounded either above or
below, then the partial minimum function J1 given by the DP Eq. (C.2)
is lower semianalytic (cf. Prop. C.1), and bounded either above or below,
respectively. Furthermore, if the transition kernel p(dx1 | x0, u0) is Borel
measurable, then the integralZ

J1(x1) p
�
dx1 | x0, u0) (C.7)

is a lower semianalytic function of (x0, u0) (cf. Prop. C.4), and in view of
Prop. C.1, the same is true of the function J0 given by the DP Eq. (C.3),
which is the partial minimum over u0 of the expression (C.7). Thus, with
lower semianalytic g and Borel measurable p, the integrals appearing in
the DP algorithm make sense.

Note that in the example of Section C.1, there is no cost incurred in
the first stage of the system operation. When such a cost, call it g0(x0, u0),
is introduced, the expression minimized in the DP Eq. (C.3) becomes

g0(x0, u0) +
Z

J1(x1) p
�
dx1 | x0, u0),

which is still a lower semianalytic function of (x0, u0), provided g0 is lower
semianalytic and the sum above is not of the form 1�1 for any (x0, u0)
(Prop. C.2). Also, for alternative models defined in terms of a system func-
tion rather than a stochastic kernel (e.g., the total cost model of Chapter
1), Prop. C.3 provides some of the necessary machinery to show that the
functions generated by the DP algorithm are lower semianalytic.
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Universally Measurable Selection

The preceding discussion has shown that if g is lower semianalytic, and
p is Borel measurable, the DP algorithm (C.2)-(C.3) is well-defined and
produces lower semianalytic functions J1 and J0. However, this does not
by itself imply that J0 is equal to the optimal cost function J*. For this
it is necessary that the chosen class of policies has the ✏-optimal selection
property (C.5). It turns out that universally measurable policies have this
property.

The following is the key selection theorem given in a general form,
which also addresses the question of existence of optimal policies that can
be obtained from the DP algorithm (for a proof, see [BeS78], Prop. 7.50).
The theorem shows that if any functions µ̄1 : < ! < and µ̄0 : < ! < can
be found such that µ̄1(x1) and µ̄0(x0) attain the respective minima in Eqs.
(C.2) and (C.3), for every x1 and x0, then µ̄1 and µ̄0 can be chosen to be
universally measurable, the DP algorithm yields the optimal cost function
and ⇡ = (µ̄0, µ̄1) is optimal, provided that g is lower semianalytic and the
integral in Eq. (C.3) is a lower semianalytic function of (x0, u0).

Proposition C.5: (Measurable Selection Theorem) Let Y and
Z be Borel spaces and let h : Y ⇥Z 7! [�1,1] be lower semianalytic.
Define h⇤ : Y 7! [�1,1] by

h⇤(y) = inf
z2Z

h(y, z),

and let

I =
�
y 2 Y | there exists a zy 2 Z for which h(y, zy) = h⇤(y)

 
,

i.e., I is the set of points y for which the infimum above is attained. For
any ✏ > 0, there exists a universally measurable function � : Y 7! Z
such that

h
�
y,�(y)

�
= h⇤(y), 8 y 2 I,

h
�
y,�(y)

�

⇢

h⇤(y) + ✏, 8 y /2 I with h⇤(y) > �1,
�1/✏, 8 y /2 I with h⇤(y) = �1.

Universal Measurability Framework: A Summary

In conclusion, the preceding discussion shows that in the two-stage example
of Section C.1, the measurability issues are resolved in the following sense:
the DP algorithm (C.2)-(C.3) is well-defined, produces lower semianalytic
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functions J1 and J0, and yields the optimal cost function (as in R.1), and
furthermore there exist ✏-optimal and possibly exactly optimal policies (as
in R.2 and R.3), provided that:

(a) The stage cost function g is lower semianalytic; this is needed to show
that the function J1 of the DP Eq. (C.2) is lower semianalytic and
hence also universally measurable (cf. Prop. C.1). The more “nat-
ural” Borel measurability assumption on g implies lower analyticity
of g, but will not keep the functions J1 and J0 produced by the DP
algorithm within the domain of Borel measurability. This is because
the partial minimum operation on Borel measurable functions takes
us outside that domain (cf. Prop. C.1).

(b) The stochastic kernel p is Borel measurable. This is needed in order
for the integral in the DP Eq. (C.3) to be defined as a lower semi-
analytic function of (x0, u0) (cf. Prop. C.4). In turn, this is used to
show that the function J0 of the DP Eq. (C.3) is lower semianalytic
(cf. Prop. C.1).

(c) The control functions µ0 and µ1 are allowed to be universally mea-
surable, and we have J0(x0) > �1 for all x0 and J1(x1) > �1 for
all x1. This is needed in order for the calculation of Eq. (C.4) to go
through (using the measurable selection property of Prop. C.5), and
show that the DP algorithm produces the optimal cost function (cf.
R.1). It is also needed (using again Prop. C.5) in order to show the
associated existence of solutions results (cf. R.2 and R.3).

Extension to General Finite-Horizon DP

Let us now extend our analysis to an N -stage model with state xk and
control uk that take values in Borel spaces X and U , respectively. We
assume stochastic/transition kernels pk(dxk+1 | xk, uk), which are Borel
measurable, and stage cost functions gk : X ⇥ U 7! (�1,1], which are
lower semianalytic and bounded either above or below. † Furthermore, we
allow policies ⇡ = {µ0, . . . , µN�1} that are randomized: each component
µk is a universally measurable stochastic kernel µk(duk | xk) from X to U .
If for every xk and k, µk(duk | xk) assigns probability 1 to a single control
uk, ⇡ is said to be nonrandomized .

Each policy ⇡ and initial state x0 define a unique probability measure
with respect to which gk(xk, uk) can be integrated to produce the expected
value of gk. The sum of these expected values for k = 0, . . . , N � 1, is the
cost J⇡(x0). It is convenient to write this cost in terms of the following

† Note that since gk may take the value 1, constraints of the form uk 2
Uk(xk) may be implicitly introduced by letting gk(xk, uk) = 1 when uk /2
Uk(xk).
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DP-like backwards recursion (see [BeS78], Section 8.1):

J⇡,N�1(xN�1) =
Z

gN�1(xN�1, uN�1)µN�1(duN�1 | xN�1),

J⇡,k(xk) =
Z ✓

gk(xk, uk) +
Z

J⇡,k+1(xk+1) pk(dxk+1 | xk, uk)
◆

µk(duk | xk), k = 0, . . . , N � 2.

The function obtained at the last step is the cost of ⇡ starting at x0:

J⇡(x0) = J⇡,0(x0).

We can interpret J⇡,k(xk) as the expected cost-to-go starting from xk at
time k, and using ⇡. Note that by Prop. C.4, the functions J⇡,k are all
universally measurable.

The DP algorithm is given by

JN�1(xN�1) = inf
uN�12U

gN�1(xN�1, uN�1), 8 xN�1,

Jk(xk) = inf
uk2U


gk(xk, uk) +

Z
Jk+1(xk+1) pk

�
dxk+1 | xk, uk)

�
, 8 xk, k.

By essentially replicating the analysis of the two-stage example, we can
show that the integrals in the above DP algorithm are well-defined, and
that the functions JN�1, . . . , J0 are lower semianalytic.

It can be seen from the preceding expressions that we have for all
policies ⇡

Jk(xk)  J⇡,k(xk), 8 xk, k = 0, . . . , N � 1.

To show equality within ✏ � 0 in the above relation, we may use the
measurable selection theorem (Prop. C.5), assuming that

Jk(xk) > �1, 8 xk, k,

so that ✏-optimal universally measurable selection is possible in the DP
algorithm. In particular, define ⇡ = {µ0, . . . , µN�1} such that µk : X 7! U
is universally measurable, and for all xk and k,

gk

�
xk, µk(xk)

�
+
Z

Jk+1(xk+1) pk

�
dxk+1 | xk, µk(xk)

�
 Jk(xk) +

✏

N
.

(C.8)
Then, we can show by induction that

Jk(xk)  J⇡,k(xk)  Jk(xk) +
(N � k)✏

N
, 8 xk, k = 0, . . . , N � 1,
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and in particular, for k = 0,

J0(x0)  J⇡(x0)  J0(x0) + ✏, 8 x0.

and hence also
J*(x0) = inf

⇡
J⇡(x0) = J0(x0).

Thus, the DP algorithm produces the optimal cost function, and via the
approximate minimization of Eq. (C.8), an ✏-optimal policy. Similarly,
if the infimum is attained for all xk and k in the DP algorithm, then
there exists an optimal policy. Note that both the ✏-optimal and the exact
optimal policies can be taken be nonrandomized.

The assumptions of Borel measurability of the stochastic kernels,
lower semianalyticity of the costs per stage, and universally measurable
policies, are the basis for the framework adopted by Bertsekas and Shreve
[BeS78], which provides a comprehensive analysis of finite and infinite hori-
zon total cost problems. There is also additional analysis in [BeS78] on
problems of imperfect state information, as well as various refinements
of the measurability framework just described. Among others, these re-
finements involve analytically measurable policies, and limit measurable
policies (measurable with respect to the, so-called, limit �-algebra, the
smallest �-algebra that has the properties necessary for a DP theory that
is comparably powerful to the one for the universal �-algebra).



APPENDIX D:

Solutions of Exercises

CHAPTER 1

1.1 (Multistep Contraction Mappings)

By the contraction property of Tµ0 , . . . , Tµm�1 , we have for all J, J 0 2 B(X),

kT ⌫J � T ⌫J 0k = kTµ0 · · ·Tµm�1J � Tµ0 · · ·Tµm�1J 0k
 ↵kTµ1 · · ·Tµm�1J � Tµ1 · · ·Tµm�1J 0k
 ↵2kTµ2 · · ·Tµm�1J � Tµ2 · · ·Tµm�1J 0k
...

 ↵mkJ � J 0k,

thus showing Eq. (1.26).
We have from Eq. (1.26)

(Tµ0 · · ·Tµm�1J)(x)  (Tµ0 · · ·Tµm�1J 0)(x) + ↵mkJ � J 0k v(x), 8 x 2 X,

and by taking infimum of both sides over (Tµ0 · · ·Tµm�1) 2Mm and dividing by
v(x), we obtain

(TJ)(x)� (TJ 0)(x)
v(x)

 ↵mkJ � J 0k, 8 x 2 X.

Similarly
(TJ 0)(x)� (TJ)(x)

v(x)
 ↵mkJ � J 0k, 8 x 2 X,

and by combining the last two relations and taking supremum over x 2 X, Eq.
(1.27) follows.

230
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1.2 (State-Dependent Weighted Multistep Mappings [YuB12])

By the contraction property of Tµ, we have for all J, J 0 2 B(X) and x 2 X,

��(T (w)
µ J)(x)� (T (w)

µ J 0)(x)
��

v(x)
=

��P1
`=1

w`(x)(T `
µJ)(x)�

P1
`=1

w`(x)(T `
µJ 0)(x)

��
v(x)


1X

`=1

w`(x)kT `
µJ � T `

µJ 0k



 
1X

`=1

w`(x)↵`

!
kJ � J 0k,

showing the contraction property of T (w)
µ .

Let Jµ be the fixed point of Tµ. We have for all x 2 X, by using the relation
(T `

µJµ)(x) = Jµ(x),

(T (w)
µ Jµ)(x) =

1X
`=1

w`(x)
�
T `

µJµ

�
(x) =

 
1X

`=1

w`(x)

!
Jµ(x) = Jµ(x),

so Jµ is the fixed point of T (w)
µ [which is unique since T (w)

µ is a contraction].

CHAPTER 2

2.1 (Periodic Policies)

(a) Let us define

J0 = lim
k!1

T
k
⌫ J̄ , J1 = lim

k!1
T

k
⌫(Tµ0 J̄), . . . Jm�2 = lim

k!1
T

k
⌫(Tµ0 · · ·Tµm�2 J̄).

Since T ⌫ is a contraction mapping, J0, . . . , Jm�1 are all equal to the unique fixed
point of T ⌫ . Since J0, . . . , Jm�1 are all equal, they are also equal to J⇡ (by the
definition of J⇡). Thus J⇡ is the unique fixed point of T ⌫ .

(b) Follow the hint.

2.2 (Totally Asynchronous Convergence Theorem for
Time-Varying Maps)

A straightforward replication of the proof of Prop. 2.6.1.
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2.3 (Nonmonotonic-Contractive Models – Fixed Points of
Concave Sup-Norm Contractions)

The analysis of Sections 2.6.1 and 2.6.3 does not require monotonicity of the
mapping Tµ given by

(TµJ)(x) = F
�
x, µ(x)

�
� J 0µ(x).

2.4 (Discounted Problems with Unbounded Cost per Stage)

We have��(TµJ)(x)
��

v(x)
 Gx

v(x)
+ ↵

X
y2X

pxy

�
µ(x)

�
v(y)

v(x)
|J(y)|
v(y)

, 8 x 2 X, µ 2M,

from which, using assumptions (1) and (2),��(TµJ)(x)
��

v(x)
 kGk+ ↵kV k kJk, 8 x 2 X, µ 2M.

A similar argument shows that��(TJ)(x)
��

v(x)
 kGk+ ↵kV k kJk, 8 x 2 X.

It follows that TµJ 2 B(X) and TJ 2 B(X) if J 2 B(X).
For any J, J 0 2 B(X) and µ 2M, we have

kTµJ � TµJ 0k = sup
x2X

���↵Py2X
pxy

�
µ(x)

��
J(y)� J 0(y)

����
v(x)

 sup
x2X

���↵Py2X
pxy

�
µ(x)

�
v(y)

�
|J(y)� J 0(y)|/v(y)

����
v(x)

 sup
x2X

↵

���Py2X
pxy

�
µ(x)

�
v(y)

���
v(x)

kJ � J 0k

 ↵kJ � J 0k,
where the last inequality follows from assumption (3). Hence Tµ is a contraction
of modulus ↵.

To show that T is a contraction, we note that

(TµJ)(x)
v(x)

 (TµJ 0)(x)
v(x)

+ ↵kJ � J 0k, x 2 X, µ 2M,

so by taking infimum over µ 2M, we obtain

(TJ)(x)
v(x)

 (TJ 0)(x)
v(x)

+ ↵kJ � J 0k, x 2 X.

Similarly,
(TJ 0)(x)

v(x)
 (TJ)(x)

v(x)
+ ↵kJ � J 0k, x 2 X,

and by combining the last two relations the contraction property of T follows.



Appendix D 233

2.5 (Solution by Math. Programming)

If J  TJ , by monotonicity we have J  limk!1 T kJ = J⇤. Any feasible
solution z of the optimization problem satisfies zi  H(i, u, z) for all i = 1, . . . , n
and u 2 U(i), so that z  Tz. It follows that z  J⇤, which implies that J⇤ is
an optimal solution of the optimization problem.

2.6 (Convergence of Nonexpansive Monotone Fixed Point
Iterations)

For any c > 0, let Vk = T k(J⇤ + c v) for k � 1, and note that J⇤ = T kJ⇤  Vk.
From Eq. (2.80), we have

H(x, u, J⇤ + c v)  H(x, u, J⇤) + c v(x), x 2 X, u 2 U(x),

and by taking the minimum over u 2 U(x), we obtain T (J⇤ + c v)  J⇤ + c v,
i.e., V1  V0. From this and the monotonicity of T it follows that

�
Vk(x)

 
is

monotonically nonincreasing, and converges to some scalar V̄ (x) � J⇤(x) for each
x 2 X. Moreover, the corresponding function V̄ is in B(X), since V0 � V̄ � J⇤,
and also satisfies kVk � V̄ k ! 0 (since X is finite). From Eq. (2.80), we have
kTVk � T V̄ k  kVk � V̄ k, so kTVk � T V̄ k ! 0 which together with the fact
TVk = Vk+1 ! V̄ , implies that V̄ = T V̄ . Thus V̄ = J⇤ by the uniqueness of the
fixed point of T , and it follows that {Vk} converges monotonically to J⇤ from
above.

Similarly, define Wk = T k(J⇤� c v), and by an argument symmetric to the
above, {Wk} converges monotonically to J⇤ from below. Now let c = kJ � J⇤k
in the definition of Vk and Wk. Then J⇤ � c v  J0 = J  J⇤ + c v, so by the
monotonicity of T , Wk  T kJ  Vk as well as Wk  J⇤  Vk for all k. Therefore

��(T kJ)(x)� J⇤(x)
��

v(x)

��Wk(x)� Vk(x)

��
v(x)

 kWk � Vkk, 8 x 2 X.

Since kWk � Vkk  kWk � J⇤k+ kVk � J⇤k ! 0, the conclusion follows.

CHAPTER 3

3.1 (Blackmailer’s Dilemma)

(a) Clearly Tµ is a sup-norm contraction with modulus 1 � µ(1)2. Hence Jµ is
the unique fixed point of Tµ and we have

Jµ(1) = (TµJµ)(1) = �µ(1) +
�
1� µ(1)2

�
Jµ(1),

which yields Jµ(1) = �1/µ(1). The mapping T is given by

(TJ)(1) = inf
0<u1

�
� u + (1� u2)J(1)

 
,
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and J 2 < is a fixed point of T if and only if

0 = inf
0<u1

�
�
�
u + u2J(1)

� 
.

However, it can be seen that this equation has no solution. Here parts (b) and
(d) of Assumption 3.2.1 are violated.

(b) Here Tµ is again a sup-norm contraction with modulus 1�µ(1)2. For Jµ, the
unique fixed point of Tµ, we have

Jµ(1) = (TµJµ)(1) = �
�
1� µ(1)

�
µ(1) +

�
1� µ(1)

�
Jµ(1),

which yields Jµ(1) = �1 + µ(1). Hence J⇤ = �1, but there is no optimal µ. The
mapping T is given by

(TJ)(1) = inf
0<u1

�
� u + u2 + (1� u)J(1)

 
,

and J 2 < is a fixed point of T if and only if

0 = inf
0<u1

�
� u + u2 � uJ(1)

 
.

It can be verified that the set of fixed points of T within < is {J | J  �1}. Here
part (d) of Assumption 3.2.1 is violated.

(c) For the policy µ that chooses µ(1) = 0, we have

(TµJ)(1) = c + J(1),

and µ is <-irregular since limk!1 T k
µ J either does not belong to < or depends

on J . Moreover, the mapping T is given by

(TJ)(1) = min

⇢
c + J(1), inf

0<u1

�
� u + u2 + (1� u)J(1)

 �
.

When c > 0, we have Jµ(1) = limk!1 (T k
µ J̄)(1) = 1. It can be verified

that there is no optimal policy, and the set of fixed points of T within < is
{J | J  �1}. Here part (d) of Assumption 3.2.1 is violated.

When c = 0, we have Jµ(1) = limk!1 (T k
µ J̄)(1) = 0. Again it can be

verified that there is no optimal policy, and the set of fixed points of T within <
is {J | J  �1}. Here part (c) of Assumption 3.2.1 is violated.

When c < 0, we have Jµ(1) = limk!1 (T k
µ J̄)(1) = �1, and the <-irregular

policy µ is optimal. The mapping T has no fixed point within <. Here parts (c)
and (d) of Assumption 3.2.1 are violated.

3.2 (Equivalent Semicontractive Conditions)

Let the assumptions of Prop. 3.1.1 hold, and let µ⇤ be the S-regular policy that is
optimal. Then condition (1) implies that J⇤ = Jµ⇤ 2 S and J⇤ = Tµ⇤J

⇤ � TJ⇤,
while condition (2) implies that there exists an S-regular policy µ such that
TµJ⇤ = TJ⇤.

Conversely, assume that J⇤ 2 S, TJ⇤  J⇤, and there exists an S-regular
policy µ such that TµJ⇤ = TJ⇤. Then we have TµJ⇤ = TJ⇤  J⇤. Hence
T k

µ J⇤  J⇤ for all k, and by taking the limit as k ! 1, we obtain Jµ  J⇤.
Hence the S-regular policy µ is optimal, and both conditions of Prop. 3.1.1 hold.
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3.3

The mapping H here is

H(x, u, J) =

(
b if x = 1, u = 0,
a + J(2) if x = 1, u = 2,
a + J(1) if x = 2, u = 1.

The Bellman equation is given by

J(1) = min
�
b, a + J(2)

 
, J(2) = a + J(1).

There are two policies:

µ : where µ(1) = 0, corresponding to the path 2 ! 1 ! 0,

µ : where µ(1) = 2, corresponding to the cycle 1 ! 2 ! 1.

The case where S = <2 has been discussed in Section 3.1.2. Here µ is
S-regular, as can be seen from the form of Tµ,

(TµJ)(1) = b, (TµJ)(2) = a + J(1),

but µ is S-irregular, as can be seen from the form of Tµ,

(TµJ)(1) = a + J(2), (TµJ)(2) = a + J(1).

Briefly there are four cases of interest:

(1) ↵ > 0: Here Prop. 3.1.1 applies.

(2) ↵ = 0 and b  0: Here Prop. 3.1.1 applies.

(3) ↵ = 0 and b > 0: Here Prop. 3.1.1 does not apply because the S-regular
policy µ is not optimal.

(4) ↵ < 0: Here Prop. 3.1.1 does not apply because the S-regular policy µ is
not optimal.

Consider now the case where S = [�1,1)⇥[�1,1). Then µ is S-regular
in all cases (1)-(4), but µ is S-irregular only in cases (1)-(3), and it is S-regular
in case (4) because Jµ(1) = Jµ(2) = �1 and

lim
k!1

(T k
µ J)(1) = lim

k!1
(T k

µ J)(1) = �1, 8 J 2 S,

while Jµ is the unique fixed point of T within S. In cases (1) and (2), Prop.
3.1.1 applies, because the S-regular policy µ is optimal. In case (3), Prop. 3.1.1
does not apply because the S-regular policy µ is not optimal. Finally, in case (4),
contrary to the case S = <2, Prop. 3.1.1 applies, because the policy µ is optimal
and also S-regular. Case (3) cannot be analyzed with the aid of Props. 3.1.1,
3.1.2, or 3.2.1.
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3.4 (Changing J̄)

(a) By the definition of S-regular policy, we have T kJ ! Jµ for all S-regular µ
and J 2 S. Thus, changing J̄ to J 2 S leaves the cost function of all S-regular
policies unchanged.

(b) Here

H(x, u, J) =

(
b if x = 1, u = 0,
J(2) if x = 1, u = 2,
J(1) if x = 2, u = 1.

When J̄ = 0, the <2-regular policy is optimal and J⇤ = b e, as shown in Section
3.1.2. When J̄ = r e, the cost function of the <2-regular policy µ [µ(1) = 0]
continues to be

Jµ(1) = Jµ(2) = b,

while the cost function of the <2-irregular policy µ [µ(1) = 2] is

Jµ(1) = Jµ(2) = r.

For r  b, the <2-irregular policy is optimal, but J⇤ = b e continues to be the
optimal cost over just the <2-regular policies (there is only one in this example).

3.5 (Alternative Semicontractive Conditions)

We will show that conditions (1) and (2) imply that J⇤ = TJ⇤, and the result
will follow from Prop. 3.1.2. Assume to obtain a contradiction, that J⇤ 6= TJ⇤.
Then J⇤ � TJ⇤, as can be seen from the relations

J⇤ = Jµ⇤ = Tµ⇤Jµ⇤ � TJµ⇤ = TJ⇤,

where µ⇤ is an optimal S-regular policy. Thus the relation J⇤ 6= TJ⇤ implies
that there exists µ and x 2 X such that

J⇤(x) � (TµJ⇤)(x), 8 x 2 X,

with strict inequality for some x [note here that we can choose µ(x) = µ⇤(x) for
all x such that J⇤(x) = (TJ⇤)(x), and we can choose µ(x) to satisfy J⇤(x) >
(TµJ⇤)(x) for all other x]. If µ were S-regular, we would have

J⇤ � TµJ⇤ � lim
k!1

T k
µ J⇤ = Jµ,

with strict inequality for some x 2 X, which is impossible. Hence µ is S-irregular,
which contradicts condition (2).
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3.6 (Convergence of PI)

We have

Jµk � TJµk � Jµk+1 , k = 0, 1, . . . . (3.1)

Denote

J1 = lim
k!1

TJµk = lim
k!1

Jµk .

Since for all k, we have Jµk � Ĵ 2 S, where Ĵ is the optimal cost function

over S-regular policies [cf. Assumption 3.2.1(b)]. It follows that J1 � Ĵ , and by
Assumption 3.2.1(a), we obtain J1 2 S. By taking the limit in Eq. (3.1), we
have

J1 = lim
k!1

TJµk � TJ1, (3.2)

where the inequality follows from the fact Jµk # J1. Using also the given as-
sumption, we have for all x 2 X and u 2 U(x),

H(x, u, J1) = lim
k!1

H(x, u, Jµk ) � lim
k!1

(TJµk )(x) = J1(x).

By taking the infimum of the left-hand side over u 2 U(x), we obtain TJ1 � J1,
which combined with Eq. (3.2), yields J1 = TJ1. Since J⇤ is the unique fixed
point of T within S, we obtain J1 = J⇤.

CHAPTER 4

4.1 (Example of Nonexistence of an Optimal Policy Under D)

Since a cost is incurred only upon stopping, and the stopping cost is greater than
-1, we have Jµ(x) > �1 for all x and µ. On the other hand, starting from any
state x and stopping at x + n yields a cost �1 + 1

x+n , so by taking n su�ciently
large, we can attain a cost arbitrarily close to -1. Thus J⇤(x) = �1 for all x, but
no policy can attain this optimal cost.

4.2 (Counterexample for Optimality Condition Under D)

We have J⇤(x) = �1 and Jµ(x) = 0 for all x 2 X. Thus µ is nonoptimal, yet
attains the minimum in Bellman’s equation

J⇤(x) = min
n

J⇤(x + 1), �1 +
1
x

o

for all x.
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4.3 (Counterexample for Optimality Condition Under I)

The verification of TµJµ = TJµ is straightforward. To show that J⇤(x) = |x|,
we first note that |x| is a fixed point of T , so by Prop. 4.3.2, J⇤(x)  |x|.
Also (T J̄)(x) = |x| for all x, while under Assumption I, we have J⇤ � T J̄ , so
J⇤(x) � |x|. Hence J⇤(x) = |x|.

4.4 (Solution by Math. Programming)

(a) Any feasible solution z of the given optimization problem satisfies z � J̄ as
well as zi � infu2U(i) H(i, u, z) for all i = 1, . . . , n, so that z � Tz. It follows
from Prop. 4.3.3 that z � J⇤, which implies that J⇤ is an optimal solution of the
given optimization problem. Also J⇤ is the unique optimal solution since if z is
feasible and z 6= J⇤, the inequality z � J⇤ implies that

P
i
zi >

P
i
J⇤(i), so z

cannot be optimal.

(b) Any feasible solution z of the given optimization problem satisfies z  J̄ as
well as zi  H(i, u, z) for all i = 1, . . . , n and u 2 U(i), so that z  Tz. It follows
from Prop. 4.3.6 that z  J⇤, which implies that J⇤ is an optimal solution of
the given optimization problem. Similar to part (a), J⇤ is the unique optimal
solution.

4.5 (Semicontractive Discounted Problems with Unbounded
Cost per Stage)

(a) See Exercise 2.4.

(b) Since all policies in M are S-regular and there exists an optimal policy within
M, it follows that Prop. 4.4.1 applies, so that J⇤ is the unique fixed point of T
within S. Similarly, the assumption that for each J 2 S there exists µ 2M such
that TµJ = TJ , and the structure of H and S imply that Prop. 4.4.2 applies.

4.6 (Blackmailer’s Dilemma)

(a) From Exercise 3.1, the cost function of any policy µ is

Jµ(1) = � 1
µ(1)

,

so the policy evaluation equation given in part (a) is correct. Moreover, we have
Jµ(1)  �1 since µ(1) 2 (0, 1]. The policy improvement equation is

µk+1(1) 2 arg min
u2(0,1]

�
� u + (1� u2)Jµk (1)

 
. (4.1)

By setting the gradient of the expression within braces to 0,

0 = �1� 2uJµk (1),
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we see that its unconstrained minimum is

uk = � 1
2Jµk (1)

,

which is less or equal to �1/2 since Jµ(1)  �1 for all µ. Hence uk is equal to
the constrained minimum in Eq. (4.1), and we have

µk+1(1) = � 1
2Jµk (1)

.

(b) Follows from Props. 4.3.14 and 4.3.15.

4.7 (Counterexample for Policy Improvement Under D -
Infinite State Space)

(a) The policy µ that stops at every state has cost function

Jµ(x) = �1 +
1
x

, x 2 X.

Policy improvement starting with µ yields µ with

µ(x) 2 arg min
n

Jµ(x), �1 +
1
x

o
,

so µ(x) can be either to continue or to stop at every x. Let µ be to continue at
every x. Then Jµ(x) = 0 > Jµ(x) for all x. Moreover, the next policy obtained
from µ by policy improvement is µ.

(b) Follows from Props. 4.3.14 and 4.3.15.

4.8 (Counterexample for Policy Improvement Under D -
Finite State Space)

(a) Essentially the same as the one of Exercise 4.7.

(b) Straightforward.

4.9 (Infinite Time Reachability [Ber72])

(a) For any policy ⇡ = {µ0, µ1, . . .}, we have

J⇡(x) = lim sup
k!1

(Tµ0 · · ·Tµk J̄)(x), 8 x 2 X.

The mapping Tµ has the property that if J takes only the two values 0 and 1,
the same is true for TµJ . It follows that Tµ0 · · ·Tµk J̄ takes only the two values
0 and 1, and therefore the same is true for J⇡. It can be shown by induction
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that Tµ0 · · ·Tµk J̄ takes the value 1 for all \1k=0Xk. Hence the set of states X⇤

where J⇤ takes the value 0 is a subset of \1k=0Xk for all k, and it follows that
X⇤ ⇢ \1k=0Xk.

(b) This is a consequence of the fact that Assumption I holds and {T kJ̄} is
monotonically nondecreasing and satisfies T kJ̄  J⇤ for all k.

(c) The relation X⇤ 6= \1k=0Xk is equivalent to limk!1 T kJ̄ 6= J⇤. The com-
pactness condition of Prop. 4.3.13 requires that the sets

Uk(x, �) =
�
u 2 U(x)

�� H(x, u, T kJ̄)  �
 

are compact for every x 2 X, � 2 <, and for all k greater than some integer k.
Equivalently, the sets Xk should be compact.
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Asynchronous convergence theorem,
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Asynchronous policy iteration, 67, 76,
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Borel space, 221
Borel space model, 200
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C

Cauchy sequence, 208
Complete space, 208, 211
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D

�-S-regular, 112
�-S-irregular, 112
Discounted MDP, 12, 83, 167, 183
Distributed computation, 61, 117

E

✏-optimal policy, 33, 132, 136, 143,
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Error amplification, 45, 50, 61, 79
Error bounds, 35, 37, 40, 51, 58, 79
Euclidean norm, 208
Exponential cost function, 19, 175, 182

F

Finite-horizon problems, 133, 196
First passage problem, 16
Fixed point, 208

G

Games, dynamic, 13, 78
Gauss-Seidel method, 25, 61
Geometric convergence rate, 210

H

Hard aggregation, 22

I

Imperfect state information, 127
Improper policy, vii, 16, 86
Interpolation, 78

J, K

L

�-aggregation, 23
�-policy iteration, 80, 159, 166, 181
LSPE(�), 22
LSTD(�), 22
Least squares approximation, 45
Limited lookahead policy, 37
Linear contraction mappings, 207, 213
Linear-quadratic problems, 168
Lower semianalytic, 192, 200, 222

M

MDP, 10
Markovian decision problem, see MDP
Mathematical programming, 84, 183
Measurability issues, 188, 216
Measurable selection, 191, 194, 226
Minimax problems, 15
Modulus of contraction, 207
Monotone mapping, 205
Monotone decrease assumption, 140
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Monotone increase assumption, 139
Monotonicity assumption, 7, 30, 87,
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Multistage lookahead, 39
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Multistep mapping, 23, 26, 27
Multistep methods, 22
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Nonstationary policy, 5, 34, 87, 94,
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O

ODE approach, 81
Oblique projection, 23
Optimality conditions, 32, 90, 151
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p-✏-optimality, 191
Parallel computation, 61
Partially asynchronous algorithms, 63
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Perturbations, 107, 124, 126
Policy, 5, 30, 34, 87, 131, 188
Policy evaluation, 21, 46, 68, 76, 77,
120
Policy improvement, 46, 68, 76, 77,
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Policy iteration, 9, 25, 46, 96, 157,
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Policy iteration, approximate, 48
Policy iteration, constrained, 19
Policy iteration, convergence, 48, 128
Policy iteration, modified, 79
Policy iteration, optimistic, 52, 67, 69,
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Policy iteration, perturbations, 124,
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Positive DP model, v, 25, 130, 180
Projected equation, 21, 45
Proper policy, vii, 16, 86, 115

Q

Q-factor, 72, 73
Q-learning, 80, 126

R

Reachability, 185
Reduced space implementation, 77, 123
Reinforcement learning, 21
Restricted policies model, 24, 188
Risk-sensitive model, 18, 176

S

SSP problems, 15, 115, 161, 166, 171,
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S-irregular policy, 89, 163, 172
S-regular policy, 89, 163, 172
Search problems, 107, 110, 176
Semi-Markov problem, 13
Seminorm projection, 23
Semicontinuous model, 201
Semicontractive model, 24, 85, 179
Shortest path problem, 17, 97, 178
Simulation, 62
Spectral radius, 207
Stationary policy, 5, 30, 34
Stochastic approximation, 81
Stochastic kernel, 224
Stochastic shortest path problems, see
SSP problems
Stopping problems, 73, 107, 176
Synchronous convergence condition, 64

T

TD(�), 22
Temporal di↵erences, 22
Totally asynchronous algorithms, 63,
80
Transient programming problem, 16

U

Uniform fixed point, 72, 121
Uniformly N -stage optimal, 133
Unit function, 205
Universally measurable, 191, 200, 223
Universally measurable selection, 226

V

Value iteration, 9, 25, 42, 43, 90, 103,
154, 163, 174

W

Weighted multistep mapping, 22, 27
Weighted sup norm, 211, 212
Weighted sup-norm contraction, 211


