Advanced Embedded Microcontroller Seminar

Andrew Huang bunnie@mit.edu IAP 1999

<section-header><text><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

High-end r	nicrocontro	Some numbers	•••	
Product	Description	Processor	Speed	Memory
Sega Dreamcast	video game	SH-4, ARM for sound processing	200 MHz	16M main 8M vid 2M sound
Nintendo 64	video game	MIPS VR4300i	100 MHz	4M RAMBUS
Sony Playstation	video game	3000A MIPS core	33 MHz	2MB + 1MB vid, .5 MB snd
empeg	car stereo, MP3	SA	220 MHz	28 Gb HD storage
e-book	electronic book	ARM		can't read japanese
pocket station	PDA/playstation	ARM7T		128K RAM
QCP800	cell phone	80188 core	ND	not discloseable
HP4000 laserjet	printer	NEC MIPS 4300	100 MHz	4 MB RAM standard
LaserJet 6P	printer	i960JF	24 MHz	2 MB RAM standard
windows CE PDA	PDA	MIPS 3K and 4K series		2-8 MB RAM
LaserJet 5MP	printer	i960JF	35 MHz	4 MB RAM standard
E-11 Cassiopia	PDA	VR4111	70 MHz(?)	8 MB , windows CE
Cisco 7202	gateway	MIPS 4700	150 MHz	1MB SRAM/32MB DRAM
Palm Pilot III	PDA	Motorola Dragonball MC68328	16 MHz	2MB RAM
digital camera	casio	SH-2@20 MHz	20 MHz	
		Microcontroller Seminar ASH		

• 8-bit KO/S Microcontroller Seminar -- ASH

Where do you find a microcontroller? Cars - engine ignition, emissions control, ABS brakes, security Entertainment systems, consumer multimedia - front-panel displays, system functions video game decks Appliances - timers, user interfaces, regulation of appliance functions Printers - image rasterizers, printer language interpretation Networking equipment - Routers, gateways Personal communications equipment - cell phones, cordless phones, smart cards Computers - IDE/SCSI hard drives, modems, high-end storage (I2O), keyboard **Batteries** - controls charging, discharge, gas guage Microcontroller Seminar -- ASH

Getting a Better Feel

- The microcontroller extremes:
 - PIC
 - a few tens of cents in large qty.
 - packages from 8 pins to 68 pins; typ. 16 to 20 pins
 - memory capacity from 256 bytes ROM to a few K, 20 bytes RAM to a few hundred bytes RAM
 - top speeds from 4 MHz to 33 MHz
 - Hitachi SH-4
 - around \$80 in small qty.
 - 256-pin BGA
 - 32-bit RISC, 200 MHz top speed
 - vector FP unit for 1.4 GFLOPs in 3D applications
 - 8/16K D/I caches
 - Memory space to 4 GB, virtual memory support

Microcontroller Seminar -- ASH

DI	$\mathbf{\Gamma}$
ГІ	

- Large family of CPUs
 - 8, 12, 14 and 16 bit variants
 - $\,$ 4 MHz to 33 MHz
 - variety of embedded peripherals and low-cost package options
- Typical PIC: 16C84
 - 1Kx14 EEPROM, 36x8 RAM, 64x8 EEPROM data memory
 - 35 RISC-style instructions, 4-stage pipeline
 - semi-accumulator style ALU ("W" register, no register file per se)
 - 8-bit harvard (separate I/D mems) architecture
 - integrated watchdog timer and timer unit
 - 10 mW Pdiss
 - \$7 single qty through digi-key

PIC architecture

- Very cost-oriented architecture
 - sacrifices scalability, performance, and expandability
 - excellent for simple control applications
- Tiny instruction set can make programming difficult
 - no hardware mult/div
 - small memory => no complex structures
 - assembly coding is more tedious
- Where might you use a PIC?
 - controller for appliances
 - controller for LCDs, other devices
- Incidentally:
 - for slightly more than the cost of a PIC16C84, you can buy a 5Kgate, 360 flip-flop FPGA that has performance to 100+ MHz and has 74 I/Os
 - Microcontroller Seminar -- ASH

ARM
 ARM Holdings, plc. is a fabless company which defines and licenses the ARM architecture joint venture of Apple, Acorn, and VLSI
 ARM is targetted at: Portable market: digital cellular phones, pagers and personal organizers Embedded market: modems, hard disc drives, printers and automotive applications Consumer multimedia market: sound systems, games, internet access TV, set top box
• ARM tries to provide high MIPS/watt, good code density, and minimal area => minimal cost
Microcontroller Seminar ASH

ARM • 32-bit architecture, typ. harvard-style • 31 general-purpose registers, 6 special-purpose regs • Popular arch. variants include ARM7, ARM9, ARM10, and StrongARM • Most ARM implementations include 8-16K separate I/D caches Representative ARM: ARM7500 implementation • - 33 MHz processor, 4K cache - Integrated I/O: DMA, 2 serial, 4 A/D, 8 stereo sound channels, video controller, interrupt controller - multiply and barrel shift instructions in hardware processor core consumes roughly 100 mW at top speed; _ peripherals additional Microcontroller Seminar -- ASH

Unemonic	Instruction	Lo register	Hi register	Condition	See Section:
witemonic	instruction	operand	operand	codes set	See Section.
ADC	Add with Carry	~		~	5.4
ADD	Add	~	~	v 0	5.1.3, 5.5, 5.12, 5.13
AND	AND	~		~	5.4
ASR	Arithmetic Shift Right	~		~	5.1, 5.4
в	Unconditional branch	~			5.16
Bxx	Conditional branch	~			5.17
BIC	Bit Clear	V		~	5.4
BL	Branch and Link				5.19
BX	Branch and Exchange	V	~		5.5
CMN	Compare Negative	~		~	5.4
CMP	Compare	V	~	~	5.3, 5.4, 5.5
EOR	EOR	~		~	5.4
LDMIA	Load multiple	V			5.15
LDR	Load word	~			5.7, 5.6, 5.9, 5.11
LDRB	Load byte	V			5.7, 5.9
LDRH	Load halfword	~			5.8, 5.10
LSL	Logical Shift Left	V		~	5.1, 5.4
LDSB	Load sign-extended byte	~			5.8
LDSH	Load sign-extended halfword	~			5.8
LSR	Logical Shift Right	~		~	5.1, 5.4
MOV	Move register	V	~	v 2	5.3, 5.5
MUL	Multiply	~		~	5.4
MVN	Move Negative register	V		~	5.4

Mnemonic	Instruction	Lo register operand	Hi register operand	Condition codes set	See Section:
NEG	Negate	r		~	5.4
ORR	OR	r		~	5.4
POP	Pop registers	V			5.14
PUSH	Push registers	r			5.14
ROR	Rotate Right	v		~	5.4
SBC	Subtract with Carry	r		~	5.4
STMIA	Store Multiple	r			5.15
STR	Store word	V			5.7, 5.9, 5.11
STRB	Store byte	v			5.7
STRH	Store halfword	r			5.8, 5.10
SWI	Software Interrupt				5.17
SUB	Subtract	r		~	5.1.3, 5.3
TST	Test bits	~		~	5.4

MIPS origins • - defined by John Hennessey c. 1980 - turned into a company by John Hennessey, Skip Stritter, and John Moussouris architecture spans several generations, most recent rev of ISA is MIPS ٠ IV • MIPS is currently a fabless company who licenses technology, cores, and IP - Toshiba, NEC, IDT, LSI Logic, NKK, Philips, and QED (QED is also fabless) • Range of MIPS varieties - 32 or 64-bit versions - 16 MHz to 300 MHz - 54 mW to 30W - FPUs up to 1.2 GFlop - 0.5u to 0.25u processes, 2mm² to 290 mm² implementations

	MIPS
• (originally targetted for workstation/supercomputer CPU
	 migrated to embedded applications, now one of the most popular embedded architectures
	 PowerPC is taking a similar track
• t	typical MIPS architecture: NEC VR4300
	– used in Nintendo 64
	- 64-bit, 167 MHz top speed
	– 1.4W @ 100 MHz
	– 16K I-cache, 8K D-cache
	– MIPS-III ISA
	• 32 general-purpose registers
	• 5-stage pipeline
	 internal FPU and MMU, no other integrated peripherals
	– \$28.50, qty 1, Marshall
	Microcontroller Seminar ASH

Hitachi SH

- Hitachi SH is one of many products made by Hitachi
 - for example, hitachi also makes nuclear reactors and the H8 series embedded FLASH controllers
- "Super-H" RISC engine
 - Scalable architecture, from SH-1 to SH-4
 - · upward code compatible across entire family
 - applications from motion controllers to high-end game decks and windows CE computers
 - SH-1 is 20 MHz, highly integrated peripheral set, MAC, costsensitive apps
 - SH-2 is 66 MHz, highly integrated peripheral set, DSP version available, cache
 - SH-3 is 133 MHz, DSP version available, MMU, cache
 - SH-4 is 200 MHz, integrated FPU, 3-D vector unit, MMU, plus other peripherals, cache

Hitachi SH

- Typical example: SH-1
 - 20 MHz @ 5V, 12.5 MHZ @ 3.3V
 - 32-bit RISC processor, 16 general purpose registers
 - 130 mW typ. @ 12.5 MHz
 - 5-stage pipeline
 - hardware multiply-accumulate unit
 - \$25 qty. 1 for A-series die shrink
 - integrated peripheral set: interrupt, DMA, serial, timing controller, pulse generator, A/D, watchdog, bus I/F to DRAM, 4-8K RAM (user managed cache) plus masked ROM
 - 32 MB max external memory

Classifi- Operation cation Types Code		Operation Code	Function	Number of Instructions	
Data transfer	5	MOV	Data transfer, immediate data transfer, supporting module data transfer, structure data transfer	39	
		MOVA	Effective address transfer	-	
		MOVT	T bit transfer	-	
		SWAP	Swap of upper and lower bytes	-	
		XTRCT	Extraction of the middle of registers connected	-	
Arithmetic	17	ADD	Binary addition	28	
operations		ADDC	Binary addition with carry	•	
		ADDV	Binary addition with overflow check	•	
		CMP/cond	Comparison	-	
		DIV1	Division	-	
		DIV0S	Initialization of signed division	-	
		DIVOU	Initialization of unsigned division	-	
		EXTS	Sign extension	-	
		EXTU	Zero extension	-	
		MAC	Multiplication and accumulation	-	
		MULS	Signed multiplication	-	
		MULU	Unsigned multiplication	-	
		NEG	Negation	-	
		NEGC	Negation with borrow	-	
		SUB	Binary subtraction	-	
		SUBC	Binary subtraction with carry	-	
		SUBV	Binary subtraction with underflow check	-	
Logic	6	AND	Logical AND	14	
operations		NOT	Bit inversion	-	
		Microco	nholler Seminar ASH	-	
		IAS	Memory test and bit set		

Selecting a Microcontroller

- Choose the right one for your application
 - helps to know what's out there
 - consider cost, performance, power dissipation, package options, integrated peripherals, scalability for future growth, software support & development environment, FAE support, and hardware availability
- · Choose one with good software development support
 - good compiler and debugger availability
 - evaluation boards
 - in-circuit emulators for those with deep pockets
 - RTOS availability
- Beware of availability
 - make sure you can actually purchase the microcontroller before designing it in
 - many micros are either phased out or just starting production, so supply is limited

