
5/11/98 MIT 6.371 ASH & EHK 1

ReRISC

Reconfigurable Reduced Instruction
Set Computer

Andrew S. Huang and Edward H. Kim

MASSACHVSETTS INSTITVTE OF TECHNOLOGY

Department of Electrical Engineering
and Computer Sciences

6.371 Introduction to VLSI Systems

 Final Project Presentation

5/11/98 MIT 6.371 ASH & EHK 2

ReRISC Motivation
• General observations

– specialized hardware yields greater performance
• ASICs, DSPs

– generalized hardware is more versatile, less risky, and often easier to use
• FPGAs, microprocessors

– microprocessor architecture trends
• more specialized hardware and instructions (MMX, Sparc gfx extensions)

• more reliance upon compilers to extract parallelism and manage data
dependancies

– CMOS technology trends
• wire-delay dominated

• mega-gate level densities
– difficult to verify and test

– favors array architectures with redundancy capabilities

5/11/98 MIT 6.371 ASH & EHK 3

ReRISC Solution
• “Performance where you need it, convenience when you want it”

– Convenience of a conventional, single-threaded instruction-based
computational model

• for those days when you’re just writing UI code or on-line help

– Performance of specialized hardware, configurable as a systolic array, an
in-place computation, a vector processor, or a single complex operator

• for those days when you just can’t seem to get real-time performance out of
your graphics engine or database engine

• Reconfigurable instruction set
– default instruction set of a simple RISC microprocessor

– user can augment or replace the instruction set with new instruction set
configurations (ISCs) for application specific performance

– fast context switching
• allows for practical integration into standard workstation environment

• Physical design in arrays
– allows for easier verification and post-fabrication redundancy

5/11/98 MIT 6.371 ASH & EHK 4

ReRISC Programming Model
• ReRISC machine state

– registers (r31=0)
• 36-bit registers for tagged

datatypes

– ISC
• Instruction set configuration

• 8 38-bit computational
elements, e0-e7, each with

• 8 contexts, c0-c7, switchable on
a cycle by cycle basis

– Opcode mapping
• one map per opcode, o0-o63

• controls timing and activation
of elements and contexts

– NOR Plane
• 16 contexts, x0-x15, switchable

on a cycle by cycle basis plus
hardwired control

r0

r31

Registers c0 c7ISC

e0

e7

Opcode Mapping

o0

o63

x0 x15

NOR Plane
Contexts

5/11/98 MIT 6.371 ASH & EHK 5

ReRISC Hardware Architecture
• Based on MIT Beta architecture

• Tagged datatypes in hardware

• 3R/1W register file

• 32x32 NOR Plane with hardwired
control and masking

– hardwire control lets NOR plane
function as rotator or barrel
shifter

– mask allows for fast assembly of
bit-field data structures, enhances
performance as an emulation
machine

• Computational array
– another slide

• IPR - In-Place computation
register
– another slide

5/11/98 MIT 6.371 ASH & EHK 6

NOR Plane
• 1/2 PLA NOR Plane

– used for complex bit-twiddles and decoding applications

– dual mode operation
• context RAM driven

– decoding

– permutations (DES)

– complex condition testing

• shift code driven
– barrel shifter (RC-5, multiply and divide by powers of 2)

– bit field packing and unpacking (fast emulation of non-native binaries)

– packed rotates/shifts (multiple byte or word wide ops shifted per cycle,
from the MMX ISA)

– post-masking device
• simplifies shift code decoder design significantly

5/11/98 MIT 6.371 ASH & EHK 7

• Insert adobe illustrator slides here

5/11/98 MIT 6.371 ASH & EHK 8

In-Place Computation Register

• “In-place” computation is a term
borrowed from the DSP world
– FFTs are in-place computations

– Output of one stage is the input
to an identical stage

• Multiplies are in-place
computations
– Implement 32x32 multiply in a

38x8 array of processing
elements

• IPR allows for storage of
intermediate results in in-place
computations without disturbing
the register file contents

• IPR plus context switches allows
for multi-function instructions

