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Abstract: We solve the periodic boundary value problem for a mode-locked laser cavity using a 
preconditioned matrix-implicit Newton-Krylov solver. Solutions are obtained two to three orders 
of magnitude faster than with standard tools. 
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1. Overview 
The effective numerical solution of the steady state solution to a mode-locked laser is essential to the design, 
optimization, and study of such lasers [1], as well as coherent pulse addition in passive cavities. The standard 
method for tackling such problems is to simply simulate the operation of the cavity in question, generally with a 
split-step Fourier method, until convergence is reached at some precision [2]. While this has the advantage of 
demonstrating self-starting and solution stability, simulation is rather poor when viewed as a numerical algorithm, 
exhibiting slow linear convergence. For example, a solid-state laser operating in the dispersion-managed soliton 
regime can take many tens of thousand round trips to converge to within one part in 104. This is especially true of 
cavities with relatively weak nonlinearity (i.e. high Q resonators). 

In contrast, our algorithm converges quadratically to the stable solution, requiring the evaluation of only tens of 
round trips to converge to within numerical precision, typically two to three orders of magnitude faster than with 
simulation. This speed up is achieved by directly solving the periodic boundary value problem for the nonlinear 
cavity using a Newton-Raphson method. At each step we use a matrix-implicit, preconditioned Krylov subspace 
solver to compute the approximate solution. This means we never explicitly compute the Jacobian of our cavity, but 
rather send a short series of trial perturbations through the cavity to compute a very good approximation to the 
solution of the linearized subproblem. The preconditioning is critical to both the quadratic convergence of the 
algorithm, as well as its efficiency in terms of round-trip evaluations. Our method enables many new opportunities 
for design and analysis of mode-locked lasers, such as putting the laser model inside an optimization loop. 

2. Algorithm 
In our method, the cavity is simply treated as an arbitrary n-dimensional discrete nonlinear function g(u). 

Internally, it can be modeled in any way that is convenient, and it is not actually necessary for the vector u to 
correspond to direct physical quantities. In the case we consider here, a dispersion-managed soliton laser, the 
elements of u are the Fourier coefficients of the field. We seek an “eigenvector” u and “eigenvalue” eiφ such that 
g(u) = eiφu. We solve this by casting it as the multidimensional root-finding problem 
 f(u) = e-iφ(u)g(u) – u = 0, (1) 

where φ(u) is defined so as to set the phase of the first element of e-iφ(u)g(u) to zero. While this is consistent with 
solving the original problem, it is not necessarily optimal for convergence and was purely chosen for simplicity. It 
has been found to empirically work quite well, however. 

Given a guess uk, we perform a standard Newton iteration by linearizing (1) around uk and solving for uk+1. 
However, there are several problems with doing so directly. First, if we were to compute the full Jacobian Jf 
numerically, it would require n evaluations of the round trip model g, largely negating the efficacy of the algorithm. 
Second, it turns out that, in general, the Jacobian is badly conditioned and has a non-sparse eigenspectrum. Thus, 
direct solution methods will be numerically unstable, and iterative solution methods will converge slowly. 

To address this, we precondition with a diagonal matrix B = (Dg(u) – I)-1, where Dg(u) contains the sum of all 
diagonal terms in the model. For example, if u represents Fourier coefficients of our cavity field, then D will contain 
the gain and loss spectra, as well as dispersion phases. The better it estimates the actual Jacobian, the quicker the 
linear subproblems will converge. Thus, it pays to choose a basis where Jg is as diagonal as possible. In the case of 
our dispersion-managed soliton laser, the Fourier domain is optimal. 
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Fig. 2: Comparison of solution found by our method (crosses) and 
that found by laser dynamics simulation (dots).  

Fig. 1: Log-log convergence plot of our direct method (left) 
compared to standard simulation (right) as a function of roundtrip 
evaluation. The same noise initial conditions were used for both. 
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Fig. 3: A schematic of the laser cavity used as our model problem. 

The linear subproblem B(Jg − Ι)Δuk = Bf(uk) generally becomes better conditioned by roughly an order of 
magnitude, and perhaps most importantly, it greatly simplifies the eigenspectrum of the system, allowing each 
subproblem to converge in only a few round trips. To solve the linear subsystem, we use a generalized minimal 
residual method (GMRES), a conjugate gradient-like method that can handle asymmetric systems [3]. A common 
feature of Krylov subspace solvers is that they only need information about how the matrix in question operates on a 
series of vectors. Thus, we never need to explicitly compute the Jacobian, but simply approximate its action on a 
given trial vector using first-order finite differences. 

3. Numerical Results 
We tested our algorithm on a dispersion-managed soliton laser model producing roughly 100 fs pulses, shown 
schematically in Fig. 3, below. This example was chosen due to the relatively slow evolution. A comparison of the 
pulse found by our method and that found by simulation is shown in Fig. 1. While there is a small, meaningless time 
shift between the two solutions, they are otherwise identical. Starting from noise, our method needed nine Newton 
steps to converge to an absolute error of 10-8, with each step taking 6 GMRES iterations (7 round trip evaluations). 
Thus, a total of only 64 cavity round trip evaluations were needed. In comparison, over 70,000 round trips were 
required to converge to the same accuracy by simply simulating the laser dynamics (see Fig. 2).  

4. Applications and Future Work 
There are several interesting avenues to pursue. One is the optimization of laser components (such as dispersion 
compensating mirrors) by directly minimizing the simulated pulse width. In addition, there are many theoretical 
studies which are enabled by the ability to rapidly compute a series of perturbations, such as an exploration of the 
relation between pulse energy and carrier envelope phase slip. Finally, the use of reduced basis sets (i.e. parameter 
vectors u which are much smaller in dimension than the underlying simulation) could allow for significant further 
speed gains with little sacrifice in accuracy. We hope this could allow the algorithm to be eventually applied towards 
a full spatio-temporal model of a laser cavity, facilitating the quantitative study of Kerr lens mode locking.  
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