
1

1/22/99 Microcontroller Seminar -- ASH 1

Advanced Embedded Microcontroller
Seminar -- Day 3

Andrew Huang

bunnie@mit.edu

IAP 1999

1/22/99 Microcontroller Seminar -- ASH 2

Agenda

• Day 3: 1/22 -- everything else you need to know to do something with
the SH-1

– development environment and tools

– code development procedure

– example: digital I/O, light flasher

– utilities provided

– example: tachometer

– example: DMA, ITU, TPC, and D/A converter

– idea session, Q&A

– prep for hands-on session next week

2

1/22/99 Microcontroller Seminar -- ASH 3

Development Procedure
• note that all examples in this presentation are for env. under linux;

current indications show that env. under DOS will differ slightly,
mostly in terms of constants and offsets

• required tools for development:

– gcc, binutils (ld, ar, gas), plus gcc includes

– can get via ftp from prep.ai.mit.edu and cross-compile

• common code directory

– contains functions like mon_printf() which is version of printf()
that prints to the serial port on the SH1WH

– contains .h files such as

• sh1def.h -- all your memory-mapped peripherals here

• sram.h -- constants that delimit regions of SRAM

• ascii.h -- a table of ASCII constants for convenience

1/22/99 Microcontroller Seminar -- ASH 4

Development Procedure
• Development starts with a template directory

– makefile

• contains commands for building target binary

– template.c

• contains your code

– template.cmd

• contains a command file describing to ld how to link
everything together

– readme

• contains useage instructions

– mktime.c

• utility routine to generate timestamps (linux only)

• code you write runs at a very low level

– no OS, no memory management, no nothing--just the machine

3

1/22/99 Microcontroller Seminar -- ASH 5

template.c
#include "sh1def.h"
#include "io.h"
#include "template.h"

/* init and main MUST be at the top of the file, in this order. This
 is due to the way the linker links things together, and where the
 entry point is expected to be in ROM */
/* init function--sets up the stack pointer */
void init() {
 /* init */

 /* body */
 asm ("mov.l stack_loc,r15");
 main();

 asm (".align 2");
 asm("stack_loc: .long _stack_top");
 /* functional body is a placeholder for in-lined code */
} /* init */

/* main -- entry point of your code reached via init() */
main() {
 /* main */
 /* locals */

 /* body */
 /* compiler compatibility */
 asm(".align 4");
 asm(".global _the_main");
 asm("_the_main: nop");

 ; /* your code here */

} /* main */

/*** dummy funcs--compiler wants these to be happy ***/
int __main() {

 /* hack to clean up compiler problems */
 asm("mov.l _mainlabel, r1");
 asm("jsr @r1");
 asm(".align 4");
 asm("_mainlabel: .long _the_main");

}

void edata (void)
{
} /* end - edata */

1/22/99 Microcontroller Seminar -- ASH 6

template.cmd
OUTPUT_FORMAT(coff-sh)
SECTIONS
{

 /* The code starts at 0x205004, this changes if you change the
monitor. This point was last adjusted on monitor rev 0.9b */

 /* adjust constants in this file if you want to load data elsewhere */
 .text 0x0205004 :
 { *(.vec); *(.rdata) ; *(.text); }

 _endofcode = . ;

 /* Your play area */
 .bss 0x020D000 (NOLOAD) :
 {
 _sbss = . ;
 *(.bss);
 (.data); / There should be none of this */
 *(COMMON);
 _ebss = . ;
 }

 stack . (NOLOAD) : { *(stack); _end = . ;}

/* only 256 bytes reserved for the stack at this time */
 _stack_top = . + 0x100;
 _edata = . + 0x100;

}

4

1/22/99 Microcontroller Seminar -- ASH 7

.map file
• Compilation of program will yield a .map file

– contains list of locations of all symbols

– very useful for debugging, or determining if your code will fit in
memory!

LOAD /home/bunnie/shtools/sh-coff/lib/crt0.o

.text 0x00201764 0x970
 *(.vec)
 *(.rdata)
 *(.text)
 fill 0x00201764 0xc
 .text 0x00201770 0x40 /home/bunnie/shtools/sh-coff/lib/crt0.o
 0x00201770 start
 .text 0x002017b0 0xd0 common.a(test.o)
 0x00201844 sleep
 0x002017b0 init
 0x00201820 dummy
 0x0020187c __main
 0x00201834 somewhere
 0x00201830 edata
 0x002017cc main
 .text 0x00201880 0x60 /home/bunnie/shtools/sh-coff/lib/libc.a(exit.o)
 0x00201880 exit
 .text 0x002018e0 0x110 /home/bunnie/shtools/sh-coff/lib/libc.a(reent.o)

1/22/99 Microcontroller Seminar -- ASH 8

light flashing
code

• SH1WH has an LED tied
to the “spare 1” pin on the
SH-1 (pin 103, PB5)

• dummy() is needed because
gcc -O2 will optimize out
an empty for() loop
sometimes

• compiled code will yield a
file called test.bin
(assuming .c file is called
test.c)

#define PBIOR (*(volatile short int *)(0x5ffffc6))
#define PBCR1 (*(volatile short int *)(0x5ffffcc))
#define PBCR2 (*(volatile short int *)(0x5ffffce))
#define PBDR (*(volatile short int *)(0x5ffffc2))
#define DELAY 20

main(){
 int i;
 int j = 0;

 PBIOR |= 0x0020;
 PBCR2 &= ~0x0C00;
 while (1){
 for (i = 0; i < 10; i++) {
 /* Toggle the light */
 PBDR ^= 0x0020;
 sleep (DELAY);
 } /* for */
 } /* while */
} /* main*/

sleep (int delay){
 int i;
 int j;
 for (j = 0; j < 1000; j++)
 for (i = 0; i < delay; i++)
 dummy();
}

void dummy() {}

5

1/22/99 Microcontroller Seminar -- ASH 9

Uploading and Running Your Code

[SH1WH mon Rev 1.0b bunnie - Fri Jan 22 00:37:51 EST 1999]
mon> lp

Ready to lead data at 2050004

command_kload(): 970 bytes successfully received.
mon> gp

• java utility called JTerm is used to upload code and interact with board

– basic terminal program with upload ability

– upload protocol is simple--just straight binary with some headers and
footers wrapped around the code

• sample session:

1/22/99 Microcontroller Seminar -- ASH 10

Utilities

• A few utilities have been written for your convenience

– RTC utility

• set and get time of day

• set and get arbitrary memory locations in the RTC

• get current temperature in degrees C

– FLASH utility

• erase sectors

• program data

• erase boot block

• program boot block

– FPGA programming utility

• upload bitfiles to breakout board FPGA

– plus source code for monitor, in-class examples, etc.

6

1/22/99 Microcontroller Seminar -- ASH 11

Programming the Boot Block

• Procedure

– make sure you have a cmon.bin (monitor binary image) that you
have confidence in

– upload to data memory using “ld” command

– examine data to verify that its actually there

– upload flash.bin FLASH utility using “lp” command

– run “gp” to execute flash.bin

– erase the bootblocks, erase until each sector is successfully erased

– program the bootblock

– quit FLASH utility or reset board, and if you did everything right--
you should drop back into the monitor

• currently developing a routine that lets you modify interrupt vectors
automagically

