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Feature-Based Aggregation and
Deep Reinforcement Learning:

A Survey and Some New Implementations
Dimitri P. Bertsekas

Abstract—In this paper we discuss policy iteration methods for
approximate solution of a finite-state discounted Markov decision
problem, with a focus on feature-based aggregation methods and
their connection with deep reinforcement learning schemes. We
introduce features of the states of the original problem, and we
formulate a smaller “aggregate” Markov decision problem, whose
states relate to the features. We discuss properties and possible
implementations of this type of aggregation, including a new
approach to approximate policy iteration. In this approach the
policy improvement operation combines feature-based aggrega-
tion with feature construction using deep neural networks or
other calculations. We argue that the cost function of a policy
may be approximated much more accurately by the nonlinear
function of the features provided by aggregation, than by the
linear function of the features provided by neural network-
based reinforcement learning, thereby potentially leading to more
effective policy improvement.

Index Terms—Reinforcement learning, dynamic programming,
Markovian decision problems, aggregation, feature-based archi-
tectures, policy iteration, deep neural networks, rollout algo-
rithms.

I. INTRODUCTION

WE consider a discounted infinite horizon dynamic pro-
gramming (DP) problem with n states, which we

denote by i = 1, . . . , n. State transitions (i, j) under control
u occur at discrete times according to transition probabilities
pij(u), and generate a cost αkg(i, u, j) at time k, where
α ∈ (0, 1) is the discount factor. We consider deterministic
stationary policies µ such that for each i, µ(i) is a control
that belongs to a constraint set U(i). We denote by Jµ(i) the
total discounted expected cost of µ over an infinite number of
stages starting from state i, and by J∗(i) the minimal value of
Jµ(i) over all µ. We denote by Jµ and J∗ the n-dimensional
vectors that have components Jµ(i) and J∗(i), i = 1, . . . , n,
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respectively. As is well known, Jµ is the unique solution of
the Bellman equation for policy µ:

Jµ(i) =
n∑

j=1

pij (µ(i))
(
g (i, µ(i), j) + αJµ(j)

)
,

i = 1, . . . , n, (1)

while J∗ is the unique solution of the Bellman equation

J∗(i) = min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ∗(j)

)
,

i = 1, . . . , n. (2)

In this paper, we survey several ideas from aggregation-
based approximate DP and deep reinforcement learning, all
of which have been essentially known for some time, but
are combined here in a new way. We will focus on methods
of approximate policy iteration (PI for short), whereby we
evaluate approximately the cost vector Jµ of each generated
policy µ. Our cost approximations use a feature vector F (i)
of each state i, and replace Jµ(i) with a function that depends
on i through F (i), i.e., a function of the form

Ĵµ

(
F (i)

) ≈ Jµ(i), i = 1, . . . , n.

We refer to such Ĵµ as a feature-based approximation archi-
tecture.

At the typical iteration of our approximate PI methodology,
the cost vector Jµ of the current policy µ is approximated
using a feature-based architecture Ĵµ, and a new policy µ̂ is
then generated using a policy “improvement” procedure; see
Fig. 1. The salient characteristics of our approach are two:

(a) The feature vector F (i) may be obtained using a neural
network or other calculation that automatically constructs
features.

(b) The policy improvement, which generates µ̂ is based on
a DP problem that involves feature-based aggregation.

By contrast, the standard policy improvement method is
based on the one-step lookahead minimization

µ̂(i) ∈ arg min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αĴµ

(
F (j)

))
,

i = 1, . . . , n, (3)

or alternatively, on multistep lookahead, possibly combined
with Monte-Carlo tree search. We will argue that our feature-
based aggregation approach has the potential to generate far
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better policies at the expense of a more computation-intensive
policy improvement phase.

Fig. 1. Schematic view of feature-based approximate PI. The cost Jµ(i) of
the current policy µ starting from state i is replaced by an approximation
Ĵµ

(
F (i)

)
that depends on i through its feature vector F (i). The feature

vector is assumed independent of the current policy µ in this figure, but in
general could depend on µ.

A. Alternative Approximate Policy Iteration Methods

A survey of approximate PI methods was given in 2011 by
the author [1], and focused on linear feature-based architec-
tures. These are architectures where F (i) is an s-dimensional
vector

F (i) =
(
F1(i), . . . , Fs(i)

)
,

and Ĵµ depends linearly on F , i.e.,

Ĵµ

(
F (i)

)
=

s∑

`=1

F`(i)r`, i = 1, . . . , n,

for some scalar weights r1, . . . , rs. We considered in [1] two
types of methods:

(a) Projected equation methods, including temporal differ-
ence methods, where policy evaluation is based on simulation-
based matrix inversion methods such as LSTD(λ), or stochas-
tic iterative methods such as TD(λ), or variants of λ-policy
iteration such as LSPE(λ).

(b) General aggregation methods (not just the feature-based
type considered here).

These methods will be briefly discussed in Section II. The
present paper is complementary to the survey [1], and deals
with approximate PI with nonlinear feature-based architec-
tures, including some where features are generated with the
aid of neural networks or some other heuristic calculations.

An important advantage of linear feature-based architectures
is that given the form of the feature vector F (·), they can
be trained with linear least squares-type methods. However,
determining good features may be a challenge in general.
Neural networks resolve this challenge through training that
constructs automatically features and simultaneously combines
the components of the features linearly with weights. This is
commonly done by cost fitting/nonlinear regression, using a
large number of state-cost sample pairs, which are processed
through a sequence of alternately linear and nonlinear layers
(see Section III). The outputs of the final nonlinear layer are
the features, which are then processed by a final linear layer
that provides a linear combination of the features as a cost
function approximation.

The idea of representing cost functions in terms of features
of the state in a context that we may now call “approximation
in value space” or “approximate DP” goes back to the work of
Shannon on chess [2]. The work of Samuel [3], [4] on checkers
extended some of Shannon’s algorithmic schemes and intro-
duced temporal difference ideas that motivated much subse-
quent research. The use of neural networks to simultaneously
extract features of the optimal or the policy cost functions, and
construct an approximation to these cost functions was also
investigated in the early days of reinforcement learning; some
of the original contributions that served as motivation for much
subsequent work are Werbös [5], Barto, Sutton, and Anderson
[6], Christensen and Korf [7], Holland [8], and Sutton [9]. The
use of a neural network as a cost function approximator for a
challenging DP problem was first demonstrated impressively
in the context of the game of backgammon by Tesauro
[10]−[13]. In Tesauro’s work the parameters of the network
were trained by using a form of temporal differences (TD)
learning, and the features constructed by the neural network
were supplemented by some handcrafted features.1 Following
Tesauro’s work, the synergistic potential of approximations
using neural network or other architectures, and DP techniques
had become apparent, and it was laid out in an influential
survey paper by Barto, Bradtke, and Singh [18]. It was then
systematically developed in the neuro-dynamic programming
book by Bertsekas and Tsitsiklis [19], and the reinforcement
learning book by Sutton and Barto [20]. Subsequent books on
approximate DP and reinforcement learning, which discuss
approximate PI, among other techniques, include Cao [21],
Busoniu et al. [22], Szepesvari [23], Powell [24], Chang, Fu,
Hu, and Marcus [25], Vrabie, Vamvoudakis, and Lewis [26],
and Gosavi [27]. To these, we may add the edited collections
by Si, Barto, Powell, and Wunsch [28], Lewis, Liu, and
Lendaris [29], and Lewis and Liu [30], which contain several
survey papers.

The original ideas on approximate PI were enriched by
further methodological research such as rollout (Abramson
[31], Tesauro and Galperin [16], Bertsekas, Tsitsiklis, and Wu
[32], Bertsekas and Castanon [33]; see the surveys in [34],
[17]), adaptive simulation and Monte Carlo tree search (Chang,
Hu, Fu, and Marcus [25], [35], Coulom [36]; see the survey
by Browne et al. [37]), and deep neural networks (which are
neural networks with many and suitably specialized layers;
see for the example the book by Goodfellow, Bengio, and
Courville [38], the textbook discussion in [17], Ch. 6, and the
recent surveys by Schmidhuber [39], Arulkumaran et al. [40],

1Tesauro also constructed a different backgammon player, trained by a
neural network, but with a supervised learning approach, which used examples
from human expert play [14], [15] (he called this approach “comparison
learning”). However, his TD-based algorithm performed substantially better,
and its success has been replicated by others, in both research and commercial
programs. Tesauro and Galperin [16] proposed still another approach to
backgammon, based on a rollout strategy, which resulted in an even better
playing program (see [17] for an extensive discussion of rollout as a
general approximate DP approach). At present, rollout-based backgammon
programs are viewed as the most powerful in terms of performance, but
are too time-consuming for real-time play. They have been used in a
limited diagnostic way to assess the performance of neural network-based
programs. A list of articles on computer backgammon may be found at
http://www.bkgm.com/articles/page07.html.



BERTSEKAS: FEATURE-BASED AGGREGATION AND DEEP REINFORCEMENT LEARNING: A SURVEY AND SOME NEW IMPLEMENTATIONS 3

Liu et al. [41], and Li [42]).
A recent impressive success of the deep neural network-

based approximate PI methodology is the AlphaZero program,
which attained a superhuman level of play for the games of
chess, Go, and others (see Silver et al. [43]). A noteworthy
characteristic of this program is that it does not use domain-
specific knowledge (i.e., handcrafted features), but rather relies
entirely on the deep neural network to construct features for
cost function approximation (at least as reported in [43]).
Whether it is advisable to rely exclusively on the neural
network to provide features is an open question, as other
investigations, including the ones by Tesauro noted earlier,
suggest that using additional problem-specific hand-crafted
features can be very helpful in the context of approximate
DP. Except for the use of deep rather than shallow neural
networks (which are used in backgammon), the AlphaZero
algorithm is similar to several other algorithms that have
been proposed in the literature and/or have been developed
in the past. It can be viewed as a conceptually straightforward
implementation of approximate PI, using Monte Carlo tree
search and a single neural network to construct a cost and
policy approximation, and does not rely on any fundamentally
new ideas or insightful theoretical analysis. Conceptually, it
bears considerable similarity to Tesauro’s TD-Gammon pro-
gram. Its spectacular success may be attributed to the skillful
implementation of an effective mix of known ideas, coupled
with great computational power.

We note that the ability to simultaneously extract features
and optimize their linear combination is not unique to neural
networks. Other approaches that use a multilayer architecture
have been proposed (see the survey by Schmidhuber [39]),
including the Group Method for Data Handling (GMDH),
which is principally based on the use of polynomial (rather
than sigmoidal) nonlinearities. The GMDH method was inves-
tigated extensively in the Soviet Union starting with the work
of Ivakhnenko in the late 60 s; see e.g., [44]. It has been used
in a large variety of applications, and its similarities with the
neural network methodology have been noted (see the survey
by Ivakhnenko [45], and the large literature summary at the
web site http://www.gmdh.net). Most of the GMDH research
relates to inference-type problems. We are unaware of any
application of GMDH in the context of approximate DP, but
we believe this to be a fruitful area of investigation. In any
case, the feature-based PI ideas of the present paper apply
equally well in conjunction with GMDH networks as with the
neural networks described in Section III.

While automatic feature extraction is a critically important
aspect of neural network architectures, the linearity of the
combination of the feature components at the final layer may
be a limitation. A nonlinear alternative is based on aggregation,
a dimensionality reduction approach to address large-scale
problems. This approach has a long history in scientific
computation and operations research (see for example Bean,
Birge, and Smith [46], Chatelin and Miranker [47], Douglas
and Douglas [48], and Rogers et al. [49]). It was introduced
in the simulation-based approximate DP context, mostly in the
form of value iteration; see Singh, Jaakkola, and Jordan [50],
Gordon [51], Tsitsiklis and Van Roy [52] (see also the book

[19], Sections 3.1.2 and 6.7). More recently, aggregation was
discussed in a reinforcement learning context involving the
notion of “options” by Ciosek and Silver [53], and the notion
of “bottleneck simulator” by Serban et al. [54]; in both cases
encouraging computational results were presented. Aggrega-
tion architectures based on features were discussed in Section
3.1.2 of the neuro-dynamic programming book [19], and in
Section 6.5 of the author’s DP book [55] (and earlier editions),
including the feature-based architecture that is the focus of the
present paper. They have the capability to produce policy cost
function approximations that are nonlinear functions of the
feature components, thus yielding potentially more accurate
approximations. Basically, in feature-based aggregation the
original problem is approximated by a problem that involves
a relatively small number of “feature states.”

Feature-based aggregation assumes a given form of feature
vector, so for problems where good features are not apparent,
it needs to be modified or to be supplemented by a method
that can construct features from training data. Motivated by
the reported successes of deep reinforcement learning with
neural networks, we propose a two-stage process: first use a
neural network or other scheme to construct good features for
cost approximation, and then use there features to construct
a nonlinear feature-based aggregation architecture. In effect
we are proposing a new way to implement approximate PI:
retain the policy evaluation phase which uses a neural network
or alternative scheme, but replace the policy improvement
phase with the solution of an aggregate DP problem. This
DP problem involves the features that are generated by a
neural network or other scheme (possibly together with other
handcrafted features). Its dimension may be reduced to a man-
ageable level by sampling, while its cost function values are
generalized to the entire feature space by linear interpolation.
In summary, our suggested policy improvement phase may be
more complicated, but may be far more powerful as it relies on
the potentially more accurate function approximation provided
by a nonlinear combination of features.

Aside from the power brought to bear by nonlinearly
combining features, let us also note some other advantages
that are generic to aggregation. In particular:

(a) Aggregation aims to solve an “aggregate” DP problem,
itself an approximation of the original DP problem, in the spirit
of coarse-grid discretization of large state space problems. As
a result, aggregation methods enjoy the stability and policy
convergence guarantee of exact PI. By contrast, temporal
difference-based and other PI methods can suffer from con-
vergence difficulties such as policy oscillations and chattering
(see e.g., [1], [19], [55]). A corollary to this is that when
an aggregation scheme performs poorly, it is easy to identify
the cause: it is the quantization error due to approximating
a large state space with a smaller “aggregate” space. The
possible directions for improvement (at a computational cost
of course) are then clear: introduce additional aggregate states,
and increase/improve these features.

(b) Aggregation methods are characterized by error bounds,
which are generic to PI methods that guarantee the conver-
gence of the generated policies. These error bounds are better
by a factor (1 − α) compared to the corresponding error
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bounds for methods where policies need not converge, such as
generic temporal difference methods with linear cost function
approximation [see Eqs. (5) and (6) in the next section].

Let us finally note that the idea of using a deep neural
network to extract features for use in another approximation
architecture has been used earlier. In particular, it is central
in the Deepchess program by David, Netanyahu, and Wolf
[56], which was estimated to perform at the level of a strong
grandmaster, and at the level of some of the strongest computer
chess programs. In this work the features were used, in
conjunction with supervised learning and human grandmaster
play selections, to train a deep neural network to compare any
pair of legal moves in a given chess position, in the spirit of
Tesauro’s comparison training approach [15]. By contrast in
our proposal the features are used to formulate an aggregate
DP problem, which can be solved by exact methods, including
some that are based on simulation.

The paper is organized as follows. In Section II, we provide
context for the subsequent developments, and summarize some
of the implementation issues in approximate PI methods. In
Section III, we review some of the central ideas of approximate
PI based on neural networks. In Section IV, we discuss PI ideas
based on feature-based aggregation, assuming good features
are known. In this section, we also discuss how features may
be constructed based on one or more “scoring functions,”
which are estimates of the cost function of a policy, provided
by a neural network or a heuristic. We also pay special atten-
tion to deterministic discrete optimization problems. Finally,
in Section V, we describe some of the ways to combine the
feature extraction capability of deep neural networks with the
nonlinear approximation possibilities offered by aggregation.

B. Terminology

The success of approximate DP in addressing challenging
large-scale applications owes much to an enormously bene-
ficial cross-fertilization of ideas from decision and control,
and from artificial intelligence. The boundaries between these
fields are now diminished thanks to a deeper understanding
of the foundational issues, and the associated methods and
core applications. Unfortunately, however, there have been
substantial discrepancies of notation and terminology between
the artificial intelligence and the optimization/decision/control
fields, including the typical use of maximization/value func-
tion/reward in the former field and the use of minimization/cost
function/cost per stage in the latter field. The notation and
terminology used in this paper is standard in DP and optimal
control, and in an effort to forestall confusion of readers that
are accustomed to either the reinforcement learning or the
optimal control terminology, we provide a list of selected terms
commonly used in reinforcement learning (for example in the
popular book by Sutton and Barto [20], and its 2018 on-line
2nd edition), and their optimal control counterparts.

(a) Agent = Controller or decision maker.
(b) Action = Control.
(c) Environment = System.
(d) Reward of a stage = (Opposite of) Cost of a stage.
(e) State value = (Opposite of) Cost of a state.

(f) Value (or state-value) function = (Opposite of) Cost
function.

(g) Maximizing the value function = Minimizing the cost
function.

(h) Action (or state-action) value = Q-factor of a state-
control pair.

(i) Planning = Solving a DP problem with a known math-
ematical model.

(j) Learning = Solving a DP problem in model-free fashion.
(k) Self-learning (or self-play in the context of games) =

Solving a DP problem using policy iteration.
(l) Deep reinforcement learning = Approximate DP using

value and/or policy approximation with deep neural networks.
(m) Prediction = Policy evaluation.
(n) Generalized policy iteration = Optimistic policy itera-

tion.
(o) Episodic task or episode = Finite-step system trajectory.
(p) Continuing task = Infinite-step system trajectory.
(q) Afterstate = Post-decision state.

II. APPROXIMATE POLICY ITERATION: AN OVERVIEW

Many approximate DP algorithms are based on the princi-
ples of PI: the policy evaluation/policy improvement structure
of PI is maintained, but the policy evaluation is done approxi-
mately, using simulation and some approximation architecture.
In the standard form of the method, at each iteration, we
compute an approximation J̃µ(·, r) to the cost function Jµ of
the current policy µ, and we generate an “improved” policy µ̂
using 2

µ̂(i) ∈ arg min
u∈U(i)

n∑

j=1

pij(u)(g(i, u, j) + αJ̃µ(j, r)),

i = 1, . . . , n. (4)

here J̃µ is a function of some chosen form (the approximation
architecture), which depends on the state and on a parameter
vector r = (r1, . . . , rs) of relatively small dimension s.

The theoretical basis for the method was discussed in the
neuro-dynamic programming book [19], Prop. 6.2 (see also
[55], Section 2.5.6, or [57], Sections 2.4.1 and 2.4.2). It was
shown there that if the policy evaluation is accurate to within
δ (in the sup-norm sense), then for an α-discounted problem,
the method, while not convergent, is stable in the sense that it
will yield in the limit (after infinitely many policy evaluations)
stationary policies that are optimal to within

2αδ

(1− α)2
, (5)

where α is the discount factor. Moreover, if the generated
sequence of policies actually converges to some µ̄, then µ̄ is
optimal to within

2αδ

1− α
(6)

2The minimization in the policy improvement phase may alternatively
involve multistep lookahead, possibly combined with Monte-Carlo tree search.
It may also be done approximately through Q-factor approximations. Our dis-
cussion extends straightforwardly to schemes that include multistep lookahead
or approximate policy improvement.
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Fig. 2. Two methods for approximating the cost function Jµ as a linear combination of basis functions. The approximation architecture is the subspace
J = {Φr | r ∈ Rs}, where Φ is matrix whose columns are the basis functions. In the direct method (see the figure on the left), Jµ is projected on J . In
an example of the indirect method, the approximation is obtained by solving the projected form of Bellman’s equation Φr = ΠTµΦr, where TµΦr is the
vector with components.

(TµΦr)(i) =
n∑

j=1

pij (µ(i))
(
g (i, µ(i), j) + α(Φr)(j)

)
, i = 1, . . . , n,

and (Φr)(j) is the jth component of the vector Φr (see the figure on the right).

(see [19], Section 6.4.1); this is a significantly improved error
bound. In general, policy convergence may not be guaranteed,
although it is guaranteed for the aggregation methods of this
paper. Experimental evidence indicates that these bounds are
often conservative, with just a few policy iterations needed
before most of the eventual cost improvement is achieved.

A. Direct and Indirect Approximation

Given a class of functions J that defines an approximation
architecture, there are two general approaches for approximat-
ing the cost function Jµ of a fixed policy µ within J . The
most straightforward approach, referred to as direct (or cost
fitting), is to find a J̃µ ∈ J that matches Jµ in some least
squares error sense, i.e.,3

J̃µ ∈ arg min
J̃∈J

‖J̃ − Jµ‖2. (7)

Typically ‖ · ‖ is some weighted Euclidean norm with positive
weights ξi, i = 1, . . . , n, while J consists of a parametrized
class of functions J̃(i, r) where r = (r1, . . . , rs) ∈ Rs is the
parameter vector, i.e.,4

J =
{
J̃(·, r) | r ∈ Rs

}
.

Then the minimization problem in Eq. (7) is written as

min
r∈Rs

n∑

i=1

ξi

(
J̃(i, r)− Jµ(i)

)2
, (8)

and can be viewed as an instance of nonlinear regression.
In simulation-based methods, the preceding minimization is

usually approximated by a least squares minimization of the
form

min
r∈Rs

M∑
m=1

(
J̃(im, r)− βm

)2
, (9)

3Nonquadratic optimization criteria may also be used, although in practice
the simple quadratic cost function has been adopted most frequently.

4We use standard vector notation. In particular, Rs denotes the Euclidean
space of s-dimensional real vectors, and R denotes the real line.

where (im, βm), m = 1, . . . , M , are a large number of state-
cost sample pairs, i.e., for each m, im is a sample state and
βm is equal to Jµ(im) plus some simulation noise. Under mild
statistical assumptions on the sample collection process, the
sample-based minimization (9) is equivalent in the limit to the
exact minimization (8). Neural network-based approximation,
as described in Section III, is an important example of direct
approximation that uses state-cost training pairs.

A common choice is to take J to be the subspace {Φr |
r ∈ Rs} that is spanned by the columns of an n × s matrix
Φ, which can be viewed as basis functions (see the left side
of Fig. 2). Then the approximation problem (9) becomes the
linear least squares problem

min
(r1,...,rs)∈Rs

M∑
m=1

(
s∑

`=1

φim`r` − βm

)2

, (10)

where φi` is the i`th entry of the matrix Φ and r` is the `th
component of r. The solution of this problem can be obtained
analytically and can be written in closed form (see e.g., [19],
Section 3.2.2). Note that the ith row of Φ may be viewed as
a feature vector of state i, and Φr may be viewed as a linear
feature-based architecture.

In Section III, we will see that neural network-based policy
evaluation combines elements of both a linear and a nonlinear
architecture. The nonlinearity is embodied in the features that
the neural network constructs through training, but once the
features are given, the neural network can be viewed as a linear
feature-based architecture.

An often cited weakness of simulation-based direct approx-
imation is excessive simulation noise in the cost samples βm

that are used in the least squares minimization (10). This
has motivated alternative approaches for policy evaluation that
inherently involve less noise. A major approach of this type,
referred to as indirect (or equation fitting), is to approximate
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Bellman’s equation for the policy µ,

J(i) =
n∑

j=1

pij(µ(i))
(
g(i, µ(i), j) + αJ(j)

)
,

i = 1, . . . , n, (11)

with another equation that is defined on the set J . The solution
of the approximate equation is then used as an approximation
of the solution of the original. The most common indirect
methods assume a linear approximation architecture, i.e., J is
the subspace J = {Φr | r ∈ Rs}, and approximate Bellman’s
equation with another equation with fewer variables, the s
parameters r1, . . . , rs. Two major examples of this approach
are projected equation methods and aggregation methods,
which we proceed to discuss.

B. Indirect Methods Based on Projected Equations

Approximation using projected equations has a long history
in numerical computation (e.g., partial differential equations)
where it is known as Galerkin approximation (see e.g., [58]−
[61]). The projected equation approach is a special case of the
so called Bubnov-Galerkin method, as noted in the papers [1],
[62], [63]. In the context of approximate DP it is connected
with temporal difference methods, and it is discussed in detail
in many sources (see e.g., [19], [22], [27], [55]).

To state the projected equation, let us introduce the trans-
formation Tµ, which is defined by the right-hand side of the
Bellman equation (11); i.e., for any J ∈ Rn, TµJ is the vector
of Rn with components

(TµJ)(i) =
n∑

j=1

pij(µ(i))
(
g(i, µ(i), j) + αJ(j)

)
,

i = 1, . . . , n. (12)

Note that Tµ is a linear transformation from Rn to Rn, and
in fact in compact vector-matrix notation, it is written as

TµJ = gµ + αPµJ, J ∈ Rn, (13)

where Pµ is the transition probability matrix of µ, and gµ is
the expected cost vector of µ, i.e., the vector with components

n∑

j=1

pij (µ(i)) g (i, µ(i), j) , i = 1, . . . , n.

Moreover the Bellman equation (11) is written as the fixed
point equation

J = TµJ.

Let us denote by ΠJ the projection of a vector J ∈ Rn

onto J with respect to some weighted Euclidean norm, and
consider ΠTµΦr, the projection of TµΦr (here TµΦr is viewed
as a vector in Rn, and Π is viewed as an n × n matrix
multiplying this vector). The projected equation takes the form

Φr = ΠTµΦr; (14)

see the right-hand side of Fig. 2. With this equation we want to
find a vector Φr of J , which when transformed by Tµ and then
projected back onto J , yields itself. This is an overdetermined

system of linear equations (n equations in the s unknowns
r1, . . . , rs), which is equivalently written as

s∑

`=1

φi`r` =
n∑

m=1

πim

n∑

j=1

pmj

(
µ(m)

)

×
(

g
(
m,µ(m), j

)
+ α

s∑

`=1

φj`r`

)
,

i = 1, . . . , n; (15)

here φi` is the i`th component of the matrix Φ and πim is
the imth component of the projection matrix Π. The system
can be shown to have a unique solution under conditions that
can be somewhat restrictive, e.g., assuming that the Markov
chain corresponding to the policy µ has a unique steady-state
distribution with positive components, that the projection norm
involves this distribution, and that Φ has linearly independent
columns (see e.g., [55], Section 6.3).

An important extension is to replace the projected equation
(14) with the equation

Φr = ΠT (λ)
µ Φr, (16)

where λ is a scalar with 0 ≤ λ < 1, and the transformation
T

(λ)
µ is defined by

(
T (λ)

µ J
)
(i) = (1− λ)

∞∑

`=0

λ`(T `+1
µ J)(i),

i = 1, . . . , n, J ∈ Rn, (17)

and T `
µJ is the `-fold composition of Tµ applied to the vector

J . This approach to the approximate solution of Bellman’s
equation is supported by extensive theory and practical expe-
rience (see the textbooks noted earlier). In particular, the TD
(λ) algorithm, and other related temporal difference methods,
such as LSTD(λ) and LSPE(λ), aim to solve by simulation
the projected equation (16). The choice of λ embodies the
important bias-variance tradeoff: larger values of λ lead to
better approximation of Jµ, but require a larger number of
simulation samples because of increased simulation noise
(see the discussion in Section 6.3.6 of [55]). An important
insight is that the operator T

(λ)
µ is closely related to the

proximal operator of convex analysis (with λ corresponding
to the penalty parameter of the proximal operator), as shown
in the author’s paper [64] (see also the monograph [57],
Section 1.2.5, and the paper [65]). In particular, TD(λ) can
be viewed as a stochastic simulation-based version of the
proximal algorithm.

A major issue in projected equation methods is whether
the linear transformation ΠTµ [or ΠT

(λ)
µ ] is a contraction

mapping, in which case Eq. (14) [or Eq. (16), respectively] has
a unique solution, which may be obtained by iterative fixed
point algorithms. This depends on the projection norm, and it
turns out that there are special norms for which ΠT

(λ)
µ is a

contraction (these are related to the steady-state distribution
of the system’s Markov chain under µ; see the discussion
of [1] or Section 6.3 of [55]). An important fact is that for
any projection norm, ΠT

(λ)
µ is a contraction provided λ is

sufficiently close to 1. Still the contraction issue regarding
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ΠT
(λ)
µ is significant and affects materially the implementation

of the corresponding approximate PI methods.
Another important concern is that the projection matrix

Π may have some negative entries [i.e., some of the com-
ponents πim in Eq. (15) may be negative], and as a result
the linear transformations ΠTµ and ΠT

(λ)
µ may lack the

monotonicity property that is essential for the convergence
of the corresponding approximate PI method. Indeed the
lack of monotonicity (the possibility that we may not have
ΠTµJ ≥ ΠTµJ ′ for two vectors J, J ′ with J ≥ J ′) is the
fundamental mathematical reason for policy oscillations in
PI methods that are based on temporal differences (see [1],
[55]). We refer to the literature for further details and analysis
regarding the projected equations (14) and (16), as our focus
will be on aggregation methods, which we discuss next.

C. Indirect Methods Based on Aggregation

Aggregation is another major indirect approach for policy
evaluation. It has a long history in numerical computation.
Simple examples of aggregation involve finite-dimensional
approximations of infinite dimensional equations, coarse grid
approximations of linear systems of equations defined over
a dense grid, and other related methods for dimensionality
reduction of high-dimensional systems. In the context of DP,
the aggregation idea is implemented by replacing the Bell-
man equation J = TµJ [cf. (11)] with a lower-dimensional
“aggregate” equation, which is defined on an approximation
subspace J = {Φr | r ∈ Rs}. The aggregation counterpart of
the projected equation Φr = ΠTµΦr is

Φr = ΦDTµΦr, (18)

where Φ and D are some matrices, and Tµ is the linear
transformation given by Eq. (12).5 This is a vector-matrix
notation for the linear system of n equations in the s variables
r1, . . . , rs

s∑

k=1

φikrk =
s∑

k=1

φik

n∑
m=1

dkm

n∑

j=1

pmj

(
µ(m)

)

×
(

g
(
m,µ(m), j

)
+ α

s∑

`=1

φj`r`

)
,

i = 1, . . . , n,

where φi` is the i`th component of the matrix Φ and dkm is
the kmth component of the matrix D.

A key restriction for aggregation methods as applied to DP
is that the rows of D and Φ should be probability distributions.
These distributions usually have intuitive interpretations in the
context of specific aggregation schemes; see [55], Section 6.5

5It turns out that under some widely applicable conditions, including the
assumptions of Section IV, the projected and aggregation equations are closely
related. In particular, it can be proved under these conditions that the matrix
ΦD that appears in the aggregation equation (18) is a projection with respect
to a suitable weighted Euclidean seminorm (see [66], Section 4, or the
book [55]; it is a norm projection in the case of hard aggregation). Aside
from establishing the relation between the two major indirect approximation
methods, projected equation and aggregation, this result provides the basis
for transferring the rich methodology of temporal differences methods such
as TD(λ) to the aggregation context.

for a discussion. Assuming that Φ has linearly independent
columns, which is true for the most common types of aggre-
gation schemes, Eq. (18) can be shown to be equivalent to

r = DTµΦr, (19)

or

rk =
n∑

m=1

dkm

n∑

j=1

pmj

(
µ(m)

)

×
(

g
(
m,µ(m), j

)
+ α

s∑

`=1

φj`r`

)
,

k = 1, . . . , s. (20)

In most of the important aggregation methods, including the
one of Section IV, D and Φ are chosen so that the product
DΦ is the identity:

DΦ = I.

Assuming that this is true, the operator I − DTµΦ of the
aggregation equation (19) is obtained by pre-multiplying and
post-multiplying the operator I − Tµ of the Bellman equation
with D and Φ, respectively. Mathematically, this can be
interpreted as follows:

(a) Post-multiplying with Φ: We replace the n variables J(j)
of the Bellman equation J = TµJ with convex combinations
of the s variables r` of the system (18), using the rows
(φj1, . . . , φjs) of Φ:

J(j) ≈
s∑

`=1

φj` r`.

(b) Pre-multiplying with D: We form the s equations of
the aggregate system by taking convex combinations of the n
components of the n× n Bellman equation using the rows of
D.

We will now describe how the aggregate system of Eq. (20)
can be associated with a discounted DP problem that has
s states, called the aggregate states in what follows. At an
abstract level, the aggregate states may be viewed as entities
associated with the s rows of D or the s columns of Φ. Indeed,
since Tµ has the form TµJ = gµ + αPµJ [cf. Eq. (13)], the
aggregate system (20) becomes

r = ĝµ + αP̂µr, (21)

where

ĝµ = Dgµ, P̂µ = DPµΦ. (22)

It is straightforward to verify that P̂µ is a transition probability
matrix, since the rows of D and Φ are probability distributions.
This means that the aggregation equation (21) [or equivalently
Eq. (20)] represents a policy evaluation/Bellman equation for
the discounted problem with transition matrix P̂µ and cost
vector ĝµ. This problem will be called the aggregate DP
problem associated with policy µ in what follows. The corre-
sponding aggregate state costs are r1, . . . , rs. Some important
consequences of this are:

(a) The aggregation equation (21) and (22) inherits the
favorable characteristics of the Bellman equation J = TµJ ,
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namely its monotonicity and contraction properties, and its
uniqueness of solution.

(b) Exact DP methods may be used to solve the aggregate
DP problem. These methods often have more regular behavior
than their counterparts based on projected equations.

(c)Approximate DP methods, such as variants of simulation-
based PI, may also be used to solve approximately the aggre-
gate DP problem.
The preceding characteristics of the aggregation approach may
be turned to significant advantage, and may counterbalance the
restriction on the structure of D and Φ (their rows must be
probability distributions, as stated earlier).

D. Implementation Issues

The implementation of approximate PI methods involves
several delicate issues, which have been extensively investi-
gated but have not been fully resolved, and are the subject of
continuing research. We will discuss briefly some of these is-
sues in what follows in this section. We preface this discussion
by noting that all of these issues are addressed more easily and
effectively within the direct approximation and the aggregation
frameworks, than within the temporal difference/projected
equation framework, because of the deficiencies relating to
the lack of monotonicity and contraction of the operator ΠTµ,
which we noted in Section II-B.

(1) The Issue of Exploration
An important generic difficulty with simulation-based PI is

that in order to evaluate a policy µ, we may need to generate
cost samples using that policy, but this may bias the simulation
by underrepresenting states that are unlikely to occur under µ.
As a result, the cost-to-go estimates of these underrepresented
states may be highly inaccurate, causing potentially serious
errors in the calculation of the improved control policy µ̂ via
the policy improvement equation (4).

The situation just described is known as inadequate ex-
ploration of the system’s dynamics. It is a particularly acute
difficulty when the system is deterministic [i.e., pij(u) is equal
to 1 for a single successor state j], or when the randomness
embodied in the transition probabilities of the current policy is
“relatively small,” since then few states may be reached from
a given initial state when the current policy is simulated.

One possibility to guarantee adequate exploration of the
state space is to break down the simulation to multiple short
trajectories (see [55], [66], [67]) and to ensure that the initial
states employed form a rich and representative subset. This
is naturally done within the direct approximation and the
aggregation frameworks, but less so in the temporal difference
framework, where the theoretical convergence analysis relies
on the generation of a single long trajectory.

Another possibility for exploration is to artificially introduce
some extra randomization in the simulation of the current
policy, by occasionally generating random transitions using
some policy other than µ (this is called an off-policy approach
and its implementation has been the subject of considerable
discussion; see the books [20], [55]). A Monte Carlo tree
search implementation may naturally provide some degree of
such randomization, and has worked well in game playing

contexts, such as the AlphaZero architecture for playing chess,
Go, and other games (Silver et al. [43]). Other related ap-
proaches to improve exploration based on generating multiple
short trajectories are discussed in Sections 6.4.1 and 6.4.2 of
[55].

(2) Limited Sampling/Optimistic Policy Iteration
In the approximate PI approach discussed so far, the eval-

uation of the current policy µ must be fully carried out. An
alternative is optimistic PI, where relatively few simulation
samples are processed between successive policy changes and
corresponding parameter updates.

Optimistic PI with cost function approximation is frequently
used in practical applications. In particular, extreme optimistic
schemes, including nonlinear architecture versions, and involv-
ing a single or very few Q-factor updates between parameter
updates have been widely recommended; see e.g., the books
[19], [20], [22] (where they are referred to as SARSA, a short-
hand for State-Action-Reward-State-Action). The behavior of
such schemes is very complex, and their theoretical conver-
gence properties are unclear. In particular, they can exhibit
fascinating and counterintuitive behavior, including a natural
tendency for policy oscillations. This tendency is common
to both optimistic and nonoptimistic PI, as we will discuss
shortly, but in extreme optimistic PI schemes, oscillations tend
to manifest themselves in an unusual form whereby we may
have convergence in parameter space and oscillation in policy
space (see [19], Section 6.4.2, or [55], Section 6.4.3).

On the other hand optimistic PI may in some cases deal
better with the problem of exploration discussed earlier. The
reason is that with rapid changes of policy, there may be less
tendency to bias the simulation towards particular states that
are favored by any single policy.

(3) Policy Oscillations and Chattering
Contrary to exact PI, which converges to an optimal policy

in a fairly regular manner, approximate PI may oscillate. By
this we mean that after a few iterations, policies tend to repeat
in cycles. The parameter vectors r that correspond to the
oscillating policies may also tend to oscillate, although it is
possible, in optimistic approximate PI methods, that there is
convergence in parameter space and oscillation in policy space,
a peculiar phenomenon known as chattering.

Oscillations and chattering have been explained with the
use of the so-called “greedy partition” of the parameter space
into subsets that correspond to the same improved policy (see
[19], Section 6.4.2, or [55], Section 6.4.3). Policy oscillations
occur when the generated parameter sequence straddles the
boundaries that separate sets of the partition. Oscillations can
be potentially very damaging, because there is no guarantee
that the policies involved in the oscillation are “good” policies,
and there is often no way to verify how well they compare to
the optimal.

We note that oscillations are avoided and approximate PI
can be shown to converge to a single policy under special
conditions that arise in particular when aggregation is used for
policy evaluation. These conditions involve certain monotonic-
ity assumptions [e.g., the nonnegativity of the components πim

of the projection matrix in Eq. (15)], which are fulfilled in the
case of aggregation (see [1]). However, for temporal difference
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methods, policy oscillations tend to occur generically, and
often for very simple problems, involving few states (a two-
state example is given in [1], and in [55], Section 6.4.3). This is
a potentially important advantage of the aggregation approach.

(4) Model-Free Implementations
In many problems a mathematical model [the transition

probabilities pij(u) and the cost vector g] is unavailable or
hard to construct, but instead the system and cost structure
can be simulated far more easily. In particular, let us assume
that there is a computer program that for any given state i and
control u, simulates sample transitions to a successor state j
according to pij(u), and generates the transition cost g(i, u, j).

As noted earlier, the direct and indirect approaches to
approximate evaluation of a single policy may be implemented
in model-free fashion, simply by generating the needed cost
samples for the current policy by simulation. However, given
the result J̃µ(·) of the approximate policy evaluation, the
policy improvement minimization

µ̂(i) ∈ arg min
u∈U(i)

n∑

j=1

pij(u)(g(i, u, j) + αJ̃µ(j)),

i = 1, . . . , n, (23)

still requires the transition probabilities pij(u), so it is not
model-free. To provide a model-free version we may use a
parametric regression approach. In particular, suppose that
for any state i and control u, state transitions (i, j), and
corresponding transition costs g(i, u, j) and values of J̃µ(j)
can be generated in a model-free fashion when needed, by
using a simulator of the true system. Then we can introduce
a parametric family/approximation architecture of Q-factor
functions, Q̃µ(i, u, θ), where θ is the parameter vector, and
use a regularized least squares fit/regression to approximate
the expected value that is minimized in Eq. (23). The steps
are as follows:

(a) Use the simulator to collect a large number of “repre-
sentative” sample state-control pairs (im, um), and successor
states jm, m = 1, . . . , M , and corresponding sample Q-factors

βm = g(im, um, jm) + αJ̃µ(jm), m = 1, . . . , M. (24)

(b) Determine the parameter vector θ̃ with the least-squares
minimization

θ̃ ∈ arg min
θ

M∑
m=1

(
Q̃µ(im, um, θ)− βm

)2
(25)

(or a regularized minimization whereby a quadratic regular-
ization term is added to the above quadratic objective).

(c) Use the policy

µ̂(i) ∈ arg min
u∈U(i)

Q̃µ(i, u, θ̃), i = 1, . . . , n. (26)

This policy may be generated on-line when the control
constraint set U(i) contains a reasonably small number of
elements. Otherwise an approximation in policy space is
needed to represent the policy µ̂ using a policy approximation
architecture. Such an architecture could be based on a neural
network, in which case it is commonly called an “action
network” or “actor network” to distinguish from its cost

function approximation counterpart, which is called a “value
network” or “critic network.”

Note some important points about the preceding approxi-
mation procedure:

(a) It does not need the transition probabilities pij(u) to
generate the policy µ̂ through the minimization (26). The
simulator to collect the samples (24) suffices.

(b) The policy µ̂ obtained through the minimization (26) is
not the same as the one obtained through the minimization
(23). There are two reasons for this. One is the approximation
error introduced by the Q-factor architecture Q̃µ, and the
other is the simulation error introduced by the finite-sample
regression (25). We have to accept these sources of error
as the price to pay for the convenience of not requiring a
mathematical model.

(c) Two approximations are potentially required: One to
compute J̃µ, which is needed for the samples βm [cf. Eq. (24)],
and another to compute Q̃µ through the least squares mini-
mization (25), and the subsequent policy generation formula
(26). The approximation methods to obtain J̃µ and Q̃µ may
not be the same and in fact may be unrelated (for example J̃µ

need not involve a parametric approximation, e.g., it may be
obtained by some type of problem approximation approach).

An alternative to first computing J̃µ(·) and then computing
subsequently Q̃µ(·, ·, θ) via the procedure (24)−(26) is to
forgo the computation of J̃µ(·), and use just the parametric
approximation architecture for the policy Q-factor, Q̃µ(i, u, θ).
We may then train this Q-factor architecture, using state-
control Q-factor samples, and either the direct or the indirect
approach. Generally, algorithms for approximating policy cost
functions can be adapted to approximating policy Q-factor
functions.

As an example, a direct model-free approximate PI scheme
can be defined by Eqs. (25) and (26), using M state-control
samples (im, um), corresponding successor states jm gener-
ated according to the probabilities pimj(um), and sample costs
βm equal to the sum of:

(a) The first stage cost g(im, um, jm).
(b) A α-discounted simulated sample of the infinite horizon

cost of starting at jm and using µ [in place of the term
αJ̃µ(jm) in Eq. (24)].

A PI scheme of this type was suggested by Fern, Yoon,
and Givan [68], and has been discussed by several other
authors; see [17], Section 6.3.4. In particular, a variant of
the method was used to train a tetris playing computer
program that performs impressively better than programs that
are based on other variants of approximate PI, and various
other methods; see Scherrer [69], Scherrer et al. [70], and
Gabillon, Ghavamzadeh, and Scherrer [71], who also provide
an analysis.

III. APPROXIMATE POLICY ITERATION BASED ON
NEURAL NETWORKS

In this section we will describe some of the basic ideas of
the neural network methodology as it applies to the approxi-
mation of the cost vector Jµ of a fixed policy µ. Since µ is
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Fig. 3. A perceptron consisting of a linear layer and a nonlinear layer. It provides a way to compute features of the state, which can be used for approximation
of the cost function of a given policy. The state i is encoded as a vector of numerical values y(i), which is then transformed linearly as Ay(i) + b in the
linear layer. The scalar output components of the linear layer, become the inputs to single input-single output nonlinear functions that produce the s scalars
F`(i, v) = σ

(
(Ay(i) + b)`

)
, which can be viewed as feature components that are in turn linearly weighted with parameters r`.

fixed throughout this section, we drop the subscript µ is what
follows. A neural network provides an architecture of the form

J̃(i, v, r) =
s∑

`=1

F`(i, v)r` (27)

that depends on a parameter vector v and a parameter vector
r = (r1, . . . , rs). Here for each state i, J̃(i, v, r) approximates
Jµ(i), while the vector

F (i, v) =
(
F1(i, v), . . . , Fs(i, v)

)

may be viewed as a feature vector of the state i. Notice the
different roles of the two parameter vectors: v parametrizes
F (i, v), and r is a vector of weights that combine linearly the
components of F (i, v). The idea is to use training to obtain
simultaneously both the features and the linear weights.

Consistent with the direct approximation framework of
Section II-A, to train a neural network, we generate a training
set that consists of a large number of state-cost pairs (im, βm),
m = 1, . . . , M , and we find (v, r) that minimizes

M∑
m=1

(
J̃(im, v, r)− βm

)2
. (28)

The training pairs (im, βm) are generated by some kind of
calculation or simulation, and they may contain noise, i.e.,
βm is the cost of the policy starting from state im plus some
error.6

The simplest type of neural network is the single layer
perceptron; see Fig. 3. Here the state i is encoded as a vector
of numerical values y(i) with components y1(i), . . . , yk(i),
which is then transformed linearly as

Ay(i) + b,

where A is an m×k matrix and b is a vector in Rm. Some of
the components of y(i) may be known interesting features of i
that can be designed based on problem-specific knowledge or
prior training experience. This transformation will be referred

6There are also neural network implementations of the indirect/projected
equation approximation approach, which make use of temporal differences,
such as for example nonlinear versions of TD(λ). We refer to the textbook
literature on the subject, e.g., [20]. In this paper, we will focus on neural
network training that is based on minimization of the quadratic cost function
(28).

to as the linear layer of the neural network. We view the
components of A and b as parameters to be determined, and
we group them together into the parameter vector v = (A, b).

Each of the s scalar output components of the linear layer,
(
Ay(i) + b

)
`
, ` = 1, . . . , s,

becomes the input to a nonlinear differentiable function σ that
maps scalars to scalars. Typically σ is monotonically increas-
ing. A simple and popular possibility is the rectified linear
unit, which is simply the function max{0, ξ}, “rectified” to a
differentiable function by some form of smoothing operation;
for example

σ(ξ) = ln(1 + eξ).

Other functions, used since the early days of neural networks,
have the property

−∞ < lim
ξ→−∞

σ(ξ) < lim
ξ→∞

σ(ξ) < ∞.

Such functions are referred to as sigmoids, and some common
choices are the hyperbolic tangent function

σ(ξ) = tanh(ξ) =
eξ − e−ξ

eξ + e−ξ
,

and the logistic function

σ(ξ) =
1

1 + e−ξ
.

In what follows, we will ignore the character of the function σ
(except for the differentiability requirement), and simply refer
to it as a “nonlinear unit” and to the corresponding layer as a
“nonlinear layer.”

At the outputs of the nonlinear units, we obtain the scalars

F`(i, v) = σ
(
(Ay(i) + b)`

)
, ` = 1, . . . , s.

One possible interpretation is to view these scalars as features
of state i, which are linearly combined using weights r`, ` =
1, . . . , s, to produce the final output

s∑

`=1

F`(i, v)r` =
s∑

`=1

σ
((

Ay(i) + b
)
`

)
r`. (29)

Note that each value F`(i, v) depends on just the `th row of A
and the `th component of b, not on the entire vector v. In some
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cases this motivates placing some constraints on individual
components of A and b to achieve special problem-dependent
“handcrafted” effects.

Given a set of state-cost training pairs (im, βm), m =
1, . . . , M , the parameters of the neural network A, b, and r
are obtained by solving the training problem (28), i.e.,

min
A,b,r

M∑
m=1

(
s∑

`=1

σ
((

Ay(im) + b
)
`

)
r` − βm

)2

. (30)

The cost function of this problem is generally nonconvex, so
there may exist multiple local minima.

It is common to augment the cost function of this problem
with a regularization function, such as a quadratic in the
parameters A, b, and r. This is customary in least squares
problems in order to make the problem easier to solve
algorithmically. However, in the context of neural network
training, regularization is primarily important for a different
reason: it helps to avoid overfitting, which refers to a situation
where a neural network model matches the training data very
well but does not do as well on new data. This is a well
known difficulty in machine learning, which may occur when
the number of parameters of the neural network is relatively
large (roughly comparable to the size of the training set). We
refer to machine learning and neural network textbooks for
a discussion of algorithmic questions regarding regularization
and other issues that relate to the practical implementation
of the training process. In any case, the training problem
(30) is an unconstrained nonconvex differentiable optimization
problem that can in principle be addressed with standard
gradient-type methods.

Let us now discuss briefly two issues regarding the neural
network formulation and training process just described:

(a) A major question is how to solve the training problem
(30). The salient characteristic of the cost function of this prob-
lem is its form as the sum of a potentially very large number
M of component functions. This structure can be exploited
with a variant of the gradient method, called incremental,7

which computes just the gradient of a single squared error
component

(
s∑

`=1

σ
((

Ay(im) + b
)
`

)
r` − βm

)2

of the sum in Eq. (30) at each iteration, and then changes
the current iterate in the opposite direction of this gradient
using some stepsize; the books [72], [73] provide extensive ac-
counts, and theoretical analyses including the connection with
stochastic gradient methods are given in the book [19] and the
paper [74]. Experience has shown that the incremental gradient
method can be vastly superior to the ordinary (nonincremental)
gradient method in the context of neural network training,
and in fact the methods most commonly used in practice are
incremental.

7Sometimes the more recent name “stochastic gradient descent” is used in
reference to this method. However, once the training set has been generated,
possibly by some deterministic process, the method need not have a stochastic
character, and it also does not guarantee cost function descent at each iteration.

(b) Another important question is how well we can approx-
imate the cost function of the policy with a neural network
architecture, assuming we can choose the number of the
nonlinear units s to be as large as we want. The answer to
this question is quite favorable and is provided by the so-called
universal approximation theorem. Roughly, the theorem says
that assuming that i is an element of a Euclidean space X and
y(i) ≡ i, a neural network of the form described can approxi-
mate arbitrarily closely (in an appropriate mathematical sense),
over a closed and bounded subset S ⊂ X , any piecewise
continuous function J : S 7→ R, provided the number s of
nonlinear units is sufficiently large. For proofs of the theorem
at different levels of generality, we refer to Cybenko [75],
Funahashi [76], Hornik, Stinchcombe, and White [77], and
Leshno et al. [78]. For intuitive explanations we refer to
Bishop ([79], pp. 129−130) and Jones [80].

While the universal approximation theorem provides some
assurance about the adequacy of the neural network structure,
it does not predict the number of nonlinear units that we
may need for “good” performance in a given problem. Un-
fortunately, this is a difficult question to even pose precisely,
let alone to answer adequately. In practice, one is reduced
to trying increasingly larger numbers of units until one is
convinced that satisfactory performance has been obtained for
the task at hand. Experience has shown that in many cases
the number of required nonlinear units and corresponding
dimension of A can be very large, adding significantly to the
difficulty of solving the training problem. This has motivated
various suggestions for modifications of the neural network
structure. One possibility is to concatenate multiple single
layer perceptrons so that the output of the nonlinear layer of
one perceptron becomes the input to the linear layer of the
next, as we will now discuss.

Multilayer and Deep Neural Networks
An important generalization of the single layer perceptron

architecture is deep neural networks, which involve multiple
layers of linear and nonlinear functions. The number of layers
can be quite large, hence the “deep” characterization. The
outputs of each nonlinear layer become the inputs of the next
linear layer; see Fig. 4. In some cases it may make sense to
add as additional inputs some of the components of the state
i or the state encoding y(i).

The training problem for multilayer networks has the form

min
v,r

M∑
m=1

(
s∑

`=1

F`(i, v)r` − βm

)2

,

where v represents the collection of all the parameters of
the linear layers, and F`(i, v) is the `th feature component
produced at the output of the final nonlinear layer. Various
types of incremental gradient methods can also be applied
here, specially adapted to the multi-layer structure and they are
the methods most commonly used in practice, in combination
with techniques for finding good starting points, etc. An
important fact is that the gradient with respect to v of each
feature component F`(i, v) can be efficiently calculated using
a special procedure known as backpropagation, which is just
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Fig. 4. A neural network with multiple layers. Each nonlinear layer constructs a set of features as inputs of the next linear layer. The features are obtained
at the output of the final nonlinear layer are linearly combined to yield a cost function approximation.

Fig. 5. Illustration of aggregate states and a corresponding cost approximation, which is constant over each disaggregation set. Here there are three aggregate
states, with disaggregation sets denoted I1, I2, I3.

a computationally efficient way to apply the chain rule of
differentiation. We refer to the specialized literature for various
accounts (see e.g., [19], [79], [81], [82]).

In view of the universal approximation property, the rea-
son for having multiple nonlinear layers is not immediately
apparent. A commonly given explanation is that a multilayer
network provides a hierarchical sequence of features, where
each set of features in the sequence is a function of the
preceding set of features in the sequence. In the context of spe-
cific applications, this hierarchical structure can be exploited
in order to specialize the role of some of the layers and to
enhance particular characteristics of the state. Another reason
commonly given is that with multiple linear layers, one may
consider the possibility of using matrices A with a particular
sparsity pattern, or other structure that embodies special linear
operations such as convolution. When such structures are used,
the training problem often becomes easier, because the number
of parameters in the linear layers may be drastically decreased.

Deep neural networks also have another advantage, which
is important for our aggregation-related purposes in this paper:
the final features obtained as output of the last nonlinear layer
tend to be more complex, so their number can be made smaller
as the number of nonlinear layers increases. This tends to
facilitate the implementation of the feature-based aggregation
schemes that we will discuss in what follows.

IV. FEATURE-BASED AGGREGATION FRAMEWORK

In this section, we will specialize the general aggregation
framework of Section II-C by introducing features in the
definition of the matrices D and Φ. The starting point is a
given feature mapping, i.e., a function F that maps a state i
into its feature vector F (i). We assume that F is constructed in
some way (including hand-crafted, or neural network-based),
but we leave its construction unspecified for the moment.

We will form a lower-dimensional DP approximation of
the original problem, and to this end we introduce disjoint
subsets S1, . . . , Sq of state-feature pairs

(
i, F (i)

)
, which we

call aggregate states. The subset of original system states I`

that corresponds to S`,

I` =
{
i | (i, F (i)) ∈ S`

}
, ` = 1, . . . , q, (31)

is called the disaggregation set of S`. An alternative and
equivalent definition, given F , is to start with disjoint subsets
of states I`, ` = 1, . . . , q, and define the aggregates states S`

by

S` =
{
(i, F (i)) | i ∈ I`

}
, ` = 1, . . . , q. (32)

Mathematically, the aggregate states are the restrictions of the
feature mapping on the disaggregation sets I`. In simple terms,
we may view the aggregate states S` as some “pieces” of the
graph of the feature mapping F ; see Fig. 5.
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To preview our framework, we will aim to construct an
aggregate DP problem whose states will be the aggregate states
S1, . . . , Sq, and whose optimal costs, denoted r∗1 , . . . , r∗q , will
be used to construct a function approximation J̃ to the optimal
cost function J∗. This approximation will be constant over
each disaggregation set; see Fig. 5. Our ultimate objective is
that J̃ approximates closely J∗, from which it follows as a
general guideline that the aggregate states should be selected
so that J∗ is nearly constant over each of the disaggregation
sets I1, . . . , Iq. This will also be brought out by our subsequent
analysis.

To formulate an aggregation model that falls within the
framework of Section II-C, we need to specify the matrices Φ
and D. We refer to the row of D that corresponds to aggregate
state S` as the disaggregation distribution of S` and to its
elements d`1, . . . , d`n as the disaggregation probabilities of S`.
Similarly, we refer to the row of Φ that corresponds to state
j, {φj` | ` = 1, . . . , q}, as the aggregation distribution of
j, and to its elements as the aggregation probabilities of j.
We impose some restrictions on the components of D and Φ,
which we describe next.

The requirement d`i = 0 for all i /∈ I`, cf. Eq. (33), leaves
a lot of room for choice of the disaggregation probabilities.
Simple examples show that the values of these probabili-
ties can affect significantly the quality of aggregation-based
approximations. Thus, finding a good or “optimal” set of
disaggregation probabilities is an interesting issue; the paper
by Van Roy [83] provides a relevant discussion. Similarly,

the choice of the aggregation probabilities φj`, subject to
the constraint (34), is important. Generally, problem-specific
knowledge and intuition can be very helpful in designing
aggregation schemes in various contexts, but we will not
address this question further in this paper.

There are several possible methods to choose the aggregate
states. Generally, as noted earlier, the idea will be to form
disaggregation sets over which the cost function values [J∗(i)
or Jµ(i), depending on the situation] vary as little as possible.
We list three general approaches below, and we illustrate these
approaches later with examples:

(a) State and Feature-Based Approach: Sample in some
way the set of original system states i, compute the corre-
sponding feature vectors F (i), and divide the pairs

(
i, F (i)

)
thus obtained into subsets S1, . . . , Sq. Some problem-specific
knowledge may be used to organize the state sampling, with
proper consideration given to issues of sufficient exploration
and adequate representation of what is viewed as important
parts of the state space. This scheme is suitable for problems
where states with similar feature vectors have similar cost
function values, and is ordinarily the type of scheme that
we would use in conjunction with neural network-constructed
features (see Section V).

(b) Feature-based Approach: Start with a collection of
disjoint subsets F`, ` = 1, . . . , q, of the set of all possible
feature values

F =
{
F (i) | i = 1, . . . , n

}
,

compute in some way disjoint state subsets I1, . . . , Iq such
that

F (i) ∈ F`, ∀ i ∈ I`, ` = 1, . . . , q,

and obtain the aggregate states

S` =
{
(i, F (i)) | i ∈ I`

}
, ` = 1, . . . , q,

with corresponding disaggregation sets I1, . . . , Iq. This
scheme is appropriate for problems where it can be imple-
mented so that each disaggregation set I` consists of states
with similar cost function values.

(c) State-based Approach: Start with a collection of disjoint
subsets of states I1, . . . , Iq, and introduce an artificial feature
vector F (i) that is equal to the index ` for the states i ∈ I`,
` = 1, . . . , q, and to some default index, say 0, for the states
that do not belong to ∪q

`=1I`. Then use as aggregate states the
subsets

S` =
{
(i, `) | i ∈ I`

}
, ` = 1, . . . , q,

with I1, . . . , Iq as the corresponding disaggregation sets. In
this scheme, the feature vector plays a subsidiary role, but
the idea of using disaggregation subsets with similar cost
function values is still central, as we will discuss shortly.
(The scheme where the aggregate states are identified with
subsets I1, . . . , Iq of original system states has been called
“aggregation with representative features” in [55], Section 6.5,
where its connection with feature-based aggregation has been
discussed.)

The approaches of forming aggregate states just described
cover most of the aggregation schemes that have been used in
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practice. Two classical examples of the state-based approach
are the following:

The following aggregation example is typical of a variety
of schemes arising in discretization or coarse grid schemes,
where a smaller problem is obtained by discarding some of
the original system states. The essence of this scheme is to
solve a reduced DP problem, obtained by approximating the
discarded state costs by interpolation using the nondiscarded
state costs.

A. The Aggregate Problem
Given a feature-based aggregation framework (i.e., the ag-

gregate states S1, . . . , Sq, the corresponding disaggregation
sets I1, . . . , Iq, and the aggregation and disaggregation dis-
tributions), we can consider an aggregate DP problem that

involves transitions between aggregate states. In particular,
the transition probabilities pij(u), and the disaggregation and
aggregation probabilities specify a controlled dynamic system
involving both the original system states and the aggregate
states (cf. Fig. 6). 8

(i) From aggregate state S`, we generate a transition to
original system state i according to d`i (note that i must belong
to the disaggregation set I`, because of the requirement that
d`i > 0 only if i ∈ I`).

Fig. 6. Illustration of the transition mechanism and the costs per stage of the
aggregate problem.

(ii) From original system state i, we generate a transition to
original system state j according to pij(u), with cost g(i, u, j).

(iii) From original system state j, we generate a transition to
aggregate state S` according to φj` [note here the requirement
that φj` = 1 if j ∈ I`; cf. Eq. (34)].

This is a DP problem with an enlarged state space that
consists of two copies of the original state space {1, . . . , n}
plus the q aggregate states. We introduce the corresponding
optimal vectors J̃0, J̃1, and r∗ = {r∗1 , . . . , r∗q} where:

r∗` is the optimal cost-to-go from aggregate state S`.
J̃0(i) is the optimal cost-to-go from original system state i

that has just been generated from an aggregate state (left side
of Fig. 7).

J̃1(j) is the optimal cost-to-go from original system state
j that has just been generated from an original system state
(right side of Fig. 7).

Note that because of the intermediate transitions to aggre-
gate states, J̃0 and J̃1 are different.

Fig. 7. The transition mechanism and the cost functions of the aggregate
problem.

These three vectors satisfy the following three Bellman’s

8We will consider the aggregate problem for the case where there are
multiple possible controls at each state. However, it is also possible to consider
the aggregate problem for the purpose of finding an approximation to the cost
function Jµ of a given policy µ; this is the special case where the control
constraint set U(i) consists of the single control µ(i) for every state i.
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equations:

r∗` =
n∑

i=1

d`iJ̃0(i), ` = 1, . . . , q, (38)

J̃0(i) = min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃1(j)

)
,

i = 1, . . . , n, (39)

J̃1(j) =
q∑

m=1

φj`r
∗
m, j = 1, . . . , n. (40)

By combining these equations, we see that r∗ satisfies

r∗` =
n∑

i=1

d`i min
u∈U(i)

n∑

j=1

pij(u)

(
g(i, u, j) + α

q∑
m=1

φjm r∗m

)
,

` = 1, . . . , q, (41)

or equivalently r∗ = Hr∗, where H is the mapping that maps
the vector r to the vector Hr with components

(Hr)(`) =
n∑

i=1

d`i min
u∈U(i)

n∑

j=1

pij(u)

×
(

g(i, u, j) + α

q∑
m=1

φjm rm

)
, ` = 1, . . . , q.

(42)

It can be shown that H is a contraction mapping with respect
to the sup-norm and thus has r∗ as its unique fixed point. This
follows from standard contraction arguments, and the fact that
d`i, pij(u), and φj` are probabilities. Note the nature of r∗` :
it is the optimal cost of the aggregate state S`, which is the
restriction of the feature mapping F on the disaggregation set
I`.

(1) Solution of the Aggregate Problem
While the aggregate problem involves more states than the

original DP problem, it is in fact easier in some important
ways. The reason is that it can be solved with algorithms
that execute over the smaller space of aggregate states. In
particular, exact and approximate simulation-based algorithms,
can be used to find the lower-dimensional vector r∗ without
computing the higher-dimensional vectors J̃0 and J̃1. We de-
scribe some of these methods in Section IV-B, and we refer to
Chapter 6 of [55] for a more detailed discussion of simulation-
based methods for computing the vector rµ of the costs of
the aggregate states that correspond to a given policy µ. The
simulator used for these methods is based on Figs. 6 and 7:
transitions to and from the aggregate states are generated using
the aggregation and disaggregation probabilities, respectively,
while transitions (i, j) between original system states are
generated using a simulator of the original system (which is
assumed to be available).

Once r∗ is found, the optimal-cost-to-go of the original
problem may be approximated by the vector J̃1 of Eq. (40),
and a suboptimal policy may be found through the mini-
mization (39) that defines J̃0. Note that J̃1 is a “piecewise
linear” cost approximation of J∗: it is constant over each of
the disaggregation sets I`, ` = 1, . . . , q [and equal to the
optimal cost r∗` of the aggregate state S`; cf. Eqs. (34) and

(40)], and it is interpolated/linear outside the disaggregation
sets [cf. Eq. (40)]. In the case where ∪q

`=1I` = {1, . . . , n}
(e.g., in hard aggregation), the disaggregation sets I` form a
partition of the original system state space, and J̃1 is piecewise
constant. Fig. 8 illustrates a simple example of approximate
cost function J̃1.

Fig. 8. Schematic illustration of the approximate cost function J̃1. Here the
original states are the integers between 1 and 50. In this figure there are three
aggregate states numbered 1, 2, 3. The corresponding disaggregation sets are
I1 = {1, . . . , 10}, I2 = {20, . . . , 30}, I3 = {40, . . . , 50} are shown in
the figure. The values of the approximate cost function J̃1(i) are constant
within each disaggregation set I`, ` = 1, 2, 3, and are obtained by linear
interpolation for states i that do not belong to any one of the sets I`. If the
sets I`, ` = 1, 2, 3, include all the states 1, . . . , 50, we have a case of hard
aggregation. If each of the sets I`, ` = 1, 2, 3, consist of a single state, we
have a case of aggregation with representative states.

Finally, let us note that for the purposes of using feature-
based aggregation to improve a given policy µ, it is not es-
sential to solve the aggregate problem to completion. Instead,
we may perform one or just a few PIs and adopt the final
policy obtained as a new “improved” policy. The quality of
such a policy depends on how well the aggregate problem
approximates the original DP problem. While it is not easy
to quantify the relevant approximation error, generally a small
error can be achieved if:

(a) The feature mapping F “conforms” to the optimal cost
function J∗ in the sense that F varies little in regions of the
state space where J∗ also varies little.

(b) The aggregate states are selected so that F varies little
over each of the disaggregation sets I1, . . . , Iq.

This is intuitive and is supported by the subsequent discussion
and analysis.

(2) Error Bounds

Intuitively, if the disaggregation sets nearly cover the entire
state space (in the sense that ∪`=1,...,qI` contains “most”
of the states 1, . . . , n) and J∗ is nearly constant over each
disaggregation set, then J̃0 and J̃1 should be close to J∗.
In particular, in the case of hard aggregation, we have the
following error bound, due to Tsitsiklis and Van Roy [52].
We adapt their proof to the notation and terminology of this
paper.

Proposition 1: In the case of hard aggregation, where
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∪q
`=1I` = {1, . . . , n}, and Eqs. (35), (36) hold, we have
∣∣J∗(i)− r∗`

∣∣ ≤ ε

1− α
, ∀ i such that i ∈ I`, ` = 1, . . . , q,

(43)

where

ε = max
`=1,...,q

max
i,j∈I`

∣∣J∗(i)− J∗(j)
∣∣. (44)

Proof: Consider the mapping H defined by Eq. (42), and
consider the vector r̄ with components defined by

r̄` = min
i∈I`

J∗(i) +
ε

1− α
, ` ∈ 1, . . . , q.

Denoting by `(j) the index of the disaggregation set to which
j belongs, i.e., j ∈ I`(j), we have for all `,

(Hr̄)(`) =
n∑

i=1

d`i min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αr̄`(j)

)

≤
n∑

i=1

d`i min
u∈U(i)

n∑

j=1

pij(u)

×
(

g(i, u, j) + αJ∗(j) +
αε

1− α

)

=
n∑

i=1

d`i

(
J∗(i) +

αε

1− α

)

≤ min
i∈I`

(J∗(i) + ε) +
αε

1− α

= min
i∈I`

J∗(i) +
ε

1− α

= r̄`,

where for the second equality we used the Bellman equation
for the original system, which is satisfied by J∗, and for the
second inequality we used Eq. (44). Thus we have Hr̄ ≤ r̄,
from which it follows that r∗ ≤ r̄ (since H is monotone,
which implies that the sequence {Hkr̄} is monotonically
nonincreasing, and we have

r∗ = lim
k→∞

Hkr̄

since H is a contraction). This proves one side of the desired
error bound. The other side follows similarly. ¥

The scalar ε of Eq. (44) is the maximum variation of optimal
cost within the sets of the partition of the hard aggregation
scheme. Thus the meaning of the preceding proposition is that
if the optimal cost function J∗ varies by at most ε within
each set of the partition, the hard aggregation scheme yields a
piecewise constant approximation to the optimal cost function
that is within ε/(1− α) of the optimal. We know that for
every approximation J̃ of J∗ that is constant within each
disaggregation set, the error

max
i=1,...,n

∣∣J∗(i)− J̃(i)
∣∣

is at least equal to ε/2. Based on the bound (43), the actual
value of this error for the case where J̃ is obtained by
hard aggregation involves an additional multiplicative factor
that is at most equal to 2/(1 − α), and depends on the
disaggregation probabilities. In practice the bound (43) is

typically conservative, and no examples are known where it
is tight. Moreover, even for hard aggregation, the manner
in which the error J∗ − J̃1 depends on the disaggregation
distributions is complicated and is an interesting subject for
research.

The following proposition extends the result of the preced-
ing proposition to the case where the aggregation probabilities
are all either 0 or 1, in which case the cost function J̃1

obtained by aggregation is a piecewise constant function,
but the disaggregation sets need not form a partition of the
state space. Examples of this type of scheme include cases
where the aggregation probabilities are generated by a “nearest
neighbor” scheme, and the cost J̃1(j) of a state j /∈ ∪q

`=1I`

is taken to be equal to the cost of the “nearest” state within
∪q

`=1I`.
Proposition 2: Assume that each aggregation probability

φj`, j = 1, . . . , n, ` = 1, . . . , q, is equal to either 0 or 1,
and consider the sets

Î` = {j | φj` = 1}, ` = 1, . . . , q.

Then we have
∣∣J∗(i)− r∗`

∣∣ ≤ ε

1− α
, ∀ i ∈ Î`, ` = 1, . . . , q,

where
ε = max

`=1,...,q
max
i,j∈Î`

∣∣J∗(i)− J∗(j)
∣∣.

Proof: We first note that by the definition of a feature-based
aggregation scheme, we have I` ⊂ Î` for all ` = 1, . . . , q,
while the sets Î`, ` = 1, . . . , q, form a partition of the original
state space, in view of our assumption on the aggregation
probabilities. Let us replace the feature vector F with another
feature vector F̂ of the form

F̂ (i) = `, ∀ i ∈ Î`, ` = 1, . . . , q.

Since the aggregation probabilities are all either 0 or 1, the
resulting aggregation scheme with I` replaced by Î`, and with
the aggregation and disaggregation probabilities remaining
unchanged, is a hard aggregation scheme. When the result of
Prop. 1 is applied to this hard aggregation scheme, the result
of the present proposition follows. ¥

The preceding propositions suggest the principal guideline
for a feature-based aggregation scheme. It should be designed
so that states that belong to the same disaggregation set have
nearly equal optimal costs. In Section IV-C we will elaborate
on schemes that are based on this idea. In the next section we
discuss the solution of the aggregate problem by simulation-
based methods.

B. Solving the Aggregate Problem with Simulation-Based
Methods

We will now focus on methods to compute the optimal cost
vector r∗ of the aggregate problem that corresponds to the
aggregate states. This is the unique solution of Eq. (41). We
first note that since r∗, together with the cost functions J̃0

and J̃1, form the solution of the Bellman equations (38)−(40),
they can all be computed with the classical (exact) methods of
policy and value iteration (PI and VI for short, respectively).
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However, in this section, we will discuss specialized versions
of PI and VI that compute just r∗ (which has relatively low
dimension), but not J̃0 and J̃1 (which may have astronomical
dimension). These methods are based on stochastic simulation
as they involve the aggregate problem, which is stochastic
because of the disaggregation and aggregation probabilities,
even if the original problem is deterministic.

We start with simulation-based versions of PI, where policy
evaluation is done with lookup table versions of classical
methods such as LSTD(0), LSPE(0), and TD(0), applied to a
reduced size DP problem whose states are just the aggregate
states.

(1) Simulation-Based Policy Iteration
One possible way to compute r∗ is a PI-like algorithm,

which generates sequences of policies {µk} for the original
problem and vectors {rk}, that converge to an optimal policy
and r∗, respectively. The algorithm does not compute any
intermediate estimates of the high-dimensional vectors J̃0

and J̃1. It starts with a stationary policy µ0 for the original
problem, and given µk, it performs a policy evaluation step,
i.e., it finds rk = {rk

` | ` = 1, . . . , q} satisfying

rk = D
(
gµk + αPµkΦrk

)
, (45)

where Pµk is the transition probability matrix corresponding
to µk, gµk is the expected cost vector of µk, i.e., the vector
whose ith component is

n∑

j=1

pij

(
µk(i)

)
g

(
i, µk(i), j

)
, i = 1, . . . , n,

and D and Φ are the matrices with rows the disaggregation
and aggregation distributions, respectively. Equivalently, the
algorithm obtains rk as the unique fixed point of the contrac-
tion mapping Hµk that maps the vector r to the vector Hµkr
with components

(Hµkr)(`) =
n∑

i=1

d`i

n∑

j=1

pij

(
µk(i)

)

×
(

g
(
i, µk(i), j

)
+ α

q∑
m=1

φjm rm

)
,

` = 1, . . . , q,

cf. Eq. (42). Following the policy evaluation step, the algorithm
generates µk+1 by

µk+1(i) = arg min
u∈U(i)

n∑

j=1

pij(u)

×
(

g(i, u, j) + α

q∑
m=1

φjmrk
m

)
,

i = 1, . . . , n; (46)

this is the policy improvement step. In the preceding minimiza-
tion we use one step lookahead, but a multistep lookahead or
Monte Carlo tree search can also be used.

It can be shown that this algorithm converges finitely to the
unique solution of Eq. (41) [equivalently the unique fixed point
of the mapping H of Eq. (42)]. The proof follows the pattern

of standard convergence proofs for PI, and is essentially given
in Prop. 3.1 of [1] (see also Exercise 6.15 [55]). The key fact
here is that H and Hµ are not only sup-norm contractions, but
also have the monotonicity property of DP mappings, which
is used in an essential way in the standard convergence proof
of ordinary PI.

Proposition 3: Let µ0 be any policy and let {µk, rk} be a
sequence generated by the PI algorithm (45) and (46). Then
the sequence {rk} is monotonically nonincreasing (i.e., we
have rk+1

` ≤ rk
` for all ` = 1, . . . , q) and there exists an index

k̄ such that rk̄ is equal to r∗, the unique solution of (41). ¥
To avoid the n-dimensional calculations of the policy eval-

uation step in the preceding PI algorithm, one may use simu-
lation. In particular, the policy evaluation equation, r = Hµr,
is linear of the form

r = Dgµ + αDPµΦr, (47)

[cf. Eq. (45)]. Let us write this equation as Cr = b, where

C = I − αDPµΦ, b = Dgµ,

and note that it is Bellman’s equation for a policy with cost
per stage vector equal to Dgµ and transition probability matrix
equal to DPµΦ. This is the transition matrix under policy µ for
the Markov chain whose states are the aggregate states. The
solution rµ of the policy evaluation Eq. (47) is the cost vector
corresponding to this Markov chain, and can be found by using
simulation-based methods with lookup table representation.

In particular, we may use model-free simulation to approx-
imate C and b, and then solve the system Cr = b approxi-
mately. To this end, we obtain a sequence of sample transitions{
(i1, j1), (i2, j2), . . .

}
by first generating a sequence of states

{i1, i2, . . .} according to some distribution {ξi | i = 1, . . . , n}
(with ξi > 0 for all i), and then generate for each m ≥ 1
a sample transition (im, jm) according to the distribution
{pimj | j = 1, . . . , n}. Given the first M samples, we form
the matrix ĈM and vector b̂M given by

ĈM = I − α

M

M∑
m=1

1
ξim

d(im)φ(jm)′,

b̂M =
1
M

M∑
m=1

1
ξim

d(im)g
(
im, µ(im), jm

)
, (48)

where d(i) is the ith column of D and φ(j)′ is the jth row of
Φ. We can then show that ĈM → C and b̂M → d by using
law of large numbers arguments, i.e., writing

C = I − α
n∑

i=1

n∑

j=1

pij

(
µ(i)

)
d(i)φ(j)′,

b =
n∑

i=1

n∑

j=1

pij

(
µ(i)

)
d(i)g (i, µ(i), j) ,

multiplying and dividing pij

(
µ(i)

)
by ξi in order to properly

view these expressions as expected values, and using the
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relation

Number of occurrences of the i to j

lim
M→∞

transition from time m = 1 to m = M

M
= ξi pij(µ(i)).

The corresponding estimates

r̂M = Ĉ−1
M b̂M

converge to the unique solution of the policy evaluation
Eq. (47) as M → ∞, and provide the estimates Φr̂M of the
cost vector Jµ of µ:

J̃µ = Φr̂M .

This is the aggregation counterpart of the LSTD(0) method.
One may also use an iterative simulation-based LSPE(0)-type
method or a TD(0)-type method to solve the equation Cr = b;
see [55].

Note that instead of using the probabilities ξi to sample
directly original system states, we may alternatively sam-
ple the aggregate states S` according to some distribution
{ζ` | ` = 1, . . . , q}, generate a sequence of aggregate states
{S`1 , S`2 , . . .}, and then generate a state sequence {i1, i2, . . .}
using the disaggregation probabilities. In this case Eq. (48)
should be modified as follows:

ĈM = I − α

M

M∑
m=1

1
ζ`md`mim

d(im)φ(jm)′,

b̂M =
1
M

M∑
m=1

1
ζ`m

d`mim

d(im)g
(
im, µ(im), jm

)
.

The main difficulty with the policy improvement step at a
given state i is the need to compute the expected value in the
Q-factor expression

n∑

j=1

pij(u)

(
g(i, u, j) + α

q∑

`=1

φj`r
k
`

)

that is minimized over u ∈ U(i). If the transition probabilities
pij(u) are available and the number of successor states [the
states j such that pij(u) > 0] is small, this expected value
may be easily calculated (an important case where this is
so is when the system is deterministic). Otherwise, one may
consider approximating this expected value using one of the
model-free schemes described in Section II-D.

(2) Simulation-Based Value Iteration and Q-Learning
An exact VI algorithm for obtaining r∗ is the fixed point

iteration
rk+1 = Hrk,

starting from some initial guess r0, where H is the contraction
mapping of Eq. (42). A stochastic approximation-type algo-
rithm based on this fixed point iteration generates a sequence
of aggregate states {S`0 , S`1 , . . .} by some probabilistic mech-
anism, which ensures that all aggregate states are generated
infinitely often. Given rk and S`k

, it independently generates

an original system state ik according to the probabilities d`i,
and updates the component r`k

according to

rk+1
`k

=(1− γk)rk
`k

+ γk min
u∈U(i)

n∑

j=1

pikj(u)

×
(

g(ik, u, j) + α

q∑

`=1

φj`r
k
`

)
,

where γk is a diminishing positive stepsize, and leaves all the
other components unchanged:

rk+1
` = rk

` , if ` 6= `k.

This algorithm can be viewed as an asynchronous stochastic
approximation version of VI. The stepsize γk should be
diminishing (typically at the rate of 1/k), and its justification
and convergence mechanism are very similar to the ones for
the Q-learning algorithm. We refer to the paper by Tsitsiklis
and Van Roy [52] for further discussion and analysis (see also
[19], Sections 3.1.2 and 6.7).

A somewhat different algorithm is possible in the case of
hard aggregation, assuming that for every `, the set U(i) is
the same for all states i in the disaggregation set I`. Then, as
discussed in [19], Section 6.7.7, we can introduce Q-factors
that are constant within each set I` and have the form

Q̃(i, u) = Q(`, u), i ∈ I`, u ∈ U(i).

We then obtain an algorithm that updates the Q-factors Q(`, u)
one at a time, using a Q-learning-type iteration of the form

Q(`, u) := (1− γ)Q(`, u)

+ γ
(
g(i, u, j) + α min

v∈U(j)
Q

(
m(j), v

))
,

where i is a state within I` that is chosen with probability
d`i, j is the outcome of a transition simulated according to
the transition probabilities pij(u), the index m(j) corresponds
to the aggregate state Sm(j) to which j belongs, and γ is
the stepsize. It can be seen that this algorithm coincides
with Q-learning with lookup table representation, applied to
a lower dimensional aggregate DP problem that involves just
the aggregate states. With a suitably decreasing stepsize γ and
assuming that each pair (`, u) is simulated an infinite number
of times, the standard convergence results for Q-learning [84]
apply.

We note, however, that the Q-learning algorithm just de-
scribed has a substantial drawback. It solves an aggregate
problem that differs from the aggregate problem described
in Section IV-A, because implicit in the algorithm is the
restriction that the same control is applied at all states i
that belong to the same disaggregation set. In effect, we are
assigning controls to subsets of states (the disaggregation sets)
and not to individual states of the original problem. Clearly
this is a coarser form of control, which is inferior in terms
of performance. However, the Q-learning algorithm may find
some use in the context of initialization of another algorithm
that aspires to better performance.
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C. Feature Formation by Using Scoring Functions

The choice of the feature mapping F and the method to
obtain aggregate states are clearly critical for the success of
feature-based aggregation. In the subsequent Section V we will
discuss how deep neural network architectures can be used for
this purpose. In what follows in this section we consider some
simple forms of feature mappings that can be used when we
already have a reasonable estimate of the optimal cost function
J∗ or the cost function Jµ of some policy µ, which we can
use to group together states with similar estimated optimal
cost. Then the aggregation approach can provide an improved
piecewise constant or piecewise linear cost approximation. We
provide some simple illustrative examples of this approach in
Section IV-E.

In particular, suppose that we have obtained in some way a
real-valued scoring function V (i) of the state i, which serves
as an index of undesirability of state i as a starting state
(smaller values of V are assigned to more desirable states, con-
sistent with the view of V as some form of “cost” function).
One possibility is to use as V an approximation of the cost
function of some “good” (e.g., near-optimal) policy. Another
possibility is to obtain V by problem approximation (replacing
the original problem with a simpler problem that can be solved
analytically or computationally; see [17], Section 6.2). Still
another possibility is to obtain V by training a neural network
or other architecture using samples of state-cost pairs obtained
by using a software or human expert, and some supervised
learning technique, such as for example Tesauro’s comparison
learning scheme [15], [85]. Finally, one may compute V using
some form of policy evaluation algorithm like TD(λ).

Given the scoring function V , we will construct a feature
mapping that groups together states i with roughly equal scores
V (i). In particular, we let R1, . . . , Rq be q disjoint intervals
that form a partition of the set of possible values of V [i.e.,
are such that for any state i, there is a unique interval R` such
that V (i) ∈ R`]. We define a feature vector F (i) of the state
i according to

F (i) = `, ∀ i such that V (i) ∈ R`, ` = 1, . . . , q.
(49)

This feature vector in turn defines a partition of the state space
into the sets

I` =
{
i | F (i) = `

}
=

{
i | V (i) ∈ R`

}
, ` = 1, . . . , q.

(50)

Assuming that all the sets I` are nonempty, we thus obtain
a hard aggregation scheme, with aggregation probabilities
defined by Eq. (36); see Fig. 9.

A related scoring function scheme may be based on rep-
resentative states. Here the aggregate states and the disag-
gregation probabilities are obtained by forming a fairly large
sample set of states {im | m = 1, . . . , M}, by computing their
corresponding scores

{
V (im) | m = 1, . . . , M

}
,

and by suitably dividing the range of these scores into disjoint
intervals R1, . . . , Rq to form the aggregate states, similar

to Eqs. (49) and (50). Simultaneously we obtain subsets of
sampled states Î` ⊂ I` to which we can assign positive
disaggregation probabilities. Fig. 10 illustrates this idea for the
case where each subset Î` consists of a single (representative)
state. This is a form of “discretization” of the original state
space based on the score values of the states. As the figure
indicates, the role of the scoring function is to assist in
forming a set of states that is small (to keep the aggregate
DP problem computations manageable) but representative (to
provide sufficient detail in the approximation of J∗, i.e., be
dense in the parts of the state space where J∗ varies a lot, and
sparse in other parts).

Fig. 9. Hard aggregation scheme based on a single scoring function. We
introduce q disjoint intervals R1, . . . , Rq that form a partition of the set of
possible values of V , and we define a feature vector F (i) of the state i
according to

F (i) = `, ∀ i such that V (i) ∈ R`, ` = 1, . . . , q.

This feature vector in turn defines a partition of the state space into the sets

I` =
{
i | F (i) = `

}
=

{
i | V (i) ∈ R`

}
, ` = 1, . . . , q.

The solution of the aggregate problem provides a piecewise constant approx-
imation of the optimal cost function of the original problem.

The following proposition illustrates the important role of
the quantization error, defined as

δ = max
`=1,...,q

max
i,j∈I`

∣∣V (i)− V (j)
∣∣. (51)

It represents the maximum error that can be incurred by
approximating V within each set I` with a single value from
its range within the subset.

Proposition 4: Consider the hard aggregation scheme de-
fined by a scoring function V as described above. Assume
that the variations of J∗ and V over the sets I1, . . . , Iq are
within a factor β ≥ 0 of each other, i.e., that

∣∣J∗(i)−J∗(j)
∣∣ ≤ β

∣∣V (i)−V (j)
∣∣, ∀ i, j ∈ I`, ` = 1, . . . , q.

(a) We have

∣∣J∗(i)− r∗`
∣∣ ≤ βδ

1− α
, ∀ i ∈ I`, ` = 1, . . . , q,

where δ is the quantization error of Eq. (51).
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Fig. 10. Schematic illustration of aggregation based on sampling states and
using a scoring function V to form a representative set i1, . . . , iq . A piecewise
linear approximation of J∗ is obtained by using the corresponding aggregate
costs r∗1 , . . . , r∗q and the aggregation probabilities.

(b) Assume that there is no quantization error, i.e., V and J∗

are constant within each set I`. Then the aggregation scheme
yields the optimal cost function J∗ exactly, i.e.,

J∗(i) = r∗` , ∀ i ∈ I`, ` = 1, . . . , q.

Proof:
(a) Since we are dealing with a hard aggregation scheme, the

result of Prop. 1 applies. By our assumptions, the maximum
variation of J∗ over the disaggregation sets I` is bounded by
ε = βδ, and the result of part (a) follows from Prop. 1.

(b) This is a special case of part (a) with δ = ε = 0. ¥
Examples of scoring functions that may be useful in various

settings are cost functions of nearly optimal policies, or
approximations to such cost functions, provided for example
by a neural network or other approximation schemes. Another
example, arising in the adaptive aggregation scheme proposed
by Bertsekas and Castanon [86], is to use as V (i) the residual
vector (TJ)(i)− J(i), where J is some approximation to the
optimal cost function J∗, or the residual vector (TµJ)(i) −
J(i), where J is some approximation to the cost function of
a policy µ. Note that it is not essential that V approximates
well J∗ or Jµ. What is important is that states with similar
values of J∗ or Jµ also have similar values of V .

(1) Scoring Function Scheme with a State Space Partition
Another useful scheme is based on a scoring function V ,

which is defined separately on each one of a collection of
disjoint subsets C1, . . . , Cm that form a partition of the state
space. We define a feature vector F (i) that depends not only
on the value of V (i) but also on the membership of i in the
subsets of the partition. In particular, for each θ = 1, . . . , m,
let R1θ, . . . , Rqθ be q disjoint intervals that form a partition
of the set of possible values of V over the set Cθ. We then
define

F (i) = (`, θ), ∀ i ∈ Cθ such that V (i) ∈ R`θ. (52)

This feature vector in turn defines a partition of the state space
into the qm sets

I`θ =
{
i | F (i) = (`, θ)

}
=

{
i ∈ Cθ | V (i) ∈ R`θ

}
,

` = 1, . . . , q, θ = 1, . . . , m,

which represent the disaggregation sets of the resulting hard
aggregation scheme. In this scheme the aggregate states de-
pend not only on the values of V but also on the subset Cθ

of the partition.
(2) Using Multiple Scoring Functions
The approach of forming features using a single scoring

function can be extended to the case where we have a vector
of scoring functions V (i) =

(
V1(i), . . . , Vs(i)

)
. Then we can

partition the set of possible values of V (i) into q disjoint
subsets R1, . . . , Rq of the s-dimensional space Rs, define a
feature vector F (i) according to

F (i) = `, ∀ i such that V (i) ∈ R`, ` = 1, . . . , q, (53)

and proceed as in the case of a scalar scoring function, i.e.,
construct a hard aggregation scheme with disaggregation sets
given by

I` =
{
i | F (i) = `

}
=

{
i | V (i) ∈ R`

}
, ` = 1, . . . , q.

One possibility to obtain multiple scoring functions is to
start with a single fairly simple scoring function, obtain
aggregate states as described earlier, solve the corresponding
aggregate problem, and use the optimal cost function of that
problem as an additional scoring function. This is reminiscent
of feature iteration, an idea that has been suggested in several
approximate DP works.

A related possibility is to somehow construct multiple poli-
cies, evaluate each of these policies (perhaps approximately,
using a neural network), and use the policy cost function
evaluations as scoring functions. This possibility may be
particularly interesting in the case of a deterministic discrete
optimization problem. The reason is that the deterministic
character of the problem may obviate the need for expensive
simulation and neural network training, as we discuss in the
next section.

D. Using Heuristics to Generate Features - Deterministic Op-
timization and Rollout

An important context where it is natural to use multiple
scoring functions is general deterministic optimization prob-
lems with a finite search space. For such problems simple
heuristics are often available to obtain suboptimal solutions
from various starting conditions, e.g., greedy algorithms of
various kinds. The cost of each heuristic can then be used as
a scoring function after the problem is converted to a finite
horizon DP problem. Our formulation is very general and for
this reason the number of states of the DP problem may be
very large. Alternative DP reformulations with fewer states
may be obtained by exploiting the structure of the problem.
For example shortest path-type problems and discrete-time
finite-state deterministic optimal control control problems can
be naturally posed as DP problems with a simpler and more
economical formulation than the one given here. In such cases
the methodology to be described can be suitably adapted to
exploit the problem-specific structural characteristics.
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The general discrete optimization problem that we consider
in this section is

minimize G(u)
subject to u ∈ U, (54)

where U is a finite set of feasible solutions and G(u) is a cost
function. We assume that each solution u has N components;
i.e., it has the form u = (u1, . . . , uN ), where N is a positive
integer. We can then view the problem as a sequential decision
problem, where the components u1, . . . , uN are selected one-
at-a-time. An m-tuple (u1, . . . , um) consisting of the first
m components of a solution is called an m-solution. We
associate m-solutions with the mth stage of a finite horizon
DP problem.9 In particular, for m = 1, . . . , N , the states of
the mth stage are of the form (u1, . . . , um). The initial state
is a dummy (artificial) state. From this state we may move to
any state (u1), with u1 belonging to the set

U1 =
{

ũ1 | there exists a solution of the form

(ũ1, ũ2, . . . , ũN ) ∈ U
}

.

Thus U1 is the set of choices of u1 that are consistent with
feasibility.

More generally, from a state (u1, . . . , um), we may move
to any state of the form (u1, . . . , um, um+1), with um+1

belonging to the set

Um+1(u1, . . . , um) =
{
ũm+1 |

there exists a solution of the form
(u1, . . . , um, ũm+1, . . . , ũN ) ∈ U

}
. (55)

The choices available at state (u1, . . . , um) are um+1 ∈
Um+1(u1, . . . , um). These are the choices of um+1 that are
consistent with the preceding choices u1, . . . , um, and are also
consistent with feasibility. The terminal states correspond to
the N -solutions u = (u1, . . . , uN ), and the only nonzero cost
is the terminal cost G(u). This terminal cost is incurred upon
transition from u to an artificial termination state; see Fig. 11.

Let J∗(u1, . . . , um) denote the optimal cost starting from
the m-solution (u1, . . . , um), i.e., the optimal cost of the prob-
lem over solutions whose first m components are constrained
to be equal to ui, i = 1, . . . , m, respectively. If we knew
the optimal cost-to-go functions J∗(u1, . . . , um), we could
construct an optimal solution by a sequence of N single
component minimizations. In particular, an optimal solution
(u∗1, . . . , u

∗
N ) could be obtained sequentially, starting with u∗1

and proceeding forward to u∗N , through the algorithm

u∗m+1 ∈ arg min
um+1∈Um+1(u∗1 ,...,u∗m)

J∗(u∗1, . . . , u
∗
m, um+1),

m = 0, . . . , N − 1.

Unfortunately, this is seldom viable, because of the prohibitive
computation required to obtain the functions J∗(u1, . . . , um).

9Our aggregation framework of Section IV-A extends in a straightforward
manner to finite-state finite-horizon problems. The main difference is that
optimal cost functions, feature vectors, and scoring functions are not only
state-dependent but also stage-dependent. In effect the states are the m-
solutions for all values of m.

Suppose now that we have s different heuristic al-
gorithms, which we can apply for suboptimal solution.
We assume that each of these algorithms can start
from any m-solution (u1, . . . , um) and produce an N -
solution (u1, . . . , um, um+1, . . . , uN ). The costs thus gen-
erated by the s heuristic algorithms are denoted by
V1(u1, . . . , um), . . . , Vs(u1, . . . , um), respectively, and the
corresponding vector of heuristic costs is denoted by

V (u1, . . . , um) =
(
V1(u1, . . . , um), . . . , Vs(u1, . . . , um)

)
.

We can use the heuristic cost functions as scoring functions
to construct a feature-based hard aggregation framework.10 In
particular, for each m = 1, . . . , N − 1, we partition the set
of possible values of V (u1, . . . , um) into q disjoint subsets
Rm

1 , . . . , Rm
q , we define a feature vector F (u1, . . . , um) ac-

cording to

F (u1, . . . , um) = `, ∀ (u1, . . . , um) such that
V (u1, . . . , um) ∈ Rm

` , ` = 1, . . . , q, (56)

and we construct a hard aggregation scheme with disaggrega-
tion sets for each m = 1, . . . , N − 1, given by

Im
` =

{
(u1, . . . , um) | V (u1, . . . , um) ∈ Rm

`

}
,

` = 1, . . . , q.

Note that the number of aggregate states is roughly similar for
each of the N − 1 stages. By contrast the number of states of
the original problem may increase very fast (exponentially) as
N increases; cf. Fig. 11.

The aggregation scheme is illustrated in Fig. 12. It involves
N −1 successive transitions between m-solutions to (m+1)-
solutions (m = 1, . . . , N − 1), interleaved with transitions to
and from the corresponding aggregate states. The aggregate
problem is completely defined once the aggregate states and
the disaggregation probabilities have been chosen. The transi-
tion mechanism of stage m involves the following steps.

(1) From an aggregate state ` at stage m, we generate
some state (u1, . . . , um) ∈ Im

` according to the disaggregation
probabilities.

(2) We transition to the next state (u1, . . . , um, um+1) by
selecting the control um+1.

(3) We run the s heuristics from the (m + 1)-solution
(u1, . . . , um, um+1) to determine the next aggregate state,
which is the index of the set of the partition of stage
m + 1 to which the vector V (u1, . . . , um, um+1) =(
V1(u1, . . . , um, um+1), . . . , Vs(u1, . . . , um, um+1)

)
belongs.

A key issue is the selection of the disaggregation probabil-
ities for each stage. This requires, for each value of m, the
construction of a suitable sample of m-solutions, where the
disaggregation sets Im

` are adequately represented.
The solution of the aggregate problem by DP starts at

the last stage to compute the corresponding aggregate costs
r∗`(N−1) for each of the aggregate states `, using G(u) as
terminal cost function. Then it proceeds with the next-to-last

10There are several variants of this scheme, involving for example a state
space partition as in Section IV-C. Moreover, the method of partitioning the
decision vector u into its components u1, . . . , uN may be critically important
in specific applications.
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Fig. 11. Formulation of a discrete optimization problem as a DP problem. There is a cost G(u) only at the terminal stage on the arc connecting an N -solution
u = (u1, . . . , uN ) to the artificial terminal state. Alternative formulations may use fewer states by taking advantage of the problem’s structure.

Fig. 12. Schematic illustration of the heuristics-based aggregation scheme for discrete optimization. The aggregate states are defined by the scoring
functions/heuristics, and the optimal aggregate costs are obtained by DP stating from the last stage and proceeding backwards.

stage to compute the corresponding aggregate costs r∗`(N−2),
using the previously computed aggregate costs r∗`(N−1), etc.

The optimal cost function J∗(u1, . . . , um) for stage m
is approximated by a piecewise constant function, which is
derived by solving the aggregate problem. This is the function

J̃(u1, . . . , um) = r∗`m, ∀ (u1, . . . , um)
with V (u1, . . . , um) ∈ Rm

` , (57)

where r∗`m is the optimal cost of aggregate state ` at stage m
of the aggregate problem.

Once the aggregate problem has been solved for the costs
r∗`m, a suboptimal N -solution (ũ1, . . . , ũN ) for the original
problem is obtained sequentially, starting from stage 1 and
proceeding to stage N , through the minimizations

ũ1 ∈ arg min
u1

J̃(u1), (58)

ũm+1 ∈ arg min
um+1∈Um+1(ũ1,...,ũm)

J̃(ũ1, . . . , ũm, um+1),

m = 1, . . . , N − 1. (59)

Note that to evaluate each of the costs J̃(ũ1, . . . , ũm, um+1)
needed for this minimization, we need to do the following (see
Fig. 13):

(1) Run the s heuristics from the (m + 1)-solution
(ũ1, . . . , ũm, um+1) to evaluate the scoring vector of heuristic
costs

V (ũ1, . . . , ũm, um+1) =
(
V1(ũ1, . . . , ũm, um+1), . . . ,

Vs(ũ1, . . . , ũm, um+1)
)
.

(2) Set J̃(ũ1, . . . , ũm, um+1) to the aggregate cost r∗`(m+1)

of the aggregate state S`(m+1) corresponding to this scoring
vector, i.e., to the set R

(m+1)
` such that

V (ũ1, . . . , ũm, um+1) ∈ R
(m+1)
` .

Once J̃(ũ1, . . . , ũm, um+1) has been computed for all
um+1 ∈ Um+1(ũ1, . . . , ũm), we select ũm+1 via the mini-
mization (59), and repeat starting from the (m + 1)-solution
(ũ1, . . . , ũm, ũm+1). Note that even if there is only one
heuristic, ũm+1 minimizes the aggregate cost r∗`(m+1), which
is not the same as the cost corresponding to the heuristic.

We finally mention a simple improvement of the scheme
just described for constructing an N -solution. In the course of
the algorithm many other N -solutions are obtained, during the
training and final solution selection processes. It is possible
that some of these solutions are actually better [have lower



BERTSEKAS: FEATURE-BASED AGGREGATION AND DEEP REINFORCEMENT LEARNING: A SURVEY AND SOME NEW IMPLEMENTATIONS 23

Fig. 13. Sequential construction of a suboptimal N -solution (ũ1, . . . , ũN ) for the original problem, after the aggregate problem has been solved. Given
the m-solution (ũ1, . . . , ũm), we run the s heuristics from each of the candidate (m + 1)-solution (ũ1, . . . , ũm, um+1), and compute the aggregate state
and aggregate cost of this candidate (m + 1)-solution. We then select as ũm+1 the one that corresponds to the candidate (m + 1)-solution with minimal
aggregate cost.

cost G(u)] than the final N -solution (ũ1, . . . , ũN ) that is
constructed by using the aggregate problem formulation. This
can happen because the aggregation scheme is subject to
quantization error. Thus it makes sense to maintain the best of
the N -solutions generated in the course of the algorithm, and
compare it at the end with the N -solution obtained through the
aggregation scheme. This is similar to the so-called “fortified”
version of the rollout algorithm (see [32] or [17]).

(1) Relation to the Rollout Algorithm
The idea of using one or more heuristic algorithms as

a starting point for generating an improved solution of a
discrete optimization problem is shared by other suboptimal
control approaches. A prime example is the rollout algorithm,
which in some contexts can be viewed as a single policy
iteration (see [32] for an analysis of rollout for discrete
optimization problems, and the textbook [17] for an extensive
discussion and many references to applications, including the
important model predictive control methodology for control
system design).

Basically the rollout algorithm uses the scheme of Fig. 13
to construct a suboptimal solution (ũ1, . . . , ũN ) in N steps,
one component at a time, but adds a new decision ũm+1

to the current m-solution (ũ1, . . . , ũm) in a simpler way. It
runs the s heuristics from each candidate (m + 1)-solution
(ũ1, . . . , ũm, um+1) and computes the corresponding heuristic
costs

V1(ũ1, . . . , ũm, um+1), . . . , Vs(ũ1, . . . , ũm, um+1).

It then selects as the next decision ũm+1 the one that mini-
mizes over um+1 ∈ Um+1(ũ1, . . . , ũm) the best heuristic cost

V̂ (ũ1, . . . , ũm, um+1) = min
{
V1(ũ1, . . . , ũm, um+1), . . . ,

Vs(ũ1, . . . , ũm, um+1)
}
,

i.e., it uses V̂ in place of J̃ in Eqs. (58) and (59). Thus the
construction of the final N -solution is similar and equally
complicated in the rollout and the scoring vector-based aggre-
gation approach. However, the aggregation approach requires
an extra layer of computation prior to constructing the N -
solution, namely the solution of an aggregate problem. This

may be a formidable problem, because it is stochastic (due
to the use of disaggregation probabilities) and must be solved
exactly (at least in principle). Still, the number of states of the
aggregate problem may be quite reasonable, and its solution
is well suited for parallel computation.

On the other hand, setting aside the issue of computational
solution of the aggregate problem, the heuristics-based aggre-
gation algorithm has the potential of being far superior to the
rollout algorithm, for the same reason that approximate policy
improvement based on aggregation can be far superior to pol-
icy improvement based on one-step lookahead. In particular,
with sufficiently large number of aggregate states to eliminate
the effects of the quantization error, feature-based aggregation
will find an optimal solution, regardless of the quality of the
heuristics used. By contrast, policy iteration and rollout can
only aspire to produce a solution that is better than the one
produced by the heuristics.

(2) Using Multistep Lookahead and Monte Carlo Tree
Search

Once the aggregate problem that is based on multiple
scoring functions has been solved, the final N -solution can be
constructed in more sophisticated ways than the one described
in Fig. 13. It can be seen that the scheme of Eqs. (58) and
(59) and Fig. 13 is based on one-step lookahead. It is possible
instead to use multistep lookahead or randomized versions
such as Monte Carlo tree search.

As an example, in a two-step lookahead scheme, we again
obtain a suboptimal solution (ũ1, . . . , ũN ) for the original
problem in N stages, starting from stage 1 and proceeding to
stage N . At stage 1, we carry out the two-step minimization

(ũ1, ũ2) ∈ arg min
u1,u2

J̃(u1, u2), (60)

and fix the first component ũ1 of the result, cf. Fig. 14. We
then proceed sequentially: for m = 1, . . . , N − 2, given the
current m-solution (ũ1, . . . , ũm), we carry out the two-step
minimization

(ũm+1, ũm+2) ∈ arg min
um+1,um+2

J̃(ũ1, . . . , ũm, um+1, um+2),

m = 1, . . . , N − 2, (61)
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Fig. 14. Sequential construction of a suboptimal N -solution (ũ1, . . . , ũN ) by using two-step lookahead, after the aggregate problem has been solved. Given
the m-solution (ũ1, . . . , ũm), we run the s heuristics from all the candidate (m + 2)-solutions (ũ1, . . . , ũm, um+1, um+2), and select as ũm+1 the first
component of the two-step sequence that corresponds to minimal aggregate cost.

and fix the first component ũm+1 of the result, cf. Fig. 14. At
the final stage, given the (N−1)-solution (ũ1, . . . , ũN−1), we
carry out the one-step minimization

ũN ∈ arg min
uN

J̃(ũ1, . . . , ũN−1, uN ), (62)

and obtain the final N -solution (ũ1, . . . , ũN ).
Multistep lookahead generates a tree of fixed depth that is

rooted at the last node ũm of the current m-solution, and then
runs the heuristics from each of the leaf nodes of the tree. We
can instead select only a subset of these leaf nodes from which
to run the heuristics, thereby economizing on computation.
The selection may be based on some heuristic criterion. Monte
Carlo tree search similarly uses multistep lookahead but selects
only a random sample of leaf nodes to search based on some
criterion.

In a more general version of Monte Carlo tree search,
instead of a single partial solution, we maintain multiple partial
solutions, possibly of varying length. At each step, a one-
step or multistep lookahead tree is generated from the most
“promising” of the current partial solutions, selected by using
a randomization mechanism. The heuristics are run from the
leafs of the lookahead trees similar to Fig. 14. Then some of
the current partial solutions are expanded with an additional
component based on the results produced by the heuristics.
This type of Monte Carlo tree search has been suggested for
use in conjunction with rollout (see the paper [87]), and it can
be similarly used with feature-based aggregation.

E. Stochastic Shortest Path Problems - Illustrative Examples

We will now consider two simple illustrative examples,
which were presented in the author’s paper [88] as instances
of poor performance of TD(λ) and other methods that are
based on projected equations and temporal differences (see
also the book [19], Section 6.3.2). In these examples the
cost function of a policy will be approximated using feature-
based aggregation and a scoring function. The approximate

cost function thus obtained will be compared with the results
of the TD(1) and TD(0) algorithms.

Both examples belong to the class of stochastic shortest
path (SSP for short) problems, where there is no discounting
and in addition to the states 1, . . . , n, there is an additional
cost-free and absorbing termination state, denoted 0 (the text
references given earlier discuss in detail such problems). Our
aggregation methodology of this section extends straightfor-
wardly to SSP problems. The principal change needed is to
account for the termination state by introducing an additional
aggregate state with corresponding disaggregation set {0}. As
before there are also other aggregate states S1, . . . , Sq whose
disaggregation sets I1, . . . , Iq are subsets of {1, . . . , n}. With
this special handling of the termination state, the aggregate
problem becomes a standard SSP problem whose termination
state is the aggregate state corresponding to 0. The Bellman
equation of the aggregate problem is given by

r` =
n∑

i=1

d`i min
u∈U(i)

n∑

j=1

pij(u)

(
g(i, u, j) +

q∑
m=1

φjm rm

)
,

` = 1, . . . , q, (63)

[cf. Eq. (42)]. It has a unique solution under some well-known
conditions that date to the paper by Bertsekas and Tsitsiklis
[89]. In particular, these conditions are satisfied when the
termination state 0 is reached with probability 1 from every
state and under all stationary policies (i.e., all policies are
proper in the terminology of [19], [55], [89], which also
introduce some less restrictive conditions). This is true for
both the original and the aggregate problem in the examples
to be presented.

Our examples involve a problem with a single policy µ
where the corresponding Markov chain is deterministic with
n states plus a termination state 0. Under µ, when at state
i = 1, . . . , n, we move to state i − 1 at a cost gi. Thus
starting at state i we traverse each of the states i − 1, . . . , 1
and terminate at state 0 at costs gi, gi−1, . . . , g1, respectively,
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while accumulating the total cost

Jµ(i) = gi + · · ·+ g1, i = 1, . . . , n,

with Jµ(0) = 0. We consider a linear approximation to this
cost function, which we denote by V :

V (i) = ri, i = 1, . . . , n,

where r is a scalar parameter. This parameter may be obtained
by using any of the simulation-based methods that are avail-
able for training linear architectures, including TD(λ). In the
subsequent discussion we will assume that TD(λ) is applied
in an idealized form where the simulation samples contain no
noise.

The TD(1) algorithm is based on minimizing the sum of the
squares of the differences between Jµ and V over all states,
yielding the approximation

V̂1(i) = r̂1i, i = 0, 1, . . . , n,

where

r̂1 ∈ arg min
r∈R

n∑

i=1

(
Jµ(i)− ri

)2
. (64)

Here, consistent with our idealized setting of noise-free sim-
ulation, we assume that Jµ(i) is computed exactly for all
i. The TD(0) algorithm is based on minimizing the sum of
the squares of the errors in satisfying the Bellman equation
V (i) = gi +V (i−1) (or temporal differences) over all states,
yielding the approximation

V̂0(i) = r̂0i, i = 0, 1, . . . , n,

where

r̂0 =∈ arg min
r∈R

n∑

i=1

(
gi + r(i− 1)− ri

)2
. (65)

Again, we assume that the temporal differences
(
gi + r(i −

1)− ri
)

are computed exactly for all i.
The straightforward solution of the minimization problems

in Eqs. (64) and (65) yields

r̂1 =
n(g1 + · · ·+ gn) + (n− 1)(g1 + · · ·+ gn−1) + · · ·+ g1

n2 + (n− 1)2 + · · ·+ 1
,

and

r̂0 =
ngn + (n− 1)gn−1 + · · ·+ g1

n + (n− 1) + · · ·+ 1
.

Consider now two different choices of the one-stage costs
gi:

(a) g1 = 1, and gi = 0 for all i 6= 1.
(b) gn = −(n− 1), and gi = 1 for all i 6= n.
Figs. 15 and 16 provide plots of Jµ(i), and the approxima-

tions V̂1(i) and V̂0(i) for these two cases (these plots come
from [88] where the number of states used was n = 50).

Fig. 15. Form of Jµ(i) and the linear approximations V̂1(i) and V̂0(i) for
case (a): g1 = 1, and gi = 0 for all i = 2, . . . , n.

Fig. 16. Form of Jµ(i) and the linear approximations V̂1(i) and V̂0(i) for
case (b): gn = −(1− n), and gi = 1 for all i = 1, . . . , n− 1.

We will now consider a hard aggregation scheme based on
using V̂1 and V̂0 as scoring functions. The aggregate states
of such a scheme in effect consist of disaggregation subsets
I1, . . . , Iq with ∪q

`=1I` = {1, . . . , n} plus the subset {0}
that serves as the termination state of the aggregate problem.
With either V̂1 or V̂0 as the scoring function, the subsets
I1, . . . , Iq consist of contiguous states. In order to guarantee
that the termination state is eventually reached in the aggregate
problem, we assume that the disaggregation probability of the
smallest state within each of the subsets I1, . . . , Iq is strictly
positive; this is a mild restriction, which is naturally satisfied
in typical schemes that assign equal probability to all the states
in a disaggregation set.

Consider first case (a) (cf. Fig. 15). Then, because the
policy cost function Jµ is constant within each of the subsets
I1, . . . , Iq, the scalar ε in Prop. 1 is equal to 0, implying that
the hard aggregation scheme yields the optimal cost function,
i.e., r∗` = Jµ(i) for all i ∈ I`. To summarize, in case (a)
the TD(0) approach yields a very poor linear cost function
approximation, the TD(1) approach yields a poor linear cost
function approximation, but the aggregation scheme yields
exactly the nonlinear policy cost function Jµ.

Consider next case (b) (cf. Fig. 16). Then, the hard aggre-
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gation scheme yields a piecewise constant approximation to
the optimal cost function. The quality of the approximation is
degraded by quantization effects. In particular, as the variations
of Jµ, and V̂1 or V̂0 increase over the disaggregation sets
I1, . . . , Iq, the quality of the approximation deteriorates, as
predicted by Prop. 4. Similarly, as the number of states in
the disaggregation sets I1, . . . , Iq is reduced, the quality of
the approximation improves, as illustrated in Fig. 17. In the
extreme case where there is only one state in each of the
disaggregation sets, the aggregation scheme yields exactly Jµ.

To summarize, in case (b) the TD(0) approach yields a very
poor linear cost function approximation, the TD(1) approach
yields a reasonably good linear cost function approximation,
while the aggregation scheme yields a piecewise constant
approximation whose quality depends on the coarseness of the
quantization that is implicit in the selection of the number q of
disaggregation subsets. The example of case (b) also illustrates
how the quality of the scoring function affects the quality of
the approximation provided by the aggregation scheme. Here
both V̂1 and V̂0 work well as scoring functions, despite their
very different form, because states with similar values of Jµ

also have similar values of V̂1 as well as V̂0 (cf. Prop. 4).

Fig. 17. Schematic illustration of the piecewise constant approximation of
Jµ that is provided by hard aggregation based on the scoring functions V̂1

and V̂0 in case (b).

F. Multistep Aggregation

The aggregation methodology discussed so far is based on
the Markov chain of Fig. 6, which returns to an aggregate state
after a single transition of the original chain. We may obtain
alternative aggregation frameworks by considering a different
Markov chain. One possibility, suggested in [1] and illustrated
in Fig. 18, is specified by disaggregation and aggregation
probabilities as before, but involves k > 1 transitions between
original system states in between transitions from and to
aggregate states.

The aggregate DP problem for this scheme involves k + 1
copies of the original state space, in addition to the aggregate
states. We accordingly introduce vectors J̃0, J̃1, . . . , J̃k, and
r∗ = {r∗1 , . . . , r∗q} where:

r∗` is the optimal cost-to-go from aggregate state S`.

J̃0(i) is the optimal cost-to-go from original system state i
that has just been generated from an aggregate state (left side
of Fig. 18).

J̃1(j1) is the optimal cost-to-go from original system state
j1 that has just been generated from an original system state
i.

J̃m(jm), m = 2, . . . , k, is the optimal cost-to-go from
original system state jm that has just been generated from
an original system state jm−1.

These vectors satisfy the following set of Bellman equa-
tions:

r∗` =
n∑

i=1

d`iJ̃0(i), ` = 1, . . . , q,

J̃0(i) = min
u∈U(i)

n∑

j1=1

pij1(u)
(
g(i, u, j1) + αJ̃1(j1)

)
,

i = 1, . . . , n, (66)

J̃m(jm) = min
u∈U(jm)

n∑

jm+1=1

pjmjm+1(u)

× (
g(jm, u, jm+1) + αJ̃m+1(jm+1)

)
,

jm = 1, . . . , n, m = 1, . . . , k − 1, (67)

J̃k(jk) =
q∑

`=1

φjk`r
∗
` , jk = 1, . . . , n. (68)

By combining these equations, we obtain an equation for r∗:

r∗ = DT k(Φr∗),

where T is the usual DP mapping of the original problem [the
case k = 1 corresponds to Eqs. (41) and (42)]. As earlier, it can
be seen that the associated mapping DT kΦ is a contraction
mapping with respect to the sup-norm, but its contraction
modulus is αk rather than α.

There is a similar mapping corresponding to a fixed policy
and it can be used to implement a PI algorithm, which
evaluates a policy through calculation of a corresponding
parameter vector r and then improves it. However, there is
a major difference from the single-step aggregation case: a
policy involves a set of k control functions {µ0, . . . , µk−1},
and while a known policy can be easily simulated, its improve-
ment involves multistep lookahead using the minimizations
of Eqs. (66)−(68), and may be costly. Thus the preceding
implementation of multistep aggregation-based PI is a useful
idea only for problems where the cost of this multistep
lookahead minimization (for a single given starting state) is
not prohibitive.

On the other hand, from a theoretical point of view, a
multistep aggregation scheme provides a means of better
approximation of the true optimal cost vector J∗, independent
of the use of a large number of aggregate states. This can be
seen from Eqs. (66)−(68), which by classical value iteration
convergence results, show that J̃0(i) → J∗(i) as k → ∞,
regardless of the choice of aggregate states. Moreover, because
the modulus of the underlying contraction is αk, we can verify
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Fig. 18. The transition mechanism for multistep aggregation. It is based on a dynamical system involving k transitions between original system states
interleaved between transitions from and to aggregate states.

an improved error bound in place of the bound (43) of Prop. 1,
which corresponds to k = 1:
∣∣J∗(i)− r∗`

∣∣ ≤ ε

1− αk
, ∀ i such that i ∈ I`, ` = 1, . . . , q,

where ε is given by Eq. (44). The proof is very similar to the
one of Prop. 1.

λ-Aggregation
Multistep aggregation need not involve sequences of a

fixed number of transitions between original system states.
The number of transitions may be state-dependent or may
be controlled by some randomized mechanism. In one such
possibility, called λ-aggregation, we introduce a parameter
λ ∈ (0, 1) and consider a Markov chain that makes a transition
with probability 1 − λ from an original system state to an
aggregate state at each step, rather than with certainty after k
steps as in Fig. 18. Then it can be shown that the cost vector of
a given stationary policy µ, may be evaluated approximately
by Φrµ, where rµ is the solution of the equation

r = DT (λ)
µ (Φr), (69)

where T
(λ)
µ is the mapping given by Eq. (17). This equation

has a unique solution because the mapping DT
(λ)
µ Φ can be

shown to be a contraction mapping with respect to the sup-
norm.

As noted earlier, the aggregation equation

Φr = ΦDTµ(Φr)

is a projected equation because ΦD is a projection mapping
with respect to a suitable weighted Euclidean seminorm (see
[66], Section 4; it is a norm projection in the case of hard
aggregation). Similarly, the λ-aggregation equation

Φr = ΦDT (λ)
µ (Φr)

is a projected equation, which is related to the proximal
algorithm [64], [65], and may be solved by using temporal
differences. Thus we may use exploration-enhanced versions
of the LSTD(λ) and LSPE(λ) methods in an approximate PI
scheme to solve the λ-aggregation equation. We refer to [55]
for further discussion.

V. POLICY ITERATION WITH FEATURE-BASED
AGGREGATION AND A NEURAL NETWORK

We noted in Section III that neural networks can be used to
construct features at the output of the last nonlinear layer. The
neural network training process also yields linear weighting
parameters for the feature vector F (i) at the output of the last
layer, thus obtaining an approximation Ĵµ

(
F (i)

)
to the cost

function of a given policy µ. Thus given the current policy µ,
the typical PI produces the new policy µ̂ using the approximate
policy improvement operation (3) or a multistep variant, as
illustrated in Fig. 19.

Fig. 19. Schematic illustration of PI using a neural network-based cost
approximation. Starting with a training set of state-cost pairs generated using
the current policy µ, the neural network yields a set of features and an
approximate cost evaluation Ĵµ using a linear combination of the features.
This is followed by policy improvement using Ĵµ to generate the new policy
µ̂.

A similar PI scheme can be constructed based on feature-
based aggregation with features supplied by the same neural
network; see Fig. 20. The main idea is to replace the (ap-
proximate) policy improvement operation with the solution
of an aggregate problem, which provides the (approximately)
improved policy µ̂. This is a more complicated policy im-
provement operation, but computes the new policy µ̂ based
on a more accurate cost function approximation: one that is a
nonlinear function of the features rather than linear. Moreover,
µ̂ not only aspires to be an improved policy relative to µ,
but also to be an optimal policy based on the aggregate
problem, an approximation itself of the original DP problem.
In particular, suppose that the neural network approximates Jµ

perfectly. Then the scheme of Fig. 19 will replicate a single
step of the PI algorithm starting from µ, while the aggregation
scheme of Fig. 20, with sufficient number of aggregate states,
will produce a policy that is arbitrarily close to optimal.

Let us now explain each of the steps of the aggregation-
based PI procedure of Fig. 20, starting with the current policy
µ.
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Fig. 20. Illustration of PI using feature-based aggregation with features supplied by a neural network. Starting with a training set of state-cost pairs generated
using the current policy µ, the neural network yields a set of features, which are used to construct a feature-based aggregation framework. The optimal policy
of the corresponding aggregate problem is used as the new policy µ̂.

(a) Feature Mapping Construction: We train the neural net-
work using a training set of state-cost pairs that are generated
using the current policy µ. This provides a feature vector F (i)
as described in Section III.

(b) Sampling to Obtain the Disaggregation Sets: We sample
the state space, generating a subset of states I ⊂ {1, . . . , n}.
We partition the corresponding set of state-feature pairs

{
(i, F (i)) | i ∈ I

}

into a collection of subsets S1, . . . , Sq. We then consider
the aggregation framework with S1, . . . , Sq as the aggregate
states, and the corresponding aggregate problem as described
in Section IV. The sampling to obtain the set of states I may
be combined with exploration to ensure that a sufficiently
representative set of states is included.

(c) Aggregate Problem Solution: The aggregate DP problem
is solved by using a simulation-based method to yield (perhaps
approximately) the values r∗` , ` = 1, . . . , q (cf. Section IV-B).

(d) Definition of the Improved Policy: The “improved”
policy is simply the optimal policy of the aggregate problem
(or an approximation thereof, obtained for example after
a few iterations of approximate simulation-based PI). This
policy is either defined implicitly using the one-step lookahead
minimization

µ̂(i) ∈ arg min
u∈U(i)

n∑

j=1

pij(u)

(
g(i, u, j) + α

q∑

`=1

φj` r∗`

)
,

i = 1, . . . , n,

[cf. Eq. (39)] or a multistep lookahead variant. Alternatively,
the “improved” policy is implemented in model-free fashion
using Q-factors, as described in Section II-D.

Let us also note that there are several options for imple-
menting the algorithmic ideas of this section.

(1) The neural network-based feature construction process
may be performed any number of times, each time followed
by an aggregate problem solution that constructs a new policy,
which is then used to generate new training data for the
neural network. Alternatively, the neural network training and
feature construction process may be done only once, followed
by the solution of the corresponding feature-based aggregate
problem.

(2) Several deep neural network-based PI cycles may be
performed, a subset of the features thus generated may be
selected, and the corresponding aggregate problem is solved
just once, as a way of improving the final policy generated by
the deep reinforcement learning process.

(3) Following each cycle of neural network-based feature
evaluation, the generated features may be supplemented with

additional problem-specific handcrafted features, and/or fea-
tures from previous cycles. This is a form of feature iteration
that was noted in the preceding section.

Finally, let us mention a potential weakness of using the
features obtained at the output of the last nonlinear layer
of the neural network in the context of aggregation: the
sheer number of these features may be so large that the
resulting number of aggregate states may become excessive.
To address this situation one may consider pruning some
of the features, or reducing their number using some form
of regression, at the potential loss of some approximation
accuracy. In this connection let us also emphasize a point made
earlier in connection with an advantage of deep (rather than
shallow) neural networks: because with each additional layer,
the generated features tend to be more complex, their number
at the output of the final nonlinear layer of the network can be
made smaller as the number of layers increases. An extreme
case is to use the cost function approximation obtained at
the output of the neural network as a single feature/scoring
function, in the spirit of Section IV-C.

Using Neural Networks in Conjunction with Heuristics
We noted at the end of Section IV-C another use of neural

networks in conjunction with aggregation: somehow construct
multiple policies, evaluate each of these policies using a
neural network, and use the policy cost function evaluations
as multiple scoring functions in a feature-based aggregation
scheme. In Section IV-D, we elaborated on this idea for the
case of the deterministic discrete optimization problem

minimize G(u1, . . . , uN )
subject to (u1, . . . , uN ) ∈ U,

where U is a finite set of feasible solutions and G is a
cost function [cf. Eq. (54)]. We described the use of multiple
heuristics to construct corresponding scoring functions. At any
given m-solution, the scoring function values are computed
by running each of the heuristics. A potential time-saving
alternative is to approximate these scoring functions using
neural networks.

In particular, for each of the heuristics, we may train a
separate neural network by using a training set consisting of
pairs of m-solutions and corresponding heuristic costs. In this
way we can obtain approximate scoring functions

Ṽ1(u1, . . . , um; θ1), . . . , Ṽs(u1, . . . , um; θs),

where θ1, . . . , θs are the corresponding neural network weight
vectors. We may then use the approximate scoring functions
as features in place of the exact heuristic cost functions to
construct an aggregate problem similar to the one described
in Section IV-D.
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Note that a separate neural network is needed for each
heuristic and stage, so assembling the training data together
with the training itself can be quite time consuming. However,
both the data collection and the training processes can benefit
greatly from parallelization.

Finally, let us note that the approach of using a neural
network to obtain approximate scoring functions may also be
used in conjunction with a rollout scheme that uses a limited
horizon. In such a scheme, starting from an m-solution, we
may evaluate all possible subsequent (m + 1)-solutions by
running each of the s heuristics up to a certain horizon depth
of d steps [rather than the full depth of (N −m − 1) steps],
and then approximate the subsequent heuristic cost [from stage
(m+1+d) to stage N ] by using the neural network estimates.

VI. CONCLUDING REMARKS

We have surveyed some aspects of approximate PI methods
with a focus on a new idea for policy improvement: feature-
based aggregation that uses features provided by a neural
network or a heuristic scheme, perhaps in combination with
additional handcrafted features. We have argued that this type
of policy improvement, while more time-consuming, may
yield more effective policies, owing to the DP character of
the aggregate problem and the use of a nonlinear feature-based
architecture. The algorithmic idea of this paper seems to work
well on small examples. However, tests with challenging prob-
lems are needed to fully evaluate its merits, particularly since
solving the aggregate DP problem is more time-consuming
than the standard one-step lookahead policy improvement
scheme of Eq. (23) or its multistep lookahead variants.

In this paper we have focused on finite-state discounted
Markov decision problems, but our approach clearly extends
to other types of finite-state DP involving stochastic uncer-
tainty, including finite horizon, stochastic shortest path, and
semi-Markov decision problems. It is also worth considering
extensions to infinite-state problems, including those arising in
the context of continuous spaces optimal control, shortest path,
and partially observed Markov decision problems. Generally,
the construction of aggregation frameworks for continuous
spaces problems is conceptually straightforward, and follows
the pattern discussed in this paper for finite-state problems.
For example a hard aggregation scheme involves a partition of
the continuous state space into a finite number of subsets/ag-
gregate states, while a representative states scheme involves
discretization of the continuous state space using a finite num-
ber of states. Note, however, that from a mathematical point
of view, there may be a substantial issue of consistency, i.e.,
whether the solution of the aggregate problem “converges” to
the solution of the continuous spaces problem as the number of
aggregate states increases. Part of the reason has to do with the
fact that the Bellman equation of continuous spaces problems
need not have a unique solution. The author’s monograph [57],
Sections 4.5 and 4.6, provides an analysis of this question for
shortest path and optimal control problems with a continuous
state space, and identifies classes of problems that are more
amenable to approximate DP solution approaches.

Finally, we note that the key issue of feature construction
can be addressed in a number of ways. In this paper we have

focused on the use of deep neural networks and heuristics for
approximating the optimal cost function or the cost functions
of policies. However, we may use instead any methodology
that automatically constructs good features at reasonable com-
putational cost.
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