
APPENDIX A:

Mathematical Background

In Sections A.1-A.3 of this appendix, we provide some basic definitions,
notational conventions, and results from linear algebra and real analysis.
We assume that the reader is familiar with these subjects, so no proofs
are given. For additional related material, we refer to textbooks such as
Hoffman and Kunze [HoK71], Lancaster and Tismenetsky [LaT85], and
Strang [Str76] (linear algebra), and Ash [Ash72], Ortega and Rheinboldt
[OrR70], and Rudin [Rud76] (real analysis).

In Section A.4, we provide a few convergence theorems for deter-
ministic and random sequences, which we will use for various convergence
analyses of algorithms in the text. Except for the Supermartingale Conver-
gence Theorem for sequences of random variables (Prop. A.4.5), we provide
complete proofs.

Set Notation

If X is a set and x is an element of X , we write x ∈ X . A set can be
specified in the form X = {x | x satisfies P}, as the set of all elements
satisfying property P . The union of two sets X1 and X2 is denoted by
X1 ∪ X2, and their intersection by X1 ∩ X2. The symbols ∃ and ∀ have
the meanings “there exists” and “for all,” respectively. The empty set is
denoted by Ø.

The set of real numbers (also referred to as scalars) is denoted by ℜ.
The set ℜ augmented with +∞ and −∞ is called the set of extended real
numbers . We write −∞ < x < ∞ for all real numbers x, and −∞ ≤ x ≤ ∞
for all extended real numbers x. We denote by [a, b] the set of (possibly
extended) real numbers x satisfying a ≤ x ≤ b. A rounded, instead of
square, bracket denotes strict inequality in the definition. Thus (a, b], [a, b),
and (a, b) denote the set of all x satisfying a < x ≤ b, a ≤ x < b, and
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a < x < b, respectively. Furthermore, we use the natural extensions of the
rules of arithmetic: x · 0 = 0 for every extended real number x, x · ∞ = ∞
if x > 0, x · ∞ = −∞ if x < 0, and x + ∞ = ∞ and x − ∞ = −∞ for
every scalar x. The expression ∞−∞ is meaningless and is never allowed
to occur.

Inf and Sup Notation

The supremum of a nonempty set X of scalars, denoted by supX , is defined
as the smallest scalar y such that y ≥ x for all x ∈ X . If no such scalar
exists, we say that the supremum of X is ∞. Similarly, the infimum of X ,
denoted by inf X , is defined as the largest scalar y such that y ≤ x for all
x ∈ X , and is equal to −∞ if no such scalar exists. For the empty set, we
use the convention

supØ = −∞, inf Ø = ∞.

If supX is equal to a scalar x that belongs to the set X , we say that
x is the maximum point of X and we write x = maxX. Similarly, if inf X is
equal to a scalar x that belongs to the set X , we say that x is the minimum
point ofX and we write x = minX. Thus, when we write maxX (or minX)
in place of supX (or inf X , respectively), we do so just for emphasis: we
indicate that it is either evident, or it is known through earlier analysis, or
it is about to be shown that the maximum (or minimum, respectively) of
the set X is attained at one of its points.

Vector Notation

We denote by ℜn the set of n-dimensional real vectors. For any x ∈ ℜn,
we use xi (or sometimes xi) to indicate its ith coordinate, also called its
ith component . Vectors in ℜn will be viewed as column vectors, unless the
contrary is explicitly stated. For any x ∈ ℜn, x′ denotes the transpose of
x, which is an n-dimensional row vector. The inner product of two vectors
x = (x1, . . . , xn) and y = (y1, . . . , yn) is defined by x′y =

∑n
i=1 xiyi. Two

vectors x, y ∈ ℜn satisfying x′y = 0 are called orthogonal .
If x is a vector in ℜn, the notations x > 0 and x ≥ 0 indicate that all

components of x are positive and nonnegative, respectively. For any two
vectors x and y, the notation x > y means that x − y > 0. The notations
x ≥ y, x < y, etc., are to be interpreted accordingly.

Function Notation and Terminology

If f is a function, we use the notation f : X 7→ Y to indicate the fact that
f is defined on a nonempty set X (its domain) and takes values in a set
Y (its range). Thus when using the notation f : X 7→ Y , we implicitly
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assume that X is nonempty. If f : X 7→ Y is a function, and U and V
are subsets of X and Y , respectively, the set

{

f(x) | x ∈ U
}

is called the

image or forward image of U under f , and the set
{

x ∈ X | f(x) ∈ V
}

is
called the inverse image of V under f .

A function f : ℜn 7→ ℜ is said to be affine if it has the form f(x) =
a′x + b for some a ∈ ℜn and b ∈ ℜ. Similarly, a function f : ℜn 7→ ℜm is
said to be affine if it has the form f(x) = Ax + b for some m × n matrix
A and some b ∈ ℜm. If b = 0, f is said to be a linear function or linear
transformation. Sometimes, with slight abuse of terminology, an equation
or inequality involving a linear function, such as a′x = b or a′x ≤ b, is
referred to as a linear equation or inequality, respectively.

A.1 LINEAR ALGEBRA

If X is a subset of ℜn and λ is a scalar, we denote by λX the set {λx | x ∈
X}. If X and Y are two subsets of ℜn, we denote by X + Y the set

{x+ y | x ∈ X, y ∈ Y },

which is referred to as the vector sum of X and Y . We use a similar
notation for the sum of any finite number of subsets. In the case where
one of the subsets consists of a single vector x, we simplify this notation as
follows:

x+X = {x+ x | x ∈ X}.

We also denote by X − Y the set

{x− y | x ∈ X, y ∈ Y }.

Given sets Xi ⊂ ℜni , i = 1, . . . ,m, the Cartesian product of the Xi,
denoted by X1 × · · · ×Xm, is the set

{

(x1, . . . , xm) | xi ∈ Xi, i = 1, . . . ,m
}

,

which is viewed as a subset of ℜn1+···+nm .

Subspaces and Linear Independence

A nonempty subset S of ℜn is called a subspace if ax + by ∈ S for every
x, y ∈ S and every a, b ∈ ℜ. An affine set in ℜn is a translated subspace,
i.e., a set X of the form X = x+ S = {x+ x | x ∈ S}, where x is a vector
in ℜn and S is a subspace of ℜn, called the subspace parallel to X . Note
that there can be only one subspace S associated with an affine set in this
manner. [To see this, let X = x+S and X = x+S be two representations
of the affine set X . Then, we must have x = x + s for some s ∈ S (since
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x ∈ X), so that X = x + s+ S. Since we also have X = x + S, it follows
that S = S − s = S.] A nonempty set X is a subspace if and only if
it contains the origin, and every line that passes through any pair of its
points that are distinct, i.e., it contains 0 and all points αx + (1 − α)y,
where α ∈ ℜ and x, y ∈ X with x 6= y. Similarly X is affine if and only
if it contains every line that passes through any pair of its points that are
distinct. The span of a finite collection {x1, . . . , xm} of elements of ℜn,
denoted by span(x1, . . . , xm), is the subspace consisting of all vectors y of
the form y =

∑m
k=1 αkxk, where each αk is a scalar.

The vectors x1, . . . , xm ∈ ℜn are called linearly independent if there
exists no set of scalars α1, . . . , αm, at least one of which is nonzero, such
that

∑m
k=1 αkxk = 0. An equivalent definition is that x1 6= 0, and for every

k > 1, the vector xk does not belong to the span of x1, . . . , xk−1.
If S is a subspace of ℜn containing at least one nonzero vector, a basis

for S is a collection of vectors that are linearly independent and whose
span is equal to S. Every basis of a given subspace has the same number
of vectors. This number is called the dimension of S. By convention, the
subspace {0} is said to have dimension zero. Every subspace of nonzero
dimension has a basis that is orthogonal (i.e., any pair of distinct vectors
from the basis is orthogonal). The dimension of an affine set x+ S is the
dimension of the corresponding subspace S. An (n− 1)-dimensional affine
subset of ℜn is called a hyperplane, assuming n ≥ 2. It is a set specified by
a single linear equation, i.e., a set of the form {x | a′x = b}, where a 6= 0
and b ∈ ℜ.

Given any subset X of ℜn, the set of vectors that are orthogonal to
all elements of X is a subspace denoted by X⊥:

X⊥ = {y | y′x = 0, ∀ x ∈ X}.

If S is a subspace, S⊥ is called the orthogonal complement of S. Any vector
x can be uniquely decomposed as the sum of a vector from S and a vector
from S⊥. Furthermore, we have (S⊥)⊥ = S.

Matrices

For any matrix A, we use Aij , [A]ij , or aij to denote its ijth component.
The transpose of A, denoted by A′, is defined by [A′]ij = aji. For any two
matrices A and B of compatible dimensions, the transpose of the product
matrix AB satisfies (AB)′ = B′A′. The inverse of a square and invertible
A is denoted A−1.

If X is a subset of ℜn and A is an m × n matrix, then the image of
X under A is denoted by AX (or A ·X if this enhances notational clarity):

AX = {Ax | x ∈ X}.

If Y is a subset of ℜm, the inverse image of Y under A is denoted by A−1Y :

A−1Y = {x | Ax ∈ Y }.
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Let A be an m× n matrix. The range space of A, denoted by R(A),
is the set of all vectors y ∈ ℜm such that y = Ax for some x ∈ ℜn. The
nullspace of A, denoted by N(A), is the set of all vectors x ∈ ℜn such
that Ax = 0. It is seen that the range space and the nullspace of A are
subspaces. The rank of A is the dimension of the range space of A. The
rank of A is equal to the maximal number of linearly independent columns
of A, and is also equal to the maximal number of linearly independent
rows of A. The matrix A and its transpose A′ have the same rank. We say
that A has full rank , if its rank is equal to min{m,n}. This is true if and
only if either all the rows of A are linearly independent, or all the columns
of A are linearly independent. The range space of an m × n matrix A is
equal to the orthogonal complement of the nullspace of its transpose, i.e.,
R(A) = N(A′)⊥.

Square Matrices

By a square matrix we mean any n × n matrix, where n ≥ 1. The deter-
minant of a square matrix A is denoted by det(A).

Definition A.1.1: A square matrix A is called singular if its deter-
minant is zero. Otherwise it is called nonsingular or invertible.

Definition A.1.2: The characteristic polynomial φ of an n×n matrix
A is defined by φ(λ) = det(λI − A), where I is the identity matrix of
the same size as A. The n (possibly repeated and complex) roots of
φ are called the eigenvalues of A. A nonzero vector x (with possibly
complex coordinates) such that Ax = λx, where λ is an eigenvalue of
A, is called an eigenvector of A associated with λ.

Note that the only use of complex numbers in this book is in relation
to eigenvalues and eigenvectors. All other matrices or vectors are implicitly
assumed to have real components.

Proposition A.1.1:

(a) Let A be an n× n matrix. The following are equivalent:

(i) The matrix A is nonsingular.

(ii) The matrix A′ is nonsingular.

(iii) For every nonzero x ∈ ℜn, we have Ax 6= 0.
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(iv) For every y ∈ ℜn, there is a unique x ∈ ℜn such that
Ax = y.

(v) There is an n× n matrix B such that AB = I = BA.

(vi) The columns of A are linearly independent.

(vii) The rows of A are linearly independent.

(viii) All eigenvalues of A are nonzero.

(b) Assuming that A is nonsingular, the matrix B of statement (v)
(called the inverse of A and denoted by A−1) is unique.

(c) For any two square invertible matrices A and B of the same
dimensions, we have (AB)−1 = B−1A−1.

Proposition A.1.2: Let A be an n× n matrix.

(a) If T is a nonsingular matrix and B = TAT−1, then the eigenval-
ues of A and B coincide.

(b) For any scalar c, the eigenvalues of cI + A are equal to c +
λ1, . . . , c+ λn, where λ1, . . . , λn are the eigenvalues of A.

(c) The eigenvalues of Ak are equal to λk
1 , . . . , λ

k
n, where λ1, . . . , λn

are the eigenvalues of A.

(d) If A is nonsingular, then the eigenvalues of A−1 are the recipro-
cals of the eigenvalues of A.

(e) The eigenvalues of A and A′ coincide.

Let A and B be square matrices, and let C be a matrix of appropriate
dimension. Then we have

(A+ CBC′)−1 = A−1 −A−1C(B−1 + C′A−1C)−1C′A−1,

provided all the inverses appearing above exist. For a proof, multiply the
right-hand side by A+ CBC′ and show that the product is the identity.

Another useful formula provides the inverse of the partitioned matrix

M =

[

A B
C D

]

.

There holds

M−1 =

[

Q −QBD−1

−D−1CQ D−1 +D−1CQBD−1

]

,
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where
Q = (A−BD−1C)−1,

provided all the inverses appearing above exist. For a proof, multiply M
with the given expression for M−1 and verify that the product is the iden-
tity.

Symmetric and Positive Definite Matrices

A square matrix A is said to be symmetric if A = A′. Symmetric matrices
have several special properties, particularly regarding their eigenvalues and
eigenvectors.

Proposition A.1.3: Let A be a symmetric n× n matrix. Then:

(a) The eigenvalues of A are real.

(b) The matrix A has a set of n mutually orthogonal, real, and
nonzero eigenvectors x1, . . . , xn.

(c) There holds

λ x′x ≤ x′Ax ≤ λ̄ x′x, ∀ x ∈ ℜn,

where λ and λ̄ are the smallest and largest eigenvalues of A,
respectively.

Definition A.1.3: A symmetric n×n matrix A is called positive def-
inite if x′Ax > 0 for all x ∈ ℜn, x 6= 0. It is called positive semidefinite
if x′Ax ≥ 0 for all x ∈ ℜn.

Throughout this book, the notion of positive definiteness applies ex-
clusively to symmetric matrices. Thus whenever we say that a matrix is
positive (semi)definite, we implicitly assume that the matrix is symmetric,
although we usually add the term “symmetric” for clarity.

Proposition A.1.4:

(a) A square matrix is symmetric and positive definite if and only if
it is invertible and its inverse is symmetric and positive definite.

(b) The sum of two symmetric positive semidefinite matrices is pos-
itive semidefinite. If one of the two matrices is positive definite,
the sum is positive definite.
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(c) If A is a symmetric positive semidefinite n× n matrix and T is
an m× n matrix, then the matrix TAT ′ is positive semidefinite.
If A is positive definite and T is invertible, then TAT ′ is positive
definite.

(d) If A is a symmetric positive definite n × n matrix, there exists
a unique symmetric positive definite matrix that yields A when
multiplied with itself. This matrix is called the square root of A.
It is denoted by A1/2, and its inverse is denoted by A−1/2.

A.2 TOPOLOGICAL PROPERTIES

Definition A.2.1: A norm ‖ · ‖ on ℜn is a function that assigns a
scalar ‖x‖ to every x ∈ ℜn and that has the following properties:

(a) ‖x‖ ≥ 0 for all x ∈ ℜn.

(b) ‖αx‖ = |α| · ‖x‖ for every scalar α and every x ∈ ℜn.

(c) ‖x‖ = 0 if and only if x = 0.

(d) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ ℜn (this is referred to as the
triangle inequality).

The Euclidean norm of a vector x = (x1, . . . , xn) is defined by

‖x‖ = (x′x)1/2 =

(

n
∑

i=1

|xi|2

)1/2

.

Except for specialized contexts, we use this norm. In particular, in the
absence of a clear indication to the contrary, ‖ · ‖ will denote the Euclidean
norm. The Schwarz inequality states that for any two vectors x and y, we
have

|x′y| ≤ ‖x‖ · ‖y‖,

with equality holding if and only if x = αy for some scalar α. The
Pythagorean Theorem states that for any two vectors x and y that are
orthogonal, we have

‖x+ y‖2 = ‖x‖2 + ‖y‖2.

Two other important norms are the maximum norm ‖·‖∞ (also called
sup-norm or ℓ∞-norm), defined by

‖x‖∞ = max
i=1,...,n

|xi|,
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and the ℓ1-norm ‖ · ‖1, defined by

‖x‖1 =

n
∑

i=1

|xi|.

Sequences

We use both subscripts and superscripts in sequence notation. Generally,
we prefer subscripts, but sometimes we use superscripts whenever we need
to reserve the subscript notation for indexing components of vectors and
functions. The meaning of the subscripts and superscripts should be clear
from the context in which they are used.

A scalar sequence {xk | k = 1, 2, . . .} (or {xk} for short) is said
to converge if there exists a scalar x such that for every ǫ > 0 we have
|xk − x| < ǫ for every k greater than some integer K (that depends on
ǫ). The scalar x is said to be the limit of {xk}, and the sequence {xk}
is said to converge to x; symbolically, xk → x or limk→∞ xk = x. If for
every scalar b there exists some K (that depends on b) such that xk ≥ b
for all k ≥ K, we write xk → ∞ and limk→∞ xk = ∞. Similarly, if for
every scalar b there exists some integer K such that xk ≤ b for all k ≥ K,
we write xk → −∞ and limk→∞ xk = −∞. Note, however, that implicit
in any of the statements “{xk} converges” or “the limit of {xk} exists” or
“{xk} has a limit” is that the limit of {xk} is a scalar.

A scalar sequence {xk} is said to be bounded above (respectively, be-
low) if there exists some scalar b such that xk ≤ b (respectively, xk ≥ b) for
all k. It is said to be bounded if it is bounded above and bounded below.
The sequence {xk} is said to be monotonically nonincreasing (respectively,
nondecreasing) if xk+1 ≤ xk (respectively, xk+1 ≥ xk) for all k. If xk → x
and {xk} is monotonically nonincreasing (nondecreasing), we also use the
notation xk ↓ x (xk ↑ x, respectively).

Proposition A.2.1: Every bounded and monotonically nonincreas-
ing or nondecreasing scalar sequence converges.

Note that a monotonically nondecreasing sequence {xk} is either
bounded, in which case it converges to some scalar x by the above propo-
sition, or else it is unbounded, in which case xk → ∞. Similarly, a mono-
tonically nonincreasing sequence {xk} is either bounded and converges, or
it is unbounded, in which case xk → −∞.

Given a scalar sequence {xk}, let

ym = sup{xk | k ≥ m}, zm = inf{xk | k ≥ m}.

The sequences {ym} and {zm} are nonincreasing and nondecreasing, re-
spectively, and therefore have a limit whenever {xk} is bounded above or
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is bounded below, respectively (Prop. A.2.1). The limit of ym is denoted
by lim supk→∞ xk, and is referred to as the upper limit of {xk}. The limit
of zm is denoted by lim infk→∞ xk, and is referred to as the lower limit of
{xk}. If {xk} is unbounded above, we write lim supk→∞ xk = ∞, and if it
is unbounded below, we write lim infk→∞ xk = −∞.

Proposition A.2.2: Let {xk} and {yk} be scalar sequences.

(a) We have

inf{xk | k ≥ 0} ≤ lim inf
k→∞

xk ≤ lim sup
k→∞

xk ≤ sup{xk | k ≥ 0}.

(b) {xk} converges if and only if

−∞ < lim inf
k→∞

xk = lim sup
k→∞

xk < ∞.

Furthermore, if {xk} converges, its limit is equal to the common
scalar value of lim infk→∞ xk and lim supk→∞ xk.

(c) If xk ≤ yk for all k, then

lim inf
k→∞

xk ≤ lim inf
k→∞

yk, lim sup
k→∞

xk ≤ lim sup
k→∞

yk.

(d) We have

lim inf
k→∞

xk + lim inf
k→∞

yk ≤ lim inf
k→∞

(xk + yk),

lim sup
k→∞

xk + lim sup
k→∞

yk ≥ lim sup
k→∞

(xk + yk).

A sequence {xk} of vectors in ℜn is said to converge to some x ∈ ℜn

if the ith component of xk converges to the ith component of x for every i.
We use the notations xk → x and limk→∞ xk = x to indicate convergence
for vector sequences as well. A sequence {xk} ⊂ ℜn is said to be a Cauchy
sequence if ‖xm − xn‖ → 0 as m,n → ∞, i.e., given any ǫ > 0, there exists
N such that ‖xm − xn‖ ≤ ǫ for all m,n ≥ N . A sequence is Cauchy if and
only if it converges to some vector. The sequence {xk} is called bounded if
each of its corresponding component sequences is bounded. It can be seen
that {xk} is bounded if and only if there exists a scalar c such that ‖xk‖ ≤ c
for all k. An infinite subset of a sequence {xk} is called a subsequence of
{xk}. Thus a subsequence can itself be viewed as a sequence, and can be
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represented as a set {xk | k ∈ K}, where K is an infinite subset of positive
integers (the notation {xk}K will also be used).

A vector x ∈ ℜn is said to be a limit point of a sequence {xk} if
there exists a subsequence of {xk} that converges to x. The following is a
classical result that will be used often.

Proposition A.2.3: (Bolzano-Weierstrass Theorem) A bounded
sequence in ℜn has at least one limit point.

o(·) Notation

For a function h : ℜn 7→ ℜm we write h(x) = o
(

‖x‖p
)

, where p is a positive
integer, if

lim
k→∞

h(xk)

‖xk‖p
= 0,

for all sequences {xk} such that xk → 0 and xk 6= 0 for all k.

Closed and Open Sets

We say that x is a closure point of a subset X of ℜn if there exists a
sequence {xk} ⊂ X that converges to x. The closure of X , denoted cl(X),
is the set of all closure points of X .

Definition A.2.2: A subset X of ℜn is called closed if it is equal to
its closure. It is called open if its complement, {x | x /∈ X}, is closed.
It is called bounded if there exists a scalar c such that ‖x‖ ≤ c for all
x ∈ X . It is called compact if it is closed and bounded.

Given x∗ ∈ ℜn and ǫ > 0, the sets
{

x | ‖x − x∗‖ < ǫ
}

and
{

x |

‖x − x∗‖ ≤ ǫ
}

are called an open sphere and a closed sphere centered at
x∗, respectively. Sometimes the terms open ball and closed ball are used.
A consequence of the definitions, is that a subset X of ℜn is open if and
only if for every x ∈ X there is an open sphere that is centered at x and is
contained in X . A neighborhood of a vector x is an open set containing x.

Definition A.2.3: We say that x is an interior point of a subset X of
ℜn if there exists a neighborhood of x that is contained in X . The set
of all interior points of X is called the interior of X , and is denoted
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by int(X). A vector x ∈ cl(X) which is not an interior point of X is
said to be a boundary point of X . The set of all boundary points of X
is called the boundary of X .

Proposition A.2.4:

(a) The union of a finite collection of closed sets is closed.

(b) The intersection of any collection of closed sets is closed.

(c) The union of any collection of open sets is open.

(d) The intersection of a finite collection of open sets is open.

(e) A set is open if and only if all of its elements are interior points.

(f) Every subspace of ℜn is closed.

(g) A setX ⊂ ℜn is compact if and only if every sequence of elements
of X has a subsequence that converges to an element of X .

(h) If {Xk} is a sequence of nonempty and compact subsets of ℜn

such that Xk+1 ⊂ Xk for all k, then the intersection ∩∞
k=0Xk is

nonempty and compact.

The topological properties of sets in ℜn, such as being open, closed,
or compact, do not depend on the norm being used. This is a consequence
of the following proposition.

Proposition A.2.5: (Norm Equivalence Property)

(a) For any two norms ‖ · ‖ and ‖ · ‖′ on ℜn, there exists a scalar c
such that

‖x‖ ≤ c‖x‖′, ∀ x ∈ ℜn.

(b) If a subset of ℜn is open (respectively, closed, bounded, or com-
pact) with respect to some norm, it is open (respectively, closed,
bounded, or compact) with respect to all other norms.

Continuity

Let f : X 7→ ℜm be a function, where X is a subset of ℜn, and let x be a
vector in X . If there exists a vector y ∈ ℜm such that the sequence

{

f(xk)
}

converges to y for every sequence {xk} ⊂ X such that limk→∞ xk = x, we
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write limz→x f(z) = y. If there exists a vector y ∈ ℜm such that the
sequence

{

f(xk)
}

converges to y for every sequence {xk} ⊂ X such that
limk→∞ xk = x and xk ≤ x (respectively, xk ≥ x) for all k, we write
limz↑x f(z) = y [respectively, limz↓x f(z) = y].

Definition A.2.4: Let X be a nonempty subset of ℜn.

(a) A function f : X 7→ ℜm is called continuous at a vector x ∈ X if
limz→x f(z) = f(x).

(b) A function f : X 7→ ℜm is called right-continuous (respectively,
left-continuous) at a vector x ∈ X if limz↓x f(z) = f(x) [respec-
tively, limz↑x f(z) = f(x)].

(c) A function f : X 7→ ℜm is called Lipschitz continuous over X if
there exists a scalar L such that

∥

∥f(x)− f(y)
∥

∥ ≤ L‖x− y‖, ∀ x, y ∈ X.

(d) A real-valued function f : X 7→ ℜ is called upper semicontinuous
(respectively, lower semicontinuous) at a vector x ∈ X if f(x) ≥
lim supk→∞ f(xk) [respectively, f(x) ≤ lim infk→∞ f(xk)] for ev-
ery sequence {xk} ⊂ X that converges to x.

If f : X 7→ ℜm is continuous at every vector in a subset of its domain
X , we say that f is continuous over that subset . If f : X 7→ ℜm is contin-
uous at every vector in its domain X , we say that f is continuous (with-
out qualification). We use similar terminology for right-continuous, left-
continuous, Lipschitz continuous, upper semicontinuous, and lower semi-
continuous functions.

Proposition A.2.6:

(a) Any vector norm on ℜn is a continuous function.

(b) Let f : ℜm 7→ ℜp and g : ℜn 7→ ℜm be continuous functions.
The composition f ·g : ℜn 7→ ℜp, defined by (f ·g)(x) = f

(

g(x)
)

,
is a continuous function.

(c) Let f : ℜn 7→ ℜm be continuous, and let Y be an open (re-
spectively, closed) subset of ℜm. Then the inverse image of Y ,
{

x ∈ ℜn | f(x) ∈ Y
}

, is open (respectively, closed).

(d) Let f : ℜn 7→ ℜm be continuous, and let X be a compact subset
of ℜn. Then the image of X ,

{

f(x) | x ∈ X
}

, is compact.
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If f : ℜn 7→ ℜ is a continuous function and X ⊂ ℜn is compact, by
Prop. A.2.6(c), the sets

Vγ =
{

x ∈ X | f(x) ≤ γ
}

are nonempty and compact for all γ ∈ ℜ with γ > f∗, where

f∗ = inf
x∈X

f(x).

Since the set of minima of f is the intersection of the nonempty and compact
sets Vγk for any sequence {γk} with γk ↓ f∗ and γk > f∗ for all k, it follows
from Prop. A.2.4(h) that the set of minima is nonempty. This proves the
following classical theorem of Weierstrass.

Proposition A.2.7: (Weierstrass’ Theorem for Continuous
Functions) A continuous function f : ℜn 7→ ℜ attains a minimum
over any compact subset of ℜn.

A.3 DERIVATIVES

Let f : ℜn 7→ ℜ be some function, fix x ∈ ℜn, and consider the expression

lim
α→0

f(x+ αei)− f(x)

α
,

where ei is the ith unit vector (all components are 0 except for the ith
component which is 1). If the above limit exists, it is called the ith par-
tial derivative of f at the vector x and it is denoted by (∂f/∂xi)(x) or
∂f(x)/∂xi (xi in this section will denote the ith component of the vector
x). Assuming all of these partial derivatives exist, the gradient of f at x is
defined as the column vector

∇f(x) =







∂f(x)
∂x1
...

∂f(x)
∂xn






.

For any d ∈ ℜn, we define the one-sided directional derivative of f at
a vector x in the direction d by

f ′(x; d) = lim
α↓0

f(x+ αd) − f(x)

α
,

provided that the limit exists.
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If the directional derivative of f at a vector x exists in all directions
and f ′(x; d) is a linear function of d, we say that f is differentiable at x. It
can be seen that f is differentiable at x if and only if the gradient ∇f(x)
exists and satisfies ∇f(x)′d = f ′(x; d) for all d ∈ ℜn, or equivalently

f(x+ αd) = f(x) + α∇f(x)′d+ o(|α|), ∀ α ∈ ℜ.

The function f is called differentiable over a subset S of ℜn if it is differ-
entiable at every x ∈ S. The function f is called differentiable (without
qualification) if it is differentiable at all x ∈ ℜn.

If f is differentiable over an open set S and ∇f(·) is continuous at
all x ∈ S, f is said to be continuously differentiable over S. It can then be
shown that for any x ∈ S and norm ‖ · ‖,

f(x+ d) = f(x) +∇f(x)′d+ o(‖d‖), ∀ d ∈ ℜn.

The function f is called continuously differentiable (without qualification)
if it is differentiable and ∇f(·) is continuous at all x ∈ ℜn. In our de-
velopment, whenever we assume that f is differentiable, we also assume
that it is continuously differentiable. Part of the reason is that a convex
differentiable function is automatically continuously differentiable over ℜn

(see Section 3.1).
If each one of the partial derivatives of a function f : ℜn 7→ ℜ is a

continuously differentiable function of x over an open set S, we say that f
is twice continuously differentiable over S. We then denote by

∂2f(x)

∂xi∂xj

the ith partial derivative of ∂f/∂xj at a vector x ∈ ℜn. The Hessian of f
at x, denoted by ∇2f(x), is the matrix whose components are the above
second derivatives. The matrix ∇2f(x) is symmetric. In our development,
whenever we assume that f is twice differentiable, we also assume that it
is twice continuously differentiable.

We now state some theorems relating to differentiable functions.

Proposition A.3.1: (Mean Value Theorem) Let f : ℜn 7→ ℜ be
continuously differentiable over an open sphere S, and let x be a vector
in S. Then for all y such that x+ y ∈ S, there exists an α ∈ [0, 1] such
that

f(x+ y) = f(x) +∇f(x+ αy)′y.
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Proposition A.3.2: (Second Order Expansions) Let f : ℜn 7→ ℜ
be twice continuously differentiable over an open sphere S, and let x
be a vector in S. Then for all y such that x+ y ∈ S:

(a) There exists an α ∈ [0, 1] such that

f(x+ y) = f(x) + y′∇f(x) + 1
2y

′∇2f(x+ αy)y.

(b) We have

f(x+ y) = f(x) + y′∇f(x) + 1
2y

′∇2f(x)y + o
(

‖y‖2
)

.

A.4 CONVERGENCE THEOREMS

We will now discuss a few convergence theorems relating to iterative algo-
rithms. Given a mapping T : ℜn 7→ ℜn, the iteration

xk+1 = T (xk),

aims at finding a fixed point of T , i.e., a vector x∗ such that x∗ = T (x∗).
A common criterion for existence of a fixed point is that T is a contraction
mapping (or contraction for short) with respect to some norm, i.e., for some
β < 1, and some norm ‖ · ‖ (not necessarily the Euclidean norm), we have

∥

∥T (x)− T (y)
∥

∥ ≤ β‖x− y‖, ∀ x, y ∈ ℜn.

When T is a contraction, it has a unique fixed point and the iteration
xk+1 = T (xk) converges to the fixed point. This is shown in the following
classical theorem.

Proposition A.4.1: (Contraction Mapping Theorem) Let T :
ℜn 7→ ℜn be a contraction mapping. Then T has a unique fixed
point x∗, and the sequence generated by the iteration xk+1 = T (xk)
converges to x∗, starting from any x0 ∈ ℜn.

Proof: We first note that T can have at most one fixed point (if x̃ and x̂
are two fixed points, we have

‖x̃− x̂‖ =
∥

∥T (x̃)− T (x̂)
∥

∥ ≤ β‖x̃− x̂‖,
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which implies that x̃ = x̂). Using the contraction property, we have for all
k,m > 0

‖xk+m − xk‖ ≤ βk‖xm − x0‖ ≤ βk

m
∑

ℓ=1

‖xℓ − xℓ−1‖ ≤ βk

m−1
∑

ℓ=0

βℓ‖x1 − x0‖,

and finally,

‖xk+m − xk‖ ≤
βk(1− βm)

1− β
‖x1 − x0‖.

Thus {xk} is a Cauchy sequence, and hence converges to some x∗. Taking
the limit in the equation xk+1 = T (xk) and using the continuity of T
(implied by the contraction property), we see that x∗ must be a fixed point
of T . Q.E.D.

In the case of a linear mapping

T (x) = Ax + b,

where A is an n × n matrix and b ∈ ℜn, it can be shown that T is a
contraction mapping with respect to some norm (but not necessarily all
norms) if and only if all the eigenvalues of A lie strictly within the unit
circle.

The next theorem applies to a mapping that is nonexpansive with re-
spect to the Euclidean norm. It shows that a fixed point of such a mapping
can be found by an interpolated iteration, provided at least one fixed point
exists. The idea underlying the theorem is quite intuitive: if x∗ is a fixed
point of T , the distance

∥

∥T (xk) − x∗
∥

∥ cannot be larger than the distance
‖xk − x∗‖ (by nonexpansiveness of T ):

∥

∥T (xk)− x∗
∥

∥ =
∥

∥T (xk)− T (x∗)
∥

∥ ≤ ‖xk − x∗‖.

Hence, if xk 6= T (xk), any point obtained by strict interpolation between xk

and T (xk) must be strictly closer to x∗ than xk (by Euclidean geometry).
Note, however, that for this argument to work, we need to know that T
has at least one fixed point. If T is a contraction, this is automatically
guaranteed, but if T is just nonexpansive, there may not exist a fixed point
[as an example, just let T (x) = 1 + x].

Proposition A.4.2: (Krasnosel’skii-Mann Theorem for Non-
expansive Iterations [Kra55], [Man53]) Consider a mapping T :
ℜn 7→ ℜn that is nonexpansive with respect to the Euclidean norm
‖ · ‖, i.e.,

∥

∥T (x)− T (y)
∥

∥ ≤ ‖x− y‖, ∀ x, y ∈ ℜn,

and has at least one fixed point. Then the iteration
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xk+1 = (1− αk)xk + αkT (xk), (A.1)

where αk ∈ [0, 1] for all k and

∞
∑

k=0

αk(1− αk) = ∞,

converges to a fixed point of T , starting from any x0 ∈ ℜn.

Proof: We will use the identity

∥

∥αx + (1− α)y
∥

∥

2
= α‖x‖2 + (1− α)‖y‖2 − α(1 − α)‖x− y‖2, (A.2)

which holds for all x, y ∈ ℜn, and α ∈ [0, 1], as can be verified by a
straightforward calculation. For any fixed point x∗ of T , we have

‖xk+1 − x∗‖2 =
∥

∥(1− αk)(xk − x∗) + αk

(

T (xk)− T (x∗)
)
∥

∥

2

= (1− αk)‖xk − x∗‖2 + αk

∥

∥T (xk)− T (x∗)
∥

∥

2

− αk(1− αk)
∥

∥T (xk)− xk

∥

∥

2

≤ ‖xk − x∗‖2 − αk(1− αk)
∥

∥T (xk)− xk

∥

∥

2
,

(A.3)

where for the first equality we use iteration (A.1) and the fact x∗ = T (x∗),
for the second equality we apply the identity (A.2), and for the inequality
we use the nonexpansiveness of T . By adding Eq. (A.3) for all k, we obtain

∞
∑

k=0

αk(1− αk)
∥

∥T (xk)− xk

∥

∥

2
≤ ‖x0 − x∗‖2.

In view of the hypothesis
∑∞

k=0 αk(1 − αk) = ∞, it follows that

lim
k→∞, k∈K

∥

∥T (xk)− xk

∥

∥ = 0, (A.4)

for some subsequence {xk}K. Since from Eq. (A.3), {xk}K is bounded, it
has at least one limit point, call it x, so {xk}K → x for an infinite index

set K ⊂ K. Since T is nonexpansive it is continuous, so
{

T (xk)
}

K
→ T (x),

and in view of Eq. (A.4), it follows that x is a fixed point of T . Letting
x∗ = x in Eq. (A.3), we see that

{

‖xk − x‖
}

is nonincreasing and hence
converges, necessarily to 0, so the entire sequence {xk} converges to the
fixed point x. Q.E.D.
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Nonstationary Iterations

For nonstationary iterations of the form xk+1 = Tk(xk), where the function
Tk depends on k, the ideas of the preceding propositions may apply but
with modifications. The following proposition is often useful in this respect.

Proposition A.4.3: Let {αk} be a nonnegative sequence satisfying

αk+1 ≤ (1− γk)αk + βk, ∀ k = 0, 1, . . . ,

where βk ≥ 0, γk > 0 for all k, and

∞
∑

k=0

γk = ∞,
βk

γk
→ 0.

Then αk → 0.

Proof: We first show that given any ǫ > 0, we have αk < ǫ for infinitely
many k. Indeed, if this were not so, by letting k be such that αk ≥ ǫ and
βk/γk ≤ ǫ/2 for all k ≥ k, we would have for all k ≥ k

αk+1 ≤ αk − γkαk + βk ≤ αk − γkǫ+
γkǫ

2
= αk −

γkǫ

2
.

Therefore, for all m ≥ k,

αm+1 ≤ αk −
ǫ

2

m
∑

k=k

γk.

Since {αk} is nonnegative and
∑∞

k=0 γk = ∞, we obtain a contradiction.
Thus, given any ǫ > 0, there exists k such that βk/γk < ǫ for all k ≥ k

and αk < ǫ. We then have

αk+1 ≤ (1− γk)αk + βk < (1 − γk)ǫ + γkǫ = ǫ.

By repeating this argument, we obtain αk < ǫ for all k ≥ k. Since ǫ can be
arbitrarily small, it follows that αk → 0. Q.E.D.

As an example, consider a sequence of “approximate” contraction
mappings Tk : ℜn 7→ ℜn, satisfying

∥

∥Tk(x) − Tk(y)
∥

∥ ≤ (1− γk)‖x− y‖+ βk, ∀ x, y ∈ ℜn, k = 0, 1, . . . ,
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where γk ∈ (0, 1], for all k, and
∞
∑

k=0

γk = ∞,
βk

γk
→ 0.

Assume also that all the mappings Tk have a common fixed point x∗. Then

‖xk+1 − x∗‖ =
∥

∥Tk(xk)− Tk(x∗)
∥

∥ ≤ (1− γk)‖xk − x∗‖+ βk,

and from Prop. A.4.3, it follows that the sequence {xk} generated by the
iteration xk+1 = Tk(xk) converges to x∗ starting from any x0 ∈ ℜn.

Supermartingale Convergence

We now give two theorems relating to supermartingale convergence analysis
(the term refers to a collection of convergence theorems for sequences of
nonnegative scalars or random variables, which satisfy certain inequalities
implying that the sequences are “almost” nonincreasing). The first theo-
rem relates to deterministic sequences, while the second theorem relates to
sequences of random variables. We prove the first theorem, and we refer to
the literature on stochastic processes and iterative methods for the proof
of the second.

Proposition A.4.4: Let {Yk}, {Zk}, {Wk}, and {Vk} be four scalar
sequences such that

Yk+1 ≤ (1 + Vk)Yk − Zk +Wk, k = 0, 1, . . . , (A.5)

{Zk}, {Wk}, and {Vk} are nonnegative, and

∞
∑

k=0

Wk < ∞,

∞
∑

k=0

Vk < ∞.

Then either Yk → −∞, or else {Yk} converges to a finite value and
∑∞

k=0 Zk < ∞.

Proof: We first give the proof assuming that Vk ≡ 0, and then generalize.
In this case, using the nonnegativity of {Zk}, we have

Yk+1 ≤ Yk +Wk.

By writing this relation for the index k set to k̄, . . . , k, where k ≥ k̄, and
adding, we have

Yk+1 ≤ Yk̄ +

k
∑

ℓ=k̄

Wℓ ≤ Yk̄ +

∞
∑

ℓ=k̄

Wℓ.
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Since
∑∞

k=0 Wk < ∞, it follows that {Yk} is bounded above, and by taking
upper limit of the left hand side as k → ∞ and lower limit of the right
hand side as k̄ → ∞, we have

lim sup
k→∞

Yk ≤ lim inf
k̄→∞

Yk̄ < ∞.

This implies that either Yk → −∞, or else {Yk} converges to a finite value.
In the latter case, by writing Eq. (A.5) for the index k set to 0, . . . , k, and
adding, we have

k
∑

ℓ=0

Zℓ ≤ Y0 +

k
∑

ℓ=0

Wℓ − Yk+1, ∀ k = 0, 1, . . . ,

so by taking the limit as k → ∞, we obtain
∑∞

ℓ=0 Zℓ < ∞.
We now extend the proof to the case of a general nonnegative sequence

{Vk}. We first note that

log

k
∏

ℓ=0

(1 + Vℓ) =

k
∑

ℓ=0

log(1 + Vℓ) ≤

∞
∑

k=0

Vk,

since we generally have (1+a) ≤ ea and log(1+a) ≤ a for any a ≥ 0. Thus
the assumption

∑∞

k=0 Vk < ∞ implies that

∞
∏

ℓ=0

(1 + Vℓ) < ∞. (A.6)

Define

Y k = Yk

k−1
∏

ℓ=0

(1+Vℓ)−1, Zk = Zk

k
∏

ℓ=0

(1+Vℓ)−1, W k = Wk

k
∏

ℓ=0

(1+Vℓ)−1.

Multiplying Eq. (A.5) with
∏k

ℓ=0(1 + Vℓ)−1, we obtain

Y k+1 ≤ Y k − Zk +W k.

Since W k ≤ Wk, the hypothesis
∑∞

k=0 Wk < ∞ implies
∑∞

k=0 W k < ∞,
so from the special case of the result already shown, we have that either
Y k → −∞ or else {Y k} converges to a finite value and

∑∞

k=0 Zk < ∞.
Since

Yk = Y k

k−1
∏

ℓ=0

(1 + Vℓ), Zk = Zk

k
∏

ℓ=0

(1 + Vℓ),

and
∏k−1

ℓ=0 (1 + Vℓ) converges to a finite value by the nonnegativity of {Vk}
and Eq. (A.6), it follows that either Yk → −∞ or else {Yk} converges to a
finite value and

∑∞

k=0 Zk < ∞. Q.E.D.
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The next theorem has a long history. The particular version we give
here is due to Robbins and Sigmund [RoS71]. Their proof assumes the
special case of the theorem where Vk ≡ 0 (see Neveu [Nev75], p. 33, for a
proof of this special case), and then uses the line of proof of the preceding
proposition. Note, however, that contrary to the preceding proposition,
the following theorem requires nonnegativity of the sequence {Yk}.

Proposition A.4.5: (Supermartingale Convergence Theorem)
Let {Yk}, {Zk}, {Wk}, and {Vk} be four nonnegative sequences of
random variables, and let Fk, k = 0, 1, . . ., be sets of random variables
such that Fk ⊂ Fk+1 for all k. Assume that:

(1) For each k, Yk, Zk, Wk, and Vk are functions of the random
variables in Fk.

(2) We have

E
{

Yk+1 | Fk

}

≤ (1 + Vk)Yk − Zk +Wk, k = 0, 1, . . . .

(3) There holds, with probability 1,

∞
∑

k=0

Wk < ∞,

∞
∑

k=0

Vk < ∞.

Then {Yk} converges to a nonnegative random variable Y , and we have
∑∞

k=0 Zk < ∞, with probability 1.

Fejér Monotonicity

The supermartingale convergence theorems can be applied in a variety
of contexts. One such context, the so called Fejér monotonicity theory,
deals with iterations that “almost” decrease the distance to every element
of some given set X∗. We may then often show that such iterations are
convergent to a (unique) element of X∗. Applications of this idea arise
when X∗ is the set of optimal solutions of an optimization problem or the
set of fixed points of a certain mapping. Examples are various gradient and
subgradient projection methods with a diminishing stepsize that arise in
various contexts in this book, as well as the Krasnosel’skii-Mann Theorem
[Prop. A.4.2; see Eq. (A.3)].

The following theorem is appropriate for our purposes. There are sev-
eral related but somewhat different theorems in the literature, and for com-
plementary discussions, we refer to [BaB96], [Com01], [BaC11], [CoV13].
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Proposition A.4.6: (Fejér Convergence Theorem) Let X∗ be
a nonempty subset of ℜn, and let {xk} ⊂ ℜn be a sequence satisfying
for some p > 0 and for all k,

‖xk+1−x∗‖p ≤ (1+βk)‖xk −x∗‖p−γk φ(xk;x∗)+ δk, ∀ x∗ ∈ X∗,

where {βk}, {γk}, and {δk} are nonnegative sequences satisfying

∞
∑

k=0

βk < ∞,
∞
∑

k=0

γk = ∞,
∞
∑

k=0

δk < ∞,

φ : ℜn ×X∗ 7→ [0,∞) is some nonnegative function, and ‖ · ‖ is some
norm. Then:

(a) The minimum distance sequence infx∗∈X∗ ‖xk − x∗‖ converges,
and in particular, {xk} is bounded.

(b) If {xk} has a limit point x that belongs to X∗, then the entire
sequence {xk} converges to x.

(c) Suppose that for some x∗ ∈ X∗, φ(·;x∗) is lower semicontinuous
and satisfies

φ(x;x∗) = 0 if and only if x ∈ X∗. (A.7)

Then {xk} converges to a point in X∗.

Proof: (a) Let {ǫk} be a positive sequence such that
∑∞

k=0(1+βk)ǫk < ∞,
and let x∗

k be a point of X∗ such that

‖xk − x∗
k‖

p ≤ inf
x∗∈X∗

‖xk − x∗‖p + ǫk.

Then since φ is nonnegative, we have for all k,

inf
x∗∈X∗

‖xk+1 − x∗‖p ≤ ‖xk+1 − x∗
k‖

p ≤ (1 + βk)‖xk − x∗
k‖

p + δk,

and by combining the last two relations, we obtain

inf
x∗∈X∗

‖xk+1 − x∗‖p ≤ (1 + βk) inf
x∗∈X∗

‖xk − x∗‖p + (1 + βk)ǫk + δk.

The result follows by applying Prop. A.4.4 with

Yk = inf
x∗∈X∗

‖xk − x∗‖p, Zk = 0, Wk = (1 + βk)ǫk + δk, Vk = βk.
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(b) Following the argument of the proof of Prop. A.4.4, define for all k,

Y k = ‖xk − x‖p
k−1
∏

ℓ=0

(1 + βℓ)−1, δk = δk

k
∏

ℓ=0

(1 + βℓ)−1.

Then from our hypotheses, we have
∑∞

k=0 δk < ∞ and

Y k+1 ≤ Y k + δk, ∀ k = 0, 1, . . . , (A.8)

while {Y k} has a limit point at 0, since x is a limit point of {xk}. For any
ǫ > 0, let k be such that

Y k ≤ ǫ,

∞
∑

ℓ=k

δℓ ≤ ǫ,

so that by adding Eq. (A.8), we obtain for all k > k,

Y k ≤ Y k +

∞
∑

ℓ=k

δℓ ≤ 2ǫ.

Since ǫ is arbitrarily small, it follows that Y k → 0. We now note that as
in Eq. (A.6),

∞
∏

ℓ=0

(1 + βℓ)−1 < ∞,

so that Y k → 0 implies that ‖xk − x‖p → 0, and hence xk → x.

(c) From Prop. A.4.4, it follows that

∞
∑

k=0

γk φ(xk;x∗) < ∞.

Thus limk→∞, k∈K φ(xk;x∗) = 0 for some subsequence {xk}K. By part (a),
{xk} is bounded, so the subsequence {xk}K has a limit point x, and by the
lower semicontinuity of φ(·;x∗), we must have

φ(x;x∗) ≤ lim
k→∞, k∈K

φ(xk;x∗) = 0,

which in view of the nonnegativity of φ, implies that φ(x;x∗) = 0. Using
the hypothesis (A.7), it follows that x ∈ X∗, so by part (b), the entire
sequence {xk} converges to x. Q.E.D.


