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ReRISC Motivation
• General observations

– specialized hardware yields greater performance
• ASICs, DSPs

– generalized hardware is more versatile, less risky, and often easier to use
• FPGAs, microprocessors

– microprocessor architecture trends
• more specialized hardware and instructions (MMX, Sparc gfx extensions)

• more reliance upon compilers to extract parallelism and manage data
dependancies

– CMOS technology trends
• wire-delay dominated

• mega-gate level densities
– difficult to verify and test

– favors array architectures with redundancy capabilities
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ReRISC Solution
• “Performance where you need it, convenience when you want it”

– Convenience of a conventional, single-threaded instruction-based
computational model

• for those days when you’re just writing UI code or on-line help

– Performance of specialized hardware, configurable as a systolic array, an
in-place computation, a vector processor, or a single complex operator

• for those days when you just can’t seem to get real-time performance out of
your graphics engine or database engine

• Reconfigurable instruction set
– default instruction set of a simple RISC microprocessor

– user can augment or replace the instruction set with new instruction set
configurations (ISCs) for application specific performance

– fast context switching
• allows for practical integration into standard workstation environment

• Physical design in arrays
– allows for easier verification and post-fabrication redundancy
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ReRISC Programming Model
• ReRISC machine state

– registers (r31=0)
• 36-bit registers for tagged

datatypes

– ISC
• Instruction set configuration

• 8 38-bit computational
elements, e0-e7, each with

• 8 contexts, c0-c7, switchable on
a cycle by cycle basis

– Opcode mapping
• one map per opcode, o0-o63

• controls timing and activation
of elements and contexts

– NOR Plane
• 16 contexts, x0-x15, switchable

on a cycle by cycle basis plus
hardwired control
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ReRISC Hardware Architecture
• Based on MIT Beta architecture

• Tagged datatypes in hardware

• 3R/1W register file

• 32x32 NOR Plane with hardwired
control and masking

– hardwire control lets NOR plane
function as rotator or barrel
shifter

– mask allows for fast assembly of
bit-field data structures, enhances
performance as an emulation
machine

• Computational array
– another slide

• IPR - In-Place computation
register
– another slide
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NOR Plane
• 1/2 PLA NOR Plane

– used for complex bit-twiddles and decoding applications

– dual mode operation
• context RAM driven

– decoding

– permutations (DES)

– complex condition testing

• shift code driven
– barrel shifter (RC-5, multiply and divide by powers of 2)

– bit field packing and unpacking (fast emulation of non-native binaries)

– packed rotates/shifts (multiple byte or word wide ops shifted per cycle,
from the MMX ISA)

– post-masking device
• simplifies shift code decoder design significantly
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• Insert adobe illustrator slides here
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In-Place Computation Register

• “In-place” computation is a term
borrowed from the DSP world
– FFTs are in-place computations

– Output of one stage is the input
to an identical stage

• Multiplies are in-place
computations
– Implement 32x32 multiply in a

38x8 array of processing
elements

• IPR allows for storage of
intermediate results in in-place
computations without disturbing
the register file contents

• IPR plus context switches allows
for multi-function instructions


