
1

ReRISC: A Reconfigurable Reduced Instruction Set Computer

Andrew Huang and Edward H. Kim
Department of EECS,

Massachusetts Institute of Technology, Cambridge

The ReRISC processor gives users the opportunity to create
application specific instructions for enhanced performance
while providing the programming convenience of a conven-
tional RISC processor. The core of the ReRISC consists of an
array of 38x8 computational elements, each with 8 configu-
ration contexts that are selectable on a cycle by cycle basis.
The computational elements default to the MIT Beta ISA upon
soft reset, which reduces redundant reconfiguration cycles. In
conjunction with a reconfigurable NOR plane, the core can
be wired to perform a wide variety of operations, including
vector-style packed word operations, multiply-accumulates,
random permutations, tag field verification, and bit field pack-
ing and unpacking. This last feature makes the ReRISC better
suited for the interpretation of nonnative binaries. The
datapath of the 1.8 million transistor ReRISC processor was
conceived, designed, implemented and verified in this design
project.

Abstract

1.1 Reconfigurable Hardware

Reconfigurable hardware refers to the broad class of compu-
tational architectures between full custom ASICs and program-
mable processors. According to [Dehon 96], most
reconfigurable processing architectures can be characterized
by a little over a dozen parameters; this set of parameters is
referred to as RP-space. Two key parameters are summarized
in Table 1.

retemaraP noitpircseD

w
tibforebmun-htdiwhtapataD

noitcurtsnienoybdellortnocstnemele

c
snoitcurtsniforebmun-stxetnoC

fopuorgrepderots w gnissecorp
stnemele

Table 1: Key parameters of RP-space.

Some examples will help illustrate the meaning of the RP-space
parameters. A conventional 32-bit microprocessor with an 8K
instruction cache can be thought of as an extreme point in RP-
space, with w = 32, c = 2048 (8192 bytes / 4 bytes/instruc-
tion), while a typical FPGA can be thought of as the other
extreme, with w = 1, c = 1.

By trying to map various architectures into RP-space, one be-
gins to see reconfigurable hardware in a new light. An FPGA
can be thought of as a microcoded processor with extremely
wide, complex instructions, where an instruction is the con-
figuration bitstream. The high resolution of description pro-
vided by the instructions means that the programmer can imple-
ment complex algorithms using a few specialized, highly par-
allel operations. By the same token, it takes much longer to
fetch these instructions, and it is much more difficult to com-
pile programs into these instructions. On the other hand, a
microprocessor can be thought of as an FPGA with relatively
few configurations and a terse configuration bitstream. Be-
cause of the limited descriptive power of these configurations,
each configuration does less and a complex algorithm has to
be implemented with a long string of configurations. How-
ever, the time required to fetch a configuration and configure
the processor is very short, so the overhead is kept at an ac-
ceptable level. Also, because the configurations are so simple,
it is easy to compile to a microprocessor. Figure 1 illustrates
the instruction width versus instructions executed tradeoff.

32 bits
instruction
width

60,000 bits instruction width

10,000 instructions executed

1 instruction executed

FPGA

R
I
S
C

Figure 1: Instruction width versus number of instructions
executed for a hypothetical application.

One can see from this model that an FPGA is well suited for
applications with a great deal of regularity and parallelism,
while microprocessors are well suited for applications with
irregular control streams and rapid context switching. The
ReRISC, described in section 2, attempts to strike a balance
between the two approaches.

2

As noted in the previous section, compiling to an FPGA is a
difficult problem. Also, the size of an FPGA bitstream is very
large, so context switching is a very expensive operation in
terms of time and memory bandwidth. It would be nice, how-
ever, to get the performance offered by FPGAs without the
overhead and difficulty of use associated with FPGAs. The
ReRISC processor described in this section combines aspects
of conventional microprocessors and FPGA technology in an
attempt to get the best of both worlds.

2.1 Software Architecture

The ReRISC programming model consists of 32 registers, each
36 bits wide, and a 36-bit program counter. The extra 4 bits
per register are provided in case the programmer wishes to use
tagged datatypes, hardware semaphores, or instruction-level
security. The tag field is 4 bits wide because of the high avail-
ability of 36-bit memories. Also, register number 32 is hard-
wired to 0x00000000 for programming convenience.

The ReRISC machine state also includes an instruction set con-
figuration (ISC), in addition to the registers and PC. The ISC
describes the current instruction set architecture (ISA) of the
ReRISC. The ISC consists of 8 rows of 8-context, 38 bit wide
instruction definitions and an opcode map. The opcode map
defines which opcode activates which set of rows and con-
texts within the ReRISC, as well as the state of a few internal
datapath multiplexers. An opcode can activate anywhere be-
tween 0 and 8 rows of computational elements simultaneously
in any combination. An active computational element can take
on the personality stored in any one of its 8 context cache en-
tries on a cycle-by-cycle basis.

Although the instruction set is configurable, there are still a
few hard-wired instructions: those required for fetching data
from memory and writing it to the computational array.

2.2 Hardware Architecture
The ReRISC hardware architecture consists of a 32 x 36 3R/
1W register file, a 32 x 32 x 16 NOR plane which doubles as
a crossbar and barrel shifter, and an 8 x 38 x 8 computational
array. Figure 2 provides a block diagram of the ReRISC
datapath elements.

Figure 3: Block diagram of ReRISC datapath.

Computational Array

Register File

RD1 RD2 RD3

WERF

WD
RA1 RA2 RA3

WA

CLK

NOR
plane

16

1 0 1 0

A B C

out

8

2 2 01

8

IPR

C<15:0>

PC + 4 + 4C

ZT and JT

1 02

01

IR <25:11>

<20:16>
<15:11> <25:21>

<15:11>

WERF

1

0

<25:21>

XP

PC + 4
Adr to mem

Data from mem

F
r
o
m

C
o
n
t
r
o
l

L
o
g
i
c

&

P
C

&

I
M
E
M

Mask

TAGEN
TAGEN

1. all of the pointers contained in this section refer to the directory, /afs/
athena.mit.edu/user/other/s2001s/Public/6.371/finalproject/, which will be
denoted as “~/”

r0

r31

Registers c0 c7ISC

e0

e7

Opcode Mapping

o0

o63

x0 x15

NOR Plane
Contexts

Program Counter
PC

The ReRISC was designed to run a typical preemptive
multitasking operating system. Each process or thread has a
machine state associated with it, consisting of the PC, regis-
ters, and the ISC. On a context switch, the machine state of the
current process is saved and the new machine state loaded in
from memory.

To reduce configuration times, a soft-reset of the ISC does not
clear all values to zero; instead, it sets the configuration memo-
ries to the basic MIT Beta ISA plus the hard-wired instruc-
tions required to reconfigure the processor. Thus, most appli-
cations will only need to write one or two instruction defini-
tions before running, saving on time during context switches.

Users compiling programs for the ReRISC can take two ap-
proaches. The more conventional approach uses a standard
compiler with a back-end targetted at a predetermined ISC.
The primary advantage of this approach is that the ISC can be
tweaked for a particular language, thus yielding more optimal
code. In the less conventional but more powerful approach, a
compiler analyzes a program to determine the best ISA. It then
creates an ISC for that ISA, and then compiles the program
into a binary using the optimal ISA. Of course, users can al-
ways hand-code an ISC to squeeze out every last drop of per-
formance for a particular application.

Figure 2: ReRISC machine context summary.

2. ReRISC Architecture

3

3-READ/1-WRITE Register File (Ed Kim)1

Register files are fast RAMs with multiple read and write ports
[3]. In this design, the register file consists of 36 registers (R0
through R31), each a 36-bit register, with the last register (R31)
being a “zero” register, i.e., only zero read from it and writes
are ignored - this register is necessary to execute some of the
Beta instructions that require a zero operand or discard results
of an operation.

The register file for this version of the Beta has three read
ports and one write port, along with a tag-enable port which
enables the register file to handle tagged datatypes (the tag-
enable port has been omitted for this final project). The READ
process involves purely combinational logic, while the WRITE
process is clocked. Included with the SRAM cell in the regis-
ter file are the row decoders, the clocked write-enable signal
circuitry, and a latch for simultaneous READ/WRITE opera-
tions (the block diagram is in ~/Diagrams/rf.fig). The layout
of the register file can be found in ~/Layout/rf.mag.

One-Bit SRAM Cell

The register file uses static RAM cells, instead of dynamic
RAM cells, since the access of a register does not guarantee
refresh of dynamic cells, thus making it possible for a register
to lose its value. The design of the single bit cell follows the
standard 6-T SRAM cell design [3], with the following modi-
fications (Schematic of the SRAM cell is in ~/Diagrams/
sram.fig, and the layout in ~/Layout/ram.mag):

• An inverter was inserted between the cross-coupled invert-
ers and the two read ports, rd1 and rd2, in order to eliminate
any possibility of state change. Without the inverter, the
read pass-transistors would share charge with the cellbar
node, thus reducing the node voltage and making state change
possible.

• A differential write port (two pass-transistors) is used, in-
stead of a singled-ended write port, in order to ensure cor-
rect write operations.

• Sizing: all of the inverters are minimum-sized (PMOS: 8/2,
NMOS: 3/2), and all of the pass-transistors were enlarged
(NMOS, 9/2) in order to mitigate body-effect, which pre-
vents READs from reaching all the way up to Vdd; it reaches
3.7 volts.

Simulations of the SRAM cell in HSPICE and IRSIM verified
its functionality and showed a READ time (i.e., rise and fall
times involving a READ operation) of approximately 2ns, and
a WRITE time of 1 - 1.5ns (Refer to the simulation file, ~/
Simulations/ram.tr0). The single-bit SRAM cell was then rep-
licated to form a 36 X 32 array (32 bits plus 4 bits of tag-field
bits).

Row Decoder

The ReRISC architecture calls for four separate row decod-
ers, three for READ addresses and one for WRITE addresses.
The row decoders take in five address bits (a0 through a4),
and generate 32 row select signals (word0 through word31).
The file, ~/Diagrams/decoder1.fig, shows a partial schematic
of the row decoder. The layout can be found in ~/Layout/
decoder1.mag. Two simple yet effective circuit optimizations
were added to the design in order to improve performance and
minimize area:

1) Speed: Because of the large fan-in associated with the brute-
force implementation of the row decoder, a predecoding
scheme was used and with it, all of the logic gates of the row
decoder have only two inputs.

2) Area: The straightforward approach is to implement the de-
coders with AND gates, but with the use of DeMorgan’s law
and negative logic, the number of transistors was drastically
reduced.

~/Simulations/decoder.ps contains the IRSIM simulation of the
row decoder.

Write-Enable (WERF) Signal Circuitry

The WRITE address decoder differs from the READ decoder
in that while the latter involves only combinational logic, the
former requires a clocked circuitry. This is because a WRITE
operation is permitted to take place only on the rising edge of
clock. Contrary to this, a READ operation can happen at any
time as long as the read-enable signals (read0 through read2)
are asserted. The file, ~/Diagrams/werf.fig, shows a schematic
of this WERF signal circuitry: a d-flipflop (dFF) is used to
sample WERF at the rising edge of CLK (simulation of dFF is
in ~/Simulations/dff.tr0). The output of the dFF and CLK_N
(“clock bar”) are used as inputs of an AND gate; CLK_N in-

36 X 32

SRAM Cells

Row
Decoder
(Read1)

Row
Decoder
(Read2)

32

32

Row
Decoder

(Read0)

32

WERF
Circuitry

32

(Write)

Input Address Bits Input Address Bits

5 5

Write Data

Read Data (Read0 through Read2 each 36 bits)

108

Negatively-Triggered Latches

ALU

Figure 4: Register file detailed block diagram.

4

stead of CLK is the input to ensure that the WRITE happens
on the falling edge of the clock. The layout of this dFF-CLK_N
gate can be found in ~/Layout/WERF.mag. The output of this
AND gate, called wp, along with one of the 32 address word
from the WRITE decoder, feeds into a second AND gate, called
r_sel_AND (layout in ~/Layout/r_sel_AND.mag) whose out-
put is the write-enable signal of each register. Because wp
drives only one row select gate at any one time, one wp signal
was used instead of 32 separate wp signals.

Simultaneous READ/WRITE operation

In the ReRISC architecture, simultaneous READ/WRITE is
one of the required functionalities. By simultaneous READ/
WRITE, we mean that when both read-enable and write-en-
able (WERF) signals of a register are high, and then CLK goes
high, the change of content of the register must show up at the
falling edge of the next clock cycle, not immediately. In other
words, the register file must not commit to the new value of
the register until the next clock cycle. Refer to the timing dia-
gram, ~/Diagram/timing.fig. In the diagram, we see Read1
reading out d[A1], the content of register A1. At the same
time, the write port is writing “FOO” into the same register.
What comes out of Read Data 1 illustrates the desired func-
tionality: d[A1] is read out until the next clock cycle at which
point, the new data, FOO, is read. The mechanism called for
here is a negatively-triggered latch, which would hold the old
value of the register while a new value is being written in. A
row of 108 such latches, one for each of the 3 read data signals
for 36 cells, is placed between the register file and the ALU.

1/2 PLA NOR Plane (Andrew Huang)1

1. all of the pointers contained in this section refer to the directory, /mit/
bunnie/Public/6.371, which will be denoted as “~/”

16 x 1 context RAM

φ2φ2

barrel shift decode

8+1

8+2

dout

din

cfg/hard

context code

shift code

Figure 5: Crossbar cell block diagram.

context code

barrel shift decode logic

context RAM switch FETs

shift code

The 1/2 PLA NOR plane is a 32 x 32, 16-context array of
NFET pullups in the wired-NOR configuration. The NOR plane
is capable of performing a large number of useful operations,
including zero testing, random permutations, bit shifts and ro-
tates, and bit packing/unpacking. In order to cut back on the
number of contexts required to make the NOR plane useful,
the barrel rotate function is also hard-wired into the array. A
high priority was placed on the ability to do fast bit-twiddling
since one of the more interesting applications of the ReRISC
is an emulation processor capable of executing several flavors
of nonnative binaries simultaneously.

Common Cell Structure

The NOR plane is an array of cells. Each cell contains a 16 x 1
configuration context memory, a barrel rotate decoder, and
some NFETs to do the actual computation. The configuration
memory is very similar to that used in the computational array,
described later in this report. The barrel rotate decoder is a
simple piece of logic which first determines if the NOR plane

is being used as a barrel rotator, and if so, what the state of the
NFET pulldown should be given a shift code. The decoder
supports right and left shifts, as well as vectored shifts (i.e.,
simultaneously shifting four bytes or two 16-bit words packed
into a single 32-bit long word). In order to avoid the poor per-
formance associated with using a ratiod PFET pullup to
precharge a heavily loaded bitline, the NOR plane uses a
clocked precharge-evaluate style of logic. The bitlines are
precharged by a strong PFET pullup on the first half of the
clock cycle, and the NOR plane evaluates on the second half
of the cycle. Simulations and layouts of the cell structure can
be found in ~/rerisc/xbarcell. In general, I have prepared post-
script dumps of all the relevant files for your convenience;
just look for the files ending in .ps.

Figure 6: Crossbar cell layout.

5

Computational Array (Andrew Huang)

The CA is a 38 x 8, 8-context array of computational cells.
Each cell features a 4-1 lookup table (LUT) and two 3-1 LUTs
for computation. The 4-1 LUT computes the final result of the
cell, while the 3-1 LUTs drive the propagate/generate inputs
of antiparallel Manchester carry stages. This cell architecture
provides sufficient computational power to implement one el-
ement of an array multiplier. In addition to the LUTs and carry
chains, some ancillary logic is provided to improve the flex-
ibility of the CA. The structure of a computational cell is de-
tailed in figure 7.

The computational array is capable of implementing the entire
MIT Beta ISA, sans multiply and divide instructions, with less
than 15 single-row contexts, leaving 49 row-contexts for in-
struction set extensions. Some examples of instructions set
extensions that the CA can easily implement include vectored
(i.e., four 8-bit ops per cycle) saturating adds, vectored non-
power of two precision multiplies, multiply-accumulates, ar-
bitrary bit maskings and tests, and decrement-conditionals.
Note that a 32 x 32 multiply requires 4 row-contexts (see sec-
tion titled In-Place Computation Register) and completes in 4
clock cycles.

LUT structure

The LUTs consist of an 8 bit by 2n row memory which feeds a
2n to 1 multiplexer. The n select inputs of the multiplexer are
the computational inputs of the LUT. The configuration con-
text is specified on a cycle by cycle basis through the context
code. See figure 8 for a block diagram of the LUT.

The memory elements of the LUT are 9T-SRAM cells, con-
sisting of a pair of cross-coupled inverters, a read bitline driver,
read and write pass transistors, and a state preset pass transis-
tor (figure 9). The cross-coupled inverters are asymmetrically

sized so as to allow jam-style writing. The read bitline driver
is provided to insure that the SRAM state does not change
even when driving heavily loaded read bitlines. The decision
to use a bitline driver was motivated by the fact that a sense
amps are not area-efficient when dealing with memories around
8 or 16-bits in size.

The state preset pass transistor is a FET between the write-
side of the cross-coupled inverters and either Vdd or GND
(PFETs for Vdd, NFETs for GND). The state preset pass tran-
sistors allow the ReRISC to take on a useful default configura-
tion, such as the Beta ISA, after the application of a reset
signal. This circuit trick saves users many hundreds of con-
figuration cycles at the cost of one transistor per SRAM cell.
The user savings are based on the assumption that a typical
application uses a stock set of instructions with only a couple
of application specific instructions.

Schematics, layout and simulations (Protel spice and IRSIM)
of the SRAM cell can be found in ~/rerisc/cfgmem/.

Configurable Antiparallel Manchester Carry Stage

Two Manchester carry chains are provided per row of compu-
tational cells. The chains run in opposing directions, hence the
term “antiparallel”. The Manchester carry stage blocks are la-
belled “P/G” in figure 7. The structure of these carry blocks
are detailed in figure 10.

8

4 LUT
8

8

Si Si-1Si-1

Sout

Carry left inCarry left out

Carry right in Carry right out
P/G

P/G

RAi

RBi

RCi

X Y Z P

horizontal bit distribution

8

3 LUT

3 LUT

Yi

Carry results from above row

carry results to row below

8888

8

Replicate 38
times

Replicate
8 times

(tagged types
plus overflow and
round)

Figure 7: Computational cell block diagram.

4 bits in

1 bit out

Context code

Figure 8: 4-1 LUT diagram showing context RAMs.

reset_n

reset

wdata rdata

renwen

Figure 9: 8T SRAM cell detail.

6

The carry stages provide a means for the fast, bidirectional
propagation of intermediates in operations such as addition
and wide boolean logic functions. The bidirectional capability
is important for the implementation of saturating arithmetic.
The carry chain can be split at any arbitrary point to allow
multiple reduced precision operations to be performed in a
single row of computational cells. This feature is important
for implementing vector-style instructions (“packed operations”
in Intel MMX terminology). Breaking the carry chain is ac-
complished by configuring the 3-LUTs to always force propa-
gate inactive, and forcing generate to the correct default po-
larity, i.e., additions require the zeroth-bit carry in to be 0,
while subtractions require the zeroth-bit carry in to be 1. Note
that the carry-chain implementation is conflict-free, in the sense
that at no time will a pullup be fighting against a pull-down.
Also, transistor sizing and the distribution of buffers is de-
signed conservatively because the length of the carry chain is
unknown at design time.

Ancillary Logic and Connectivity

A set of multiplexers and pass-transistors are provided to aug-
ment the flexibility of the computational cell. Multiplexers with
independent 8-context configuration memories allow each cell
to be connected to either register file ports, the output of other
computational cells, or to various points on nearby carry chains.
A pass gate with configuration memory also allows for the
connection of a vertically distributed register file bit to a hori-
zontal wire. This pass gate, along with the option to select the
output of the upper-right computational cell are important for
the implementation of an array multiplier.

In-Place Computation Register

One of the design goals of the ReRISC is the ability to imple-
ment the MUL instruction of the MIT Beta ISA. The MUL
operation is a 32 x 32 bit multiply with a 32 bit (LSB) result.
Thus, the straightforward ReRISC implementation would re-
quire a CA which is 38 x 32 in size. For various reasons mostly
related to area efficiency, this array size is undesirable. How-
ever, if one is willing to make the tradeoff of waiting four cycles
to complete a multiply, one can perform the instruction in an
array 1/4 the size by taking advantage of the cycle-by-cycle
context switching capability of the CA.

This is possible because the array multiply operation falls into
a class of computation known in the DSP world as “in-place
operations”. Certain varieties of the FFT are in-place opera-
tions in the sense it can be split temporally into a sequence of
operations that use the same piece of hardware over and over.
A 32 x 32 multiply can be split into a sequence of four 32 x 8
partial-product summations where the output of the CA is fed
back into the CA on successive clock cycles. The configura-
tion of the CA has to change slightly on successive clock cycles
(most notably, the horizontal bit distribution pass transistors
have to change state), but this happens with no performance
penalty. The IPR allows for the feedback of computation re-
sults without disturbing the contents of the register file.

carry in carry out

P

G

P

Figure 10: Manchester carry stage detail.

2-1 mux

Multiplicand

IPR

Multiplier,
fed in 4 bits at a time

Product, available after 2 clock cycles

Figure 11: multiplication using the IPR.

3-1 LUTs

4-1 LUT

2-1 Input Muxes

8 x 1 SRAM slice

Carry stage blocks

Figure 12: Layout of the computational cell.

7

3. Verification
All the leaf cells of the ReRISC processor were verified using
either a flavor of SPICE or IRSIM. All the leaf cells have been
tested for base-level functionality. Pointers to the simulation
files for the leaf cells were given in each of the sections of this
report that described a major sub-block of the ReRISC.

Some higher-level verification was performed as well. For
example, the register file was tested, and so was the crossbar
cell and the basic components of the computational cell. How-
ever, due to the complexity of the design, it proved to be
computationally intractable to verify the entire design within
the scope of this class. A rough estimate of the number of tran-
sistors in this design is around 1.8 million; at this level of com-
plexity, it takes magic ten minutes to simply run the design
rule checker on the design, and a minute or two just to redraw
the screen.

Computational Array
Register File

Crossbar

Figure 13: Layout of the ReRISC datapath.

4. Conclusion

The datapath of the 1.8 million transistor ReRISC 32-bit mi-
croprocessor was conceived, designed, laid out and verified at
the leaf node level in this project. The ReRISC was designed
around the philosophy of giving users performance where they
need it, and convenience when they want it. Its fully
configurable instruction set defaults to the simple MIT Beta
RISC ISA. Users can then replace or add instructions specific
to their application for enhanced performance. The ReRISC
architecture is flexible enough to implement a wide variety of
specialized instructions, from random permutations to small

vector operations, to bit packing and unpacking. The last ex-
ample, bit packing and unpacking, is especially important for
the emulation of nonnative binaries.

One of the major design goals of the ReRISC was to come up
with a reconfigurable architecture which has a relatively small
reconfiguration overhead. This design goal was met using a
number of techniques. First, all the configuration memories in
the ReRISC are preprogrammed to default to a useful state
upon the application of a soft reset. This means that most us-
ers will only have to modify a few contexts specific to their
application, instead of having to upload the entire base ISA
plus their custom instructions. Second, associated with each
computational element are several configurations (multicontext
architecture). Each of these cached configurations are avail-
able on a cycle-by-cycle basis. As long as one does not exceed
the capacity of the context memories, switching between con-
figurations is very fast. The context memory was designed to
be large enough such that a typical operating system would
only need to modify the ISC on a context-switch, which hap-
pens relatively infrequently. In addition to architectural opti-
mizations, some logic/physical design tricks were used to en-
hance performance, such as the bidirectional, segmentable
Manchester carry chain used in the computational array.

One optimization for the ReRISC architecture that could have
been applied to save a significant amount of area would be to
increase the ratio of bits of computation per configuration
memory. Currently, each bit slice in the datapath has its own
independent set of configuration memories. I conjecture that

8

5. References

[1] Jolly, Richard D., “A 9-ns, 1.4-Gigabyte/s, 17-Ported
CMOS Register File,” IEEE JSSC, Vol.26, No.10, October
1991.

[2] Shinohara, Hirofumi, et al., “A Flexible Multiport RAM
Compiler for Data Path,” IEEE JSSC, Vol.26, No.3, March
1991.

[3] Weste, Neil, Principles of CMOS VLSI Design: A System
Perspective, 2nd Edition, Addison-Wesley, 1993.

[Dehon96] Dehon, Andre. “Reconfigurable Architectures for
General-Purpose Computing”. A.I. Lab Technical Report No.
1586. October 1996.

[Hauser97] Hauser, John R. “The Garp Architecture”. UC
Berkeley Technical Report. October 1997. Obtained from
BRASS project website.

little flexibility would be lost if two bits of datapath were con-
figured by one set of memories. This would cut the area of the
memory-dominated computational array down by almost half,
and consequently save 30-40% in total die area. A similar pro-
cessor under development at Berkeley called Garp employs
this idea to conserve area as well. [Hauser 97]

On a final note, the ReRISC offers a unique advantage over
conventional processors. Contemporary architects are finding
themselves having more transistors than they know what to do
with, and CPU core frequencies skyrocketing while memory
bus speeds continue to lag behind. As a result, designers have
been dumping more transistors into larger caches. Cache sizes
have been increasing steadily to the point of diminishing re-
turns. The ReRISC is different in the sense that more compu-
tational elements could translate directly to higher performance
without the complications of superscalar technology. One ex-
ample is the in-place multiply. Currently, it takes 4 cycles for
the multiply to complete. However, if one doubles the size of
the computational array, the multiply will complete in 2 cycles.
Thus, not only does an architecture like the ReRISC benefit
from shorter gate delays as line geometries scale down, it also
benefits from the greater density offered by smaller process
geometries.

