
To appear in Electronic Commerce Research and Applications,

Accepted Journal Paper, revised version of Sept. 29, 2003

Representing E-Commerce Rules

Via Situated Courteous Logic Programs

in RuleML

Benjamin N. Grosof

Massachusetts Institute of Technology
Sloan School of Management

50 Memorial Drive
Cambridge, MA 02142, USA

bgrosof@mit.edu
http://ebusiness.mit.edu/bgrosof

Abstract

We give an overview of current efforts to standardize e-business rules knowledge
representation (KR) in XML as part of the Semantic Web. We focus especially on
the design approach and criteria of RuleML, an emerging standard that we co-lead.
We discuss the issues of standardization and Webizing which RuleML addresses.
We extend, for the first time, RuleML’s definition from the ordinary logic programs
KR to situated courteous logic programs (SCLP), an expressively general KR that
supports prioritized conflict handling and procedural attachments for actions and
queries. We give an overview of our prototype SweetRules, (Semantic WEb Enabling
Technology – Rules component), a set of tools which enable, for the first time,
communication and inferencing of e-business rules represented in SCLP RuleML. We
illustrate SCLP RuleML by giving example rulesets from the realm of e-commerce
business policies in supply chain management. 1

Key words: e-business, e-commerce, rules, logic programs, Semantic Web,
RuleML, knowledge representation, non-monotonic reasoning, interoperability,
industry standards, e-contracting, XML, supply chain management

1 This paper is extended and updated from an earlier workshop paper [7].

Preprint submitted to Elsevier Science 23 November 2003

1 Introduction

In this paper, we give an overview of our current efforts to standardize rules
knowledge representation (KR) in XML. We focus especially on the design
approach and criteria of RuleML (short for “Rule Markup Language”), an
emerging standard that we co-lead. The Rule Markup Language Initiative 2

is part of the R&D community’s effort to develop the Semantic Web 3 . The
Semantic Web is a vision of moving the Web to support program-to-program
communication in which data has high-level semantics that is shared by both
communicating parties (programs). RuleML is based on a fundamental rule
KR, declarative logic programs (LP). In previous work [11,2,4,3,5,6] we have
expressively extended ordinary LP (OLP) 4 with features for prioritized con-
flict handling and procedural attachments to perform actions and queries; the
result is called situated courteous logic programs (SCLP). In previous work we
have also developed BRML, an XML syntax for SCLP. We discuss BRML’s
limitations – it only shallowly Webized SCLP.

The novel contributions of this paper are to extend RuleML’s specification to
the SCLP case, to overview SCLP RuleML and the issues of standardization
and Webizing which it addresses, and to overview the first prototype toolset
for SCLP RuleML – which we have built.

Our prototype toolset is called SweetRules . SweetRules is part of our larger
toolset SWEET , short for “Semantic WEb Enabling Technology”. Sweet-
Rules enables communication and inferencing of e-business rules represented in
RuleML. We have a running prototype of SweetRules which was first demon-
strated at the Workshop on Information Technology and Systems (WITS ’01)
in Dec. 2001, as part of the refereed software systems demonstration program
there 5 . That demonstration complemented an earlier, briefer workshop ver-
sion of this paper [7].

We illustrate SCLP RuleML by giving example rulesets from the realm of
e-commerce business policies in supply chain management, specifically about
managing ordering lead time of purchase requests.

2 see http://www.ruleml.org and the author’s home page
(http://ebusiness.mit.edu/bgrosof)
3 see the overview of the Semantic Web Activity on the World Wide Web Consor-
tium’s website http://wwww.w3.org
4 sometimes called “general” LP or “normal” LP; see [1] for a helpful review
5 http://www.busi.mun.ca/parsons/wits2001/

2

2 RuleML and expressively extended Logic Programs

We are leading, with Harold Boley and Said Tabet, an early-phase standards
effort on a markup language for exchange of rules in XML, called RuleML
(Rule Markup Language) 6 . The goal of this effort is eventual adoption as a
Web standard, e.g., via the World Wide Web Consortium (W3C) 7 within its
new Semantic Web Activity. 8 Along the way there are a number of interesting
new research issues.

RuleML is, at its heart, an XML syntax for rule knowledge representation
(KR), that is inter-operable among major commercial rule systems. It is espe-
cially oriented towards four currently commercially important (“CCI”) fami-
lies of rule systems: SQL (relational database), Prolog, production rules (cf.
OPS5, CLIPS, Jess) and Event-Condition-Action rules (ECA). These kinds of
rules today are often found embedded in systems built using Object-Oriented
(OO) programming languages (e.g., C++ and Java), and are often used for
business process connectors / workflow. As we first observed [11], these four
families of rule systems all have common core abstraction: declarative logic
programs (LP) 9 . “Declarative” here means in the sense of KR theory. 10 Note
that this supports both backward inferencing and forward inferencing.

RuleML is actually a family (lattice) of rule KR expressive classes 11 : each with
a DTD (syntax) and an associated KR semantics (KRsem). These expressive
classes form a generalization hierarchy (lattice). In addition to specifying XML
syntax for rules, RuleML specifies an associated KR semantics (KRsem). The
KRsem specifies what set of conclusions are sanctioned for any given set of
premises. Being able to define an XML syntax is relatively straightforward, al-
though there are many details to work out. Crucial, however, is the semantics
(KRsem) and the choice of expressive features. The motivation to have syntax
for several different expressive classes, rather than for one most general expres-
sive class, is that: precision facilitates and maximizes effective interoperability,
given heterogeneity of the rule systems – and the rule-based applications using
them – that are exchanging rules.

The kernel representation in RuleML is: Horn declarative logic programs. Ex-

6 http://www.ruleml.org and http://ebusiness.mit.edu/bgrosof/#RuleML
7 http://www.w3.org
8 http://www.w3.org/2001/sw
9 [1] provides a helpful review of declarative LP
10 in which: a given set of premises entails a set of sanctioned conclusions, inde-
pendent of inferencing control strategy or procedural aspects, e.g., independent of
whether inferencing direction is goal-directed query answering (“backward”) vs.
data-driven (“forward”).
11 “Class” here means an expressive subset of a logical language.

3

tensions to this representation are defined for several additional expressive
features:

• negation-as-failure (NAF). Prolog, for example, includes NAF.
• prioritized conflict handling: cf. courteous logic programs [11].
• disciplined procedural attachments for queries and actions: e.g., cf. situated

logic programs [2]

and other features as well. The feature of limited classical negation, a.k.a.
“strong” negation, is included as part of the courteous extension of LP. In
addition, RuleML defines some useful expressive restrictions (e.g., Datalog,
facts-only, binary-relations-only), not only expressive generalizations. The ex-
tension of Horn LP to include NAF is called “ordinary” LP (OLP), a.k.a.
“normal” LP.

In Jan. 2001, we (in collaboration with Harold Boley and Said Tabet) released
a first public version of a family of DTD’s for several flavors of rules in RuleML.
This was presented at the W3C’s Technical Plenary Meeting 12 held Feb. 2001.
Especially since then, RuleML has attracted a considerable degree of interest
in the R&D community. Meanwhile, the design has been evolving to further
versions. The current stable version is V0.8.

RuleML largely grows out of the design approach and design criteria of Busi-
ness Rules Markup Language (BRML) which was developed in our previous
work during 1997–2000 at IBM Research and which is implemented in IBM
CommonRules 13 available under free trial license from IBM alphaWorks. The
first version of IBM CommonRules, with BRML, was publicly released in July
1999. The design approach and design criteria of CommonRules and BRML are
described in [11,10], and in the documentation in the CommonRules download
package. BRML’s expressive class is situated courteous logic programs, i.e.,
declarative logic programs with negation-as-failure, (limited) classical nega-
tion, prioritized conflict handling, and disciplined procedural attachments for
queries and actions.

3 Advantages of Situated Courteous Logic Programs KR

SCLP and BRML were developed in large part to surmount the limitations
of the first major attempt at a standardizing a declarative KR for knowledge
interchange: Knowledge Interchange Format (KIF) 14 . KIF was developed in

12 a large convocation of most of its face-to-face standards working group meetings
13 http://www.research.ibm.com/rules and http://alphaworks.ibm.com
14 http://logic.stanford.edu/kif and http://www.cs.umbc.edu/kif/

4

the early 1990’s as a system for researchers – rather than commercial applica-
tions – to exchange logical-form knowledge. It thus preceded the Web. KIF’s
KR is essentially classical logic. A newer early phase standards effort called
(Simple) Common Logic 15 is the close succcessor to KIF. Launched in about
fall 2000, Common Logic is aiming for status as an ISO standards effort. Like
KIF, Common Logic is based on the underlying KR of classical logic, primarily
First Order Logic (FOL). Classical logic is the basis for most of mathematics,
and FOL is familiar and popular among mathematicians.

The (declarative) logic programs KR expressively overlaps with FOL: the Horn
subset of LP is also a subset of FOL. More generally, however, full LP includes
expressive features (e.g., negation-as-failure and procedural attachments) that
FOL cannot express. And, vice versa, full FOL includes expressive features
(e.g., existentials and disjunctions) that LP cannot express.

FOL (beyond LP) has not become widely used for deployed commercial ap-
plications. Likewise, KIF and Common Logic have not either – no need to
interchange lots of FOL knowledge if there are not lots of applications us-
ing FOL knowledge. In our view, the lack of wide commercial deployment
of FOL (beyond LP) is because it fundamentally lacks the ability to express
non-monotonicity or procedural attachments, and partly also because of its
(computational) intractability.

In particular, FOL has two major expressive limitations that prevent it from
representing e-business rules of the kind typically used in CCI rule applica-
tions. Firstly, it is pure-belief ; it cannot represent/specify procedural attach-
ments for queries or actions (or for anything else!). Secondly, it is logically
monotonic; it cannot represent/specify negation-as-failure or prioritized con-
flict handling which are logically non-monotonic. 16 Yet procedural attach-
ments and logical non-monotonicity are heavily used in CCI rule systems and
their applications. Negation-as-failure is the usual and most important form
of negation found in all the CCI rule systems and their applications.

Example kinds of non-monotonic prioritized conflict handling heavily used in
CCI rule systems include:

• priority between rules in Prolog based on static rule sequence;
• priorities (in general, dynamically-computed) among rules in production

rule and ECA rule systems;
• inheritance with exceptions; and
• updating in databases (where more recent assertions override previous ones).

15 http://cl.tamu.edu
16 A particular KR is said to be logically monotonic when it has the property that
adding premises never results in retracting (sanctioned) conclusions.

5

In contrast to FOL, situated courteous logic programs provide expressive fea-
tures both for procedural attachments – in actions and queries – and for non-
monotonicity – negation-as-failure and prioritized conflict handling. Another
advantage of (situated courteous) logic programs is computational scaleabil-
ity: inferencing is tractable (worst-case polynomial-time) for a broad expressive
case: e.g., when the number of logical variables per rule is bounded, and logical
functions are disallowed; classical logic. By contrast, classical logic inferencing
is NP-hard for this case.

4 Webizing KR

As we discussed earlier, the SCLP KR is supported in BRML, the XML “in-
terlingua” syntax of IBM CommonRules. RuleML in its current V0.8 version
advances upon its BRML predecessor in several significant respects, however.
One respect is that it defines a family of DTD’s rather than just one. More
deeply, however, these advances largely revolve around “Webizing” the KR,
notably:

• labels (names) for rules/rulebases; in particular, this aids import/export. 17

• URI’s 18 for logical vocabulary and knowledge subsets: predicates, functions,
rules, rulebases, labels for rules and rulebases.
• headers: meta-data describes the XML document’s expressive class.
• procedural attachments using Web protocols/services; queries or actions via

CGI, SOAP, and/or other Web Services mechanisms.

Such Webizing, and interoperability of KR on the Web, involve several kinds
of practical mechanics beyond the representation proper. These include to:

• build on existing Web standards, especially from W3C and Oasis 19 , e.g.,
for namespaces, for Web Services, etc.
• share mechanisms with other emerging or existing standards for KR and

ontologies 20 on the Web, including especially W3C’s RDF 21 and OWL 22 .
• have rules (or other knowledge) permit and utilize (URI) references to on-

tologies (knowledge bases), e.g., to have a rulebase refer to predicates or
individuals previously defined in an OWL ontology [12].

17 BRML did previously include labels for rules.
18 Uniform Resource Identifiers, a generalization of Uniform Resource Locators
(URL’s), a W3C standard
19 http://www.oasis-open.org
20 structured vocabularies specified using logic-based KR
21 http://www.w3.org/RDF
22 http://www.w3.org/2001/sw/WebOnt

6

• more generally, use ontologies for rules, and rules for ontologies, e.g., with
semantics of their combination defined using the KR of Description Logic
Programs [9].
• have a knowledge base include some self-description in terms of an OWL

(“meta-”)ontology, e.g., to have a RuleML rulebase specify which expressive
features it employs and expressive restrictions it obeys.

Additionally, RuleML V0.8 has some further steps of Webizing rule KR, in-
cluding:

• Slots. RuleML V0.8 supports object-oriented style slots (a.k.a. “roles”) to
specify arguments of a predicate (or of a logical function), in addition to
Prolog-style sequentially ordered positions for arguments. Such slots of a
predicate (or function) are similar to the named members of a Java/C++
class.
• Unorderedness of the syntactic data model. This facilitates an (alterna-

tive) RDF syntax for RuleML: by having RuleML’s abstract syntax (and
XML syntax) avoid reliance on ordered-ness of child elements within any
element (there are already some partial first drafts of such an alternative
RDF syntax). The only exception in RuleML V0.8 XML syntax is to per-
mit orderedness where orderedness is explicitly desired: when representing
ordered tuples, in the “tup” (and “bmtup”) elements.

5 Example: Ordering Lead Time

In this section, we illustrate how to use SCLP to represent e-commerce rules
with a long example. As we go, we describe some more of the SCLP KR’s
technical aspects and advantages, including the advantages of the courteous
feature.

In business-to-business commerce, e.g., in manufacturing supply chains, sell-
ers often specify how much lead time, i.e., minimum advance notice before
scheduled delivery date, is required in order to place or modify a purchase
order. This kind of information is desirable and important to communicate
between the buyer and seller — preferably, automatically, i.e., in e-commerce.
The seller want its buyers to know this, to clarify its negotiating or competitive
position, to smooth operations and collaboration, and to avoid misunderstand-
ings and problems. Furthermore, the business rules about ordering lead time
often need to be shared among multiple applications within the buyer organi-
zation, and among multiple applications within the seller organization. Order-
ing lead time affects not only planning and scheduling both for the buyer and
for the seller. It also affects accounting, cash flow, inventory management, op-
erations, partnering strategy, etc. It ripples down to bidding/negotiation and

7

order management with the seller’s lower-tier suppliers and, likewise, ripples
up to higher-tier buyers. Indeed, over the last two decades, much of the focus
of supply chain management (SCM) has been on lead time. Reducing the vari-
ance, as well as the mean, of lead time is at the heart of creating and exploiting
opportunities to reduce inventory and cycle times in the supply chain. Smaller
inventories or cycle times improve productivity by reducing working capital,
warehousing, obsolescence and wasteage, as well as buyer opportunity costs.

Example 1 (Ordering Lead Time)

An example of a parts supplier vendor’s lead time policy, specified in natural
language, is:
• (Rule A:) “14 days lead time if the buyer is a preferred customer.”
• (Rule B:) “30 days lead time if the ordered item is a minor part.”
• (Rule C:) “2 days lead time if: the ordered item’s item-type is backlogged
at the vendor, and the order is a modification to reduce the quantity of the
item, and the buyer is a preferred customer.”
• (Priority Rule 1:) “If Rules A and C both apply, then Rule C ‘wins’, i.e., 2
days lead time.”

The rationale for Rule C is that the vendor is having trouble filling its overall
orders (from all its buyers) for the item, and thus is pleased to have this buyer
relieve the pressure.

Rules A, B, and C may conflict: two or three of them might apply to a given
purchase order. Priority Rule 1 provides partial prioritization information – its
rationale might be that Rule C is more specific, or more recent, than Rule A.
However, the above rule-set leaves unspecified how to resolve conflict between
Rules A and B, for example; no relative priority between them is specified
as yet. This reflects a common situation when rules accumulate over time, or
are specified by multiple authors: at any given moment during the process of
incremental specification, there may be insufficient justified priority to resolve
all potential conflicts.

Example 2 (Ordering Lead Time, in CLP)

Example 1 above can be straightforwardly represented in CLP as the following
rulebase RB1:
〈a〉 orderModificationNotice(?Request, days14)

← preferredCustomerOf(?Buyer, ?Seller) ∧
purchaseRequest(?Request, ?Buyer, ?Seller);

〈b〉 orderModificationNotice(?Request, days30)
← minorPart(?Request) ∧

purchaseRequest(?Request, ?Buyer, ?Seller);

8

〈c〉 orderModificationNotice(?Request, days2)
← preferredCustomerOf(?Buyer, ?Seller) ∧

orderModificationType(?Request, reduce) ∧
orderItemIsInBacklog(?Request) ∧
purchaseRequest(?Request, ?Buyer, ?Seller);

(End of Example)

Here and in the rest of this paper, as notation for SCLP, we are employing an
extended form of the Prolog-like notation for declarative LP that is typically
used in the LP literature. The implication symbol “←” can be read as “if”.
The conjunction symbol “∧” can be read as “and”. The consequent part of the
rule (left of the “←”) is also called the head of the rule. The antecedent part
of the rule (right of the “←”) is also called the body of the rule. The delimiter
“;” ends a rule statement. The prefix “?” indicates a logical variable. A fact
is a special case of a rule; its body (i.e., antecedent) is empty, and the “←”
may be omitted. (An empty body can be viewed as logically true.) “< . . .>”
encloses a rule label. The label is optional. ∼ stands for negation-as-failure.
(Example 3 below illustrates the use of ∼).

The rule labels, e.g., a, at the left of each rule above are used as handles/names
for specifying prioritization (partial-) ordering via the syntactically reserved
predicate overrides which indicates that its first argument is higher priority
than its second argument. overrides is otherwise an ordinary predicate, e.g.,
overrides facts can be inferred via rules. In general, the prioritization ordering
is a partial ordering rather than a total ordering. This aids flexibility for
specification and merging of rulesets.

In order to specify that c has higher priority than a, we add the following rule
to our example rulebase. This rule is a fact:
〈pri1〉 overrides(c, a);

The scope of what constitutes conflict is specified by mutual exclusion (mu-
tex) statements , which can be viewed as a kind of integrity constraint. Each
such statement says that it is a contradiction/inconsistency for a particular
pair of literals (known as the “opposers”) to be inferred, given another par-
ticular condition. The CLP KR’s semantics enforce that the set of sanctioned
conclusions respects (i.e., is consistent with) all the mutex’s within the given
CLP.

We add to our example rulebase the following mutex, which specifies that it is
a contradiction to conclude two different values of the ordering-lead-time for
the same order:
⊥ ← orderModificationNotice(?Request, ?X) ∧

orderModificationNotice(?Request, ?Y)
| notEquals(?X, ?Y);

9

Here, we have introduced some additional SCLP notation. The “⊥′′ stands for
logical contradiction. The “ | ” appearing to the right of the first, opposers
part of the mutex can be read as “given”, and is followed by a condition
expression that is similar to a rule body. Note that in the Courteous seman-
tics aspect of SCLP, the scope of conflict, and the associated enforcement of
consistency, is defined in terms of the two opposer literals, for each mutex. 23

The ordering lead time policy rules are mainly interesting insofar as they en-
able one to infer ordering lead times for particular ordering situations. Next,
we continue our example. Let the seller be a company named “ElvesCo”. Sup-
pose one adds to the rulebase some facts about a particular ordering situation:
〈sit11〉 preferredCustomerOf(EagerCo, ElvesCo);
〈sit12〉 purchaseRequest(pu34, EagerCo, ElvesCo);

The desired conclusion for this ordering situation is that the ordering lead
time is 14 days, since only Rule A applies. As desired, under the semantics of
the SCLP KR, the CLP rulebase RB1 indeed entails this:
RB1 |= orderModificationNotice(pu34, days14);

(Notation: |= stands for the entailment relationship.)
More interestingly, suppose one adds to the rulebase some more facts about
another particular ordering situation in which both Rule C and Rule A apply:
〈sit21〉 preferredCustomerOf(BeaverCo, ElvesCo);
〈sit22〉 purchaseRequest(pu56, BeaverCo, ElvesCo);
〈sit23〉 orderModificationType(pu56, reduce);
〈sit24〉 orderItemIsInBacklog(pu56);

The desired conclusion for this second ordering situation is that the ordering
lead time is 2 days, since although both Rule A and Rule C apply and con-
flict with each other, that conflict is resolved by the priority. As desired, the
semantics of the SCLP KR indeed entails this:
RB1 |= orderModificationNotice(pu56, days2);

Also as desired, the rulebase does not entail any other values (e.g., days14)
for pu56’s ordering lead time. 24

Example 3 (Direct OLP Version of Lead-Time Example)

Next, we give a direct Ordinary LP representation of Example 1 (i.e., without
the courteous expressive features) This rulebase, let’s call it RB2, essentially
behaves equivalently semantically to the Courteous LP version (RB1 in Exam-
ple 2). That is, it entails the same conclusions about orderModificationNotice,

23 The distinction between the (exactly two) literals appearing in the opposer part
of a mutex versus literals appearing in the given part of that mutex is, therefore, not
just syntactic sugar; rather, that distinction has semantic significance. The scope
of conflict, and associated enforcement of consistency, is not specified in terms of
n-ary groups of literals for n>2.
24 A simpler version of Example 2, lacking the particular situation facts, appeared
in [11].

10

for various ordering situations.

〈a1〉 orderModificationNotice(?Request, days14)
← preferredCustomerOf(?Buyer, ?Seller) ∧

purchaseRequest(?Request, ?Buyer, ?Seller) ∧
∼minorPart(?Request) ∧
∼orderItemIsInBacklog(?Request);

〈a2〉 orderModificationNotice(?Request, days14)
← preferredCustomerOf(?Buyer, ?Seller) ∧

purchaseRequest(?Request, ?Buyer, ?Seller) ∧
∼minorPart(?Request) ∧
∼orderModificationType(?Request, reduce);

〈b〉 orderModificationNotice(?Request, days30)
← minorPart(?Request) ∧

purchaseRequest(?Request, ?Buyer, ?Seller) ∧
∼preferredCustomerOf(?Buyer, ?Seller);

〈c〉 orderModificationNotice(?Request, days2)
← preferredCustomerOf(?Buyer, ?Seller) ∧

orderModificationType(?Request, reduce) ∧
orderItemIsInBacklog(?Request) ∧
purchaseRequest(?Request, ?Buyer, ?Seller) ∧
∼minorPart(?Request);

notEquals(days14, days2);
notEquals(days14, days30);
notEquals(days2, days30);
〈sit11〉 preferredCustomerOf(EagerCo, ElvesCo);
〈sit12〉 purchaseRequest(pu34, EagerCo, ElvesCo);
〈sit21〉 preferredCustomerOf(BeaverCo, ElvesCo);
〈sit22〉 purchaseRequest(pu56, BeaverCo, ElvesCo);
〈sit23〉 orderModificationType(pu56, reduce);
〈sit24〉 orderItemIsInBacklog(pu56);

(Notation: recall that ∼ stands for negation-as-failure.)
Note that typically in practical implemented rule systems, the notEquals facts
above would be provided in a “built-in” manner rather than having to be
explicitly stated as facts. (These facts are needed because notEquals appears
in the given part of the mutex about orderModificationNotice.) Later in
Example 4, we will show how to use the Situated feature of SCLP to specify
that in a simple manner.

As desired, RB2 entails that the lead times for ordering situations pu34 and
pu56 are 14 days and 2 days, respectively:
RB1 |= orderModificationNotice(pu34, days14);
RB1 |= orderModificationNotice(pu56, days2);

We can state the RB2’s lead time rules (a1, a2, b, c) in natural language as

11

follows:
• (Rule A1:) “14 days lead time if: the buyer is a preferred customer, and the
item is NOT a minor part, and the item is NOT backlogged .”
• (Rule A2:) “14 days lead time if: the buyer is a preferred customer, and the
item is NOT a minor part, and the order is NOT a modification to reduce the
quantity of the item.”
• (Rule B:) “30 days lead time if: the ordered item is a minor part, and the
buyer is NOT a qualified customer .”
• (Rule C:) “2 days lead time if: the ordered item’s item-type is backlogged
at the vendor, and the order is a modification to reduce the quantity of the
item, and the buyer is a preferred customer, and the ordered item is NOT a
minor part .”

Comparing RB2 to the Courteous LP representation’s rulebase RB1 from
Example 2, one sees that RB2 not only omits the priority (overrides) fact and
the mutex statement, which we expect since RB2 is employing the Ordinary
LP KR rather than the more expressive Courteous LP KR which features
prioritization and mutex’s. One sees also that RB2 modifies the lead time
rules. It adds negated (∼’d) “interaction” conditions to the bodies of the lead
time rules, so as to avoid overlap cases where the rules might conflict. Above
in the natural language statement of RB2’s lead time rules, the differences
from the natural language statement of RB1’s lead time rules are italicized
so as to highlight the comparison. These NAF interaction conditions in effect
handle conflict appropriately in regard to priorities and guarantee consistency
w.r.t. the desired uniqueness of lead time. If instead these negation-as-failure
interaction conditions were omitted then undesired extra conclusions would
be drawn — e.g., that the request pu56 also has lead time 14 days!

Furthermore, in this direct OLP style of representation, adding a new rule
(e.g., adding Rule C to a rulebase containing just Rule A and Rule B) re-
quires modifying the other rules to add additional such interaction conditions.
This creates maintenance and scaleability problems in specification over the
lifecycle of the rulebase and the applications that use it. This need for mod-
ification (when updating in an OLP representation) is typical of conflicting
rule-sets and underscores the advantage of the prioritized conflict handling
expressive feature for modularity and ease of modification. Observe that Ex-
ample 1 did not use “not”, “but”, “unless”, or any other close natural language
correspondent of negation. And our CLP specification of it in Example 2 did
not employ negation. The form of modifications needed, in general, when up-
dating or conflict-handling in an OLP representation, moreover, go beyond
simply and’ing (i.e., conjoining) new negated body atoms in individual rules.
Rule A in RB1 actually became in RB2 two rules A1 and A2. 25

25 This was essentially due to the need to represent (in the body of modified Rule
A) the negation of a conjunction of atoms, which is equivalent to the disjunction of

12

(End of Example)

The example above thus illustrates how using Ordinary LP directly to specify
rulesets that need conflict handling or priorities, is clumsier and lower-level
than using Courteous LP, especially in regard to updating and avoiding overlap
cases where the rules might conflict.

Above, we called Example 3 a “direct” OLP version. Actually, as we have
shown in previous work [11,5,6], every (Situated) Courteous LP is expressively
reducible to a semantically equivalent (Situated) Ordinary LP, via use of a
transform called the Courteous Compiler. IBM CommonRules and SweetRules
make use of a Courteous Compiler component, for example; CommonRules
provides one as part of its toolset. The Courteous Compiler step is tractable
computationally: worst-case O(n3) but typically more like O(k ∗ n), where
3 ≤ k ≤ 50, in practical experience to date. Thus for every (S)CLP rulebase,
there is an “indirect” (S)OLP version of it. However, the Courteous Compiler
transform is sufficiently complex that it requires a considerable amount of
cognitive effort (including time and mistakes) for a typical human rulebase
author to achieve a similar result. Rather, it is typically much easier for the
author simply to employ the Courteous Compiler by working in the courteous
LP representation instead. That way, the rulebase author in effect lets the
machine do the work (after all, that’s what machines are for . . .).

So far in this section we have been discussing how to use the Courteous feature
of SCLP. In the rest of this section, we discuss how to use its Situated feature.

Example 4 (Ordering Lead Time Management, in SCLP)

Next, we extend Examples 1 and 2 to include actions and queries that are
performed by procedural attachments — utilizing the Situated extension of
(Courteous) LP. We add the following rules, effector statements, and sensor
statements to our natural language specification:

• (Rule D:) “Accept a purchase request if it is received before the lead time.”
• (Rule E:) “Deny a purchase request if it is received after the lead time.”
• (Action Rule F:) “Update the orders database if a purchase request is ac-

cepted.”
• (Action Rule G:) “Remind the customer of the lead time policy if a purchase

request is denied.”
• (Action Rule H:) “Notify the customer if a purchase request is accepted.”
• (Action Rule I:) “Notify the customer if a purchase request is denied.”

We represent these in the SCLP KR, in more detail, as follows:
〈d〉 acceptPurchaseRequest(?Request)

negations of atoms.

13

← orderModificationNotice(?Request, ?LeadT ime) ∧
deliveryDate(?Request, ?Day1) ∧
receiptDate(?Request, ?Day2) ∧
subtractDate(?Day1, ?LeadT ime, ?Day3) ∧
lessThanOrEqual(?Day2, ?Day3);

〈e〉 denyPurchaseRequest(?Request)
← orderModificationNotice(?Request, ?LeadT ime) ∧

deliveryDate(?Request, ?Day1) ∧
receiptDate(?Request, ?Day2) ∧
subtractDate(?Day1, ?LeadT ime, ?Day3) ∧
greaterThan(?Day2, ?Day3);

〈f〉 shouldUpdateOrderDb(?Request)
← acceptPurchaseRequest(?Request);

〈g〉 shouldRemindCustomerOfPolicy(?Request)
← denyPurchaseRequest(?Request);

〈h〉 shouldInformCustomer(?Request, accepted)
← acceptPurchaseRequest(?Request);

〈i〉 shouldInformCustomer(?Request, denied)
← denyPurchaseRequest(?Request);

The following effector statements each associate a pure-belief predicate, e.g.,
shouldInformCustomer, with an external procedure (here, a Java method),
e.g., orderMgmt.request.ack. During rule inferencing (more precisely, dur-
ing rule execution), when a conclusion is drawn about the predicate, e.g.,
shouldInformCustomer(request1049, accepted), then the external procedure
is invoked as a side-effectful action, e.g., the method orderMgmt.request.ack
is called with its parameters instantiated to (request1049, accepted).
shouldInformCustomer(?X, ?Y)

:: e :: orderMgmt.request.ack(?X, ?Y);
shouldUpdateOrderDB(?Request)

:: e :: orderMgmt.request.updOrderDB(?Request);
shouldRemindOfPolicy(?Request)

:: e :: orderMgmt.request.remind(?Request);
More SCLP Notation: here in an effector statement, from left to right, the
predicate comes first as an open atom (in which that predicate appears), fol-
lowed by “:: e ::”, followed by the external procedure (in which the same logical
variables appear as arguments).

The following sensor statements each associate a pure-belief predicate, e.g.,
receiptDate, with an external procedure (here a Java method), e.g.,
orderMgmt.request.getReceiptDate. During rule inferencing/execution, when
a rule antecedent condition (i.e., a literal in the rule’s “if” part) is tested,
e.g., receiptDate(?Request, ?Day2), the external procedure is queried to pro-
vide information about that condition’s truth (more precisely, for its answer
bindings). Some sensor statements, e.g., for the predicate lessThanOrEqual,

14

correspond to what in Prolog (or many other commercial rule systems) are
“built-ins”, utility procedures provided as a standard package with the rule
system rather than specified by a particular individual user/application.
receiptDate(?X, ?Y)

:: s :: orderMgmt.request.getReceiptDate(?X, ?Y);
deliveryDate(?X, ?Y)

:: s :: orderMgmt.order.getDelivDate(?X, ?Y);
subtractDate(?X, ?Y, ?Z)

:: s :: utils.date.subtract(?X, ?Y, ?Z);
lessThanOrEqual(?X, ?Y)

:: s :: utils.arith.lte(?X, ?Y);
greaterThan(?X, ?Y)

:: s :: utils.arith.gt(?X, ?Y);
notEquals(?X, ?Y)

:: s :: utils.arith.neq(?X, ?Y);
More SCLP Notation: here in a sensor statement, from left to right, the pred-
icate comes first as an open atom (in which that predicate appears), followed
by “:: s ::”, followed by the external procedure (in which the same logical
variables appear as arguments).

The added rules above enable one to make use of information accessible
through calls to (attached) sensor procedures, infer more conclusions, and
generate actions via calls to (attached) effector procedures.

Terminology: We say that the collection of information accessible through calls
to sensor procedures (i.e., “sensing”) can be viewed as a “virtual knowledge
base” of facts. We call these “virtual” facts or “sensor” facts. We say that
the actions generated via calls to effector procedures (i.e., “effecting”) are
“launched” actions.

Next, we continue our example. Let us consider the particular ordering situa-
tions pu34 and po56. Suppose that the sensor call
orderMgmt.request.getDeliveryDate(pu34, ?Day1);

returns with binding 2003 06 23 for variable ?Day1. This corresponds to the
virtual fact
deliveryDate(pu34, 2003 06 23);

In like fashion, suppose the overall virtual knowledge base of (relevant) sensor
facts consists of the following:
deliveryDate(pu34, 2003 06 23);
receiptDate(pu34, 2003 06 11));
deliveryDate(pu56, 2003 06 30);
receiptDate(pu56, 2003 06 25));
subtractDate(2003 06 23, days14, 2003 06 09);
subtractDate(2003 06 30, days2, 2003 06 28);
greaterThan(2003 06 11, 2003 06 09);

15

lessThanOrEqual(2003 06 25, 2003 06 28);
notEquals(days14, days2);
notEquals(days14, days30);
notEquals(days2, days30);

The predicate notEquals was used already in Example 2, and explicit facts
were specified for it there. Here, it is specified as a sensor built-in, which
corresponds to typical practice in commercial rule systems. The notEquals
facts listed in Example 2 can thus be omitted from the explicit rulebase here.

Let us call RB3 the rulebase that includes the above rules and sensor state-
ments and effector statements. Note RB3 includes RB1 from Example 1 ex-
cept that the explicit notEquals facts from there are omitted here, since here
they are virtual instead.

Then RB3 (together with the virtual knowledge base of sensor facts) entails
the following additional conclusions about the ordering situations pu34 and
pu56:
RB3 |= denyPurchaseRequest(pu34);
RB3 |= acceptPurchaseRequest(pu56);
RB3 |= shouldInformCustomer(pu34, denied);
RB3 |= shouldRemindCustomerOfPolicy(pu34);
RB3 |= shouldInformCustomer(pu56, accepted);
RB3 |= shouldUpdateOrderDb(pu56);

Each of the above entailed conclusions triggers effecting. RB3 thus launches
the following actions (effector calls):
RB3 ⇒ orderMgmt.request.ack(pu34, denied);
RB3 ⇒ orderMgmt.request.remind(pu34));
RB3 ⇒ orderMgmt.request.ack(pu56, accepted);
RB3 ⇒ orderMgmt.request.updOrderDB(pu56));

Notation: Here, ⇒ indicates launching of an action.

These additional entailed conclusions and launched actions are as desired.
Request pu34, which has lead time 14 days, is denied since it arrives only
11 days ahead of its delivery date. The customer (EagerCo) is thus notified
and reminded of the lead time policy. Request pu56, which has lead time
2 days, is accepted since it arrives 5 days ahead of its delivery date. The
customer (BeaverCo) is thus notified and the (seller ElvesCo’s) orders database
is updated.

16

6 RuleML Syntax: DTD for SCLP

In this section, we specify the XML syntax for SCLP in RuleML. In so doing,
we extend the syntax of RuleML syntax to SCLP – from the previous existing
Horn Logic Programs (OLP) case (“sublanguage”) of the syntax. This exten-
sion from Horn to SCLP is a novel contribution by us. This syntax specification
takes the form of an XML Document Type Definition (DTD).

Below we give that current DTD for SCLP RuleML. (More precisely, this is
version V0.8, dated April 22, 2003, posted at http://www.ruleml.org, “mono-
lith” version without the query element.) 26 For the sake of brevity and clar-
ity in presentation here, it has been altered to eliminate most comments and
whitespace, and to rearrange the sequence of the statements, but not changed
in substance.

Bold face indicates modifications made for the SCLP extension, i.e., differences
from the Horn LP RuleML V0.8 DTD. We interleave some in-line comments,
each enclosed in “/* . . . */” for clarity.

In RuleML’s abstract syntax, only the elements that represent ordered tuples
– i.e., “tup” and “bmtup” below – are intended to be sequence-sensitive. In
order to maximize sequence-independence despite XML’s sequence-sensitivity,
in the DTD all permutations of the ordering of children are permitted for
every other element. Unfortunately, the DTD mechanism does not permit one
to state sequence-insensitivity in a more elegant manner than listing all the
allowed permutations. However, the DTD mechanism has other virtues: it is
simple, widely used, and widely familiar.

<!ELEMENT rulebase ((rbaselab, (imp | fact | mutex | sens | effe)*)
| ((imp|fact|mutex|sens |effe)+, rbaselab?))>

<!ELEMENT rbaselab (ind | cterm)> /* rbaselab = rulebase label */
/* imp = implication rule ; rlab = rule label */
<!ELEMENT imp ((head, ((body, rlab?) | (rlab, body?))?)

| (body, ((head, rlab?) | (rlab, head)))
| (rlab,((head, body?) | (body, head))))>

<!ELEMENT fact ((rlab, head) | (head, rlab?))>
<!ELEMENT rlab (ind | cterm) >
<!ELEMENT head (cslit | atom | andh)>
<!ELEMENT body (fclit | atom | cslit | flit | andb | orb | and)>
<!ELEMENT andb ((fclit | atom | cslit | flit | andb | orb)*)>
<!ELEMENT and ((atom)*)>

26 Our first version of this extension was in late 2001 and extended the then-current
Horn RuleML version which was V0.7; that first version was then implemented in
the first version of SweetRules.

17

<!ELEMENT orb ((fclit | atom | cslit | flit | andb | orb)+)>
<!ELEMENT andh ((cslit | atom | andh)+)>
<!ELEMENT atom ((opr, (ind | var | cterm)*) | ((ind|var|cterm)+, opr))>
<!ENTITY % bool “yes|no”>
<!ELEMENT flit ((opr, (ind|var|cterm)*) | ((ind|var|cterm)+, opr))>
/* fneg = negation-as-failure (NAF) sign ; lit = literal */
<!ATTLIST flit fneg (%bool;) #IMPLIED>
<!ELEMENT opr (rel)>
<!ELEMENT rel (#PCDATA)> /* rel = relation = predicate */
<!ATTLIST rel href %URI; #IMPLIED>
<!ENTITY % URI “CDATA”>
<!ELEMENT var (#PCDATA)> /* var = (logical) variable */
<!ELEMENT ind (#PCDATA)> /* ind = individual */
<!ATTLIST ind href %URI; #IMPLIED>
<!ELEMENT cterm ((opc, (ind | var | cterm | tup | roli)*)

| ((ind | var | cterm | tup | roli)+, opc))>
<!ELEMENT opc (ctor)>
<!ELEMENT ctor (#PCDATA)>/* ctor = constructor = logical function*/
<!ATTLIST ctor href %URI; #IMPLIED>
<!ELEMENT tup ((ind | var | cterm | tup | roli)*)>
<!ELEMENT roli ((arv)*)> /*tup = tuple (ordered); roli = role’d list*/
<!ELEMENT arv ((arole, (ind | var | cterm | tup | roli))

| ((ind | var | cterm | tup | roli), arole)) >
<!ELEMENT arole (#PCDATA)> /* arole = argument role = slot */
<!ATTLIST arole href %URI; #IMPLIED>
<!ATTLIST rulebase direction/* = advisory intended inferencing direction*/

(forward | backward | bidirectional) “bidirectional”>
/* Next two attributes optionally specify a referenced XML Schema */
<!ATTLIST rulebase xsi:noNamespaceSchemaLocation %URI; #IMPLIED>
<!ATTLIST rulebase xmlns:xsi %URI; #IMPLIED>
/* Syntax specifically for COURTEOUS follows */
<!ELEMENT fclit ((opr, (ind|var|cterm)*) | ((ind|var|cterm)+, opr))>
<!ATTLIST fclit cneg (%bool;) #IMPLIED>
<!ATTLIST fclit fneg (%bool;) #IMPLIED>
/* cneg = (limited) classical/strong negation sign */
<!ELEMENT cslit ((opr, (ind|var|cterm)*) | ((ind|var|cterm)+, opr))>
<!ATTLIST cslit cneg (%bool;) #IMPLIED>
<!ELEMENT mutex ((oppo, mgiv?) | (mgiv, oppo))>
<!ELEMENT oppo (ando)>
<!ELEMENT mgiv (fclit | atom | flit | cslit | andb | and | orb)>
/* mgiv = mutex’s “given” part/condition */
<!ELEMENT ando (cslit, cslit)>
/* Syntax specifically for SITUATED follows */
<!ELEMENT sens ((opr, ((aproc, modli?) | (modli, aproc)))

| (aproc, ((opr, modli?) | (modli, opr)))

18

| (modli,((aproc, opr) | (opr, aproc))))>
/* sens = sensor statement ; effe = effector statement */
/* sensor procedure declaration has a required binding pattern:

modli = mode list ; mode = bound vs. free -ness of argument*/
<!ELEMENT effe ((opr, aproc) | (aproc, opr))>
<!ELEMENT aproc (jproc | uproc)>
/* aproc = attached procedure ; j = Java */
<!ELEMENT jproc ((clas, ((meth, path?) | (path, meth)))

| (meth, ((clas, path?) | (path, clas)))
| (path, ((meth, clas) | (clas, meth))))>

<!ELEMENT uproc (#PCDATA)>
<!ATTLIST uproc href %URI; #IMPLIED>
/* u = “universal”, i.e., general-purpose for using Web protocol,

e.g., Web Services – to be refined in future */
<!ELEMENT path (#PCDATA)>
<!ATTLIST path href %URI; #IMPLIED>
<!ELEMENT clas (#PCDATA)> /* clas = class */
<!ATTLIST clas href %URI; #IMPLIED>
<!ELEMENT meth (#PCDATA)> /* meth = method */
<!ATTLIST meth href %URI; #IMPLIED>
<!ELEMENT bmode EMPTY> /* bmode = (binding) mode */
<!ATTLIST bmode val (%bind;) “free”>
<!ENTITY % bind “bound|free”>
<!ELEMENT modli ((bmode | bmtup | bmroli)*)>
<!ELEMENT bmtup ((bmode | bmtup | bmroli)*)>
<!ELEMENT bmroli ((arbm)*)>
<!ELEMENT arbm ((arole, (bmode | bmtup | bmroli))

| ((bmode | bmtup | bmroli), arole))>

Observe that the DTD is nicely short overall: about two pages (86 lines includ-
ing comments) in this paper’s format. This relatively manageable size provides
a degree of cognitive simplicity that thereby aids implementers, (rule) authors,
and users.

We also have developed an abstract syntax (specification) for SCLP RuleML
that corresponds to the XML DTD (concrete) syntax. More details about
these, including extensive design comments, are available at
http://www.ruleml.org, http://ebusiness.mit.edu/bgrosof/#RuleML, and in
the email archives of the Joint US/EU ad hoc Agent Markup Language Com-
mittee (a.k.a. the ”Joint Committee”) at http://www.daml.org/committee.

In current work, we are extending the existing DTD version of the XML syn-
tax specification for RuleML, including for SCLP RuleML, to other forms of
concrete syntax. This work is in collaboration with others in the RuleML Ini-
tiative (especially Harold Boley, Said Tabet, and Michael Dean). Our abstract

19

syntax supports these other forms. One form employs XML Schema, a gen-
eralization of DTD, to define the syntax. Another form encodes the syntax
using Resource Description Format (RDF). RDF is a form of semi-structured
data that is somewhat more shareable than XML and that has a somewhat
semantically cleaner data model than XML has, but is typically itself in turn
encoded syntactically using XML (“RDF-XML”). A third form of concrete
syntax is a concise one in non-XML ASCII, intended for human reading and
editing. This new ASCII syntax is based in part upon the existing ASCII
“SCLPfile” syntaxes of SweetRules and IBM CommonRules.

Example 5 (Example of a SCLP Rulebase in RuleML Syntax)

Next we give a basic example of a SCLP rulebase in RuleML, i.e., in its current
(V0.8) XML syntax. RuleML inherits the relatively verbose character of XML.
For the sake of brevity, we show in detail only the first rule — Rule A from
Example 2.

<?xml version="1.0" ...>

<!DOCTYPE rulebase SYSTEM ...>

<rulebase>

<imp>

<_rlab><ind>a</ind></_rlab>

<_head>

<atom>

<_opr><rel>orderModificationNotice</rel></_opr>

<var>Request</var>

<ind>days14</ind>

</atom>

</_head>

<_body>

<andb>

<atom>

<_opr><rel>preferredCustomerOf</rel></_opr>

<var>Buyer</var>

<var>Seller</var>

</atom>

<atom>

<_opr><rel>purchaseRequest</rel></_opr>

<var>Request</var>

<var>Buyer</var>

<var>Seller</var>

</atom>

</andb>

</_body>

</imp>

20

...

</rulebase>

More examples of RuleML rulebases are available via the author’s website and
the RuleML website.

7 SweetRules Prototype of SCLP in RuleML

We have for the first time designed and prototyped how to perform inferencing
and translation for situated courteous logic programs (SCLP) in RuleML. The
prototype system is a set of tools called SweetRules. “SWEET” is short for
“Semantic WEb Enabling Technology”. As we mentioned earlier, the first ver-
sion of SweetRules was a refereed system demonstration at the Workshop on
Information Technology and Systems (WITS ’01) in Dec. 2001. The version of
SweetRules demonstrated there implemented fully general Courteous LP, but
not yet most Situated features. The current version of SweetRules supports
Situated features to a considerable degree, e.g., as part of its SweetJess com-
ponent [8]. Next, we give an overview of that prototype and its architecture.

The SweetRules toolset consists of three kinds of components: translators,
inferencing engines, and front-ends.

Translators translate between different rule languages / systems, using RuleML
as an interchange format. Currently there are already bidirectional translators
from SCLP RuleML to the following rule languages / systems:

• IBM CommonRules system, via its BRML XML syntax for SCLP rules.
This is a semantically clean forward-inferencing SCLP inferencing system,
that also has translation capabilities (more about that below). The Com-
monRules project team participates in the RuleML Initiative and has an-
nounced they plan to support RuleML in future.
• XSB Prolog logic programming system 27 . This is a backward-direction Or-

dinary LP inferencing system. It is free, open source, Web-downloadable 28 ,
and has an (ODBC) backend to SQL database systems such as Oracle’s
etc. Implemented in C, and using tabling, XSB is fast and scales well to
very large rulebases + databases. It is semantically clean and expressively
powerful. 29

27 by David Warren and his group at State University of New York at Stonybrook:
http://www.sunysb.edu/˜sbprolog
28 http://xsb.sourceforge.net
29 w.r.t. recursion in that it supports a quite broad case of the well founded semantics
[15] for negation-as-failure in Ordinary LP (and thus in Courteous LP).

21

• Jess (“Java Expert Systems Shell”) production rules system, which has an
ASCII syntax. Jess is a popular, semi-open-source OPS5-style inferencing
system, implemented in Java. 30 The component of SweetRules that trans-
lates to Jess and does inferencing via Jess is called SweetJess; see [8] and
http://daml.umbc.edu/sweetjess for details.
• Knowledge Interchange Format (KIF) language. This is an ASCII syntax for

first-order logic (FOL), and thus can represent Horn rules. There are several
rule systems that perform inferencing in KIF, e.g., JTP. 31 As we discussed
earlier, the close successor of KIF is (Simple) Common Logic (SCL). SCL
is currently developing an XML syntax, largely influenced by RuleML’s.
• Smodels 32 . This is an open-source forward-direction OLP inferencing sys-

tem, with a Prolog-style syntax, implemented in C.
• SCLPfile format, a concise Prolog-like ASCII syntax for SCLP. This is useful

for manual editing of rulebases (a more limited version of this is supported
directly in IBM CommonRules).
• Situated Ordinary LP RuleML – via a Courteous Compiler. As we men-

tioned earlier, the Courteous Compiler “compiles away” the courteous ex-
pressive features from a SCLP and generates a semantically equivalent (Sit-
uated) Ordinary LP.

Inferencing engines perform inferencing in RuleML. Inferencing starts from
a set of premises expressed in RuleML, i.e., a rulebase, and generates conclu-
sions also expressed in RuleML. The toolset has capabilities both for forward-
direction inferencing and for backward-direction answering, i.e., query-answering.
SweetRules performs RuleML inferencing indirectly, in three steps:

(1) translating the given rulebase to the rule language of another rule system
S. S might be Jess or CommonRules, for example. Likewise, it translates
the given query, if doing backward-direction reasoning, to S.

(2) employing S to do inferencing on the resulting rulebase.
(3) translating back to RuleML the results of inferencing in S.

Front-ends provide API’s and user interface (UI) capabilities to

• issue commands: to do translation or inferencing, including by composing
various sub-components of SweetRules along with other available rule sys-
tems and tools.
• edit: rulebases, the results of translation, or the results of inferencing.

30 by Ernest Friedman-Hill of Sandia National Labs, USA:
http://herzberg.ca.sandia.gov/jess
31 by Gleb Frank, Richard Fikes and Jessica Jenkins, at Stanford University:
http://www.ksl.stanford.edu/software/JTP
32 by Ilkka Niemela and Patrik Simons of University of Helsinki, Finland:
http://saturn.hut.fi/html/staff/ilkka.html

22

In current work, further additions to SweetRules’s functionality are being de-
veloped by our research group, including to integrate the tools more smoothly,
to support translation to additional rule systems, and to support new expres-
sive features and forms of syntax as those evolve from the RuleML Initiative
and the Semantic Web more generally.

SweetRules is implemented in Java and XSLT 33 , and uses several other tools,
including as discussed above. In particular, the translator from RuleML to
IBM CommonRules’ BRML is implemented in XSLT. SweetRules makes use of
several components from CommonRules, including its Courteous Compiler and
its translators to XSB, KIF, and Smodels. IBM CommonRules (its version of
1999-2000; it has more recent versions since) was the forerunner to SweetRules.
No accident – we conceived CommonRules and led its design, implementation,
and application piloting while then at IBM Research.

To recap: overall, SweetRules supports translation among and inferencing in
two of the four major currently commercially important (CCI) families of rule
systems that we discussed earlier, plus in FOL via KIF. It does so either by di-
rect translation, as in the case of SweetJess, or by indirect translation through
CommonRules. A free, open-source, Web-downloadable version of SweetRules
is planned for the near future.

8 Conclusions, Current and Future Work

The Abstract provided an initial overview of our contributions reported here.
In previous work, we developed the SCLP KR. Here, we showed for the first
time how to extend RuleML to support SCLP, by providing (1) a DTD specifi-
cation of its syntax, and (2) a prototype toolset — SweetRules – for translation
and inferencing with SCLP RuleML. We gave a novel detailed long example of
how to use SCLP RuleML to represent e-commerce rules. The example rules
were for ordering lead time management, which is a key task in many B2B
settings including manufacturing supply chain management (SCM). We gave
a novel discussion of the features and advantages of overall RuleML and of
SCLP RuleML in particular, focusing especially on the Courteous and Webiz-
ing aspects, including in the context of the long example.

Our previous papers about the SCLP KR include a number of other exam-
ples of using it to represent e-commerce rules, especially for e-contracting
(including negotiation) [11,14,12,8]. For example, rules are useful to represent
product/service/deal descriptions; pricing; search, selection, monitoring, and

33 eXtended Stylesheet Language Transformations, a popular tool for translating
between different XML representations; see, e.g., http://www.w3.org/TR/xslt

23

composition of Web Services. We have previously in [11] given a detailed re-
quirements analysis which motivates and justifies use of Webized SCLP, and
thus SCLP RuleML, to represent e-commerce rules for e-contracting. In cur-
rent work, we are exploring use of SCLP RuleML to represent e-contracting
aspects of Semantic Web Services, including via our participation in the Se-
mantic Web Services Initiative 34 . Interesting relevant Web Services standards
efforts include UDDI for discovery and BPEL4WS for business process in-
teractions, both from Oasis 35 . Related also is our previous work on using
multi-agent LP rules to represent trust management policies and reasoning,
including for security authorization involving delegation [13].

Earlier we discussed several directions of current and future work, notably on
the SweetRules prototype and on development of more forms of syntax for
SCLP RuleML, including to connect it to Web Services more tightly. Next we
discuss additional directions for current and future work.

One direction for future work is thus to explore more pilot applications of
SCLP RuleML in e-commerce. An interesting area is to employ SCLP RuleML
within emerging general-purpose Web e-commerce communication approaches
such as ebXML 36 and its follow-on UBL 37 . We hope a community of re-
searchers and practitioners will try out the SCLP RuleML approach in vari-
ous areas of e-commerce, develop requirements, and provide a feedback loop
to further improvements and extensions.

We have already identified, however, several important directions for future
work on the foundations of SweetRules approach, to extend the kinds of rule
languages / systems to (and from) which SCLP RuleML can be translated and
in which SCLP RuleML inferencing can be performed. One direction is the
CCI family of SQL databases. Another direction is the CCI family of Event-
Condition-Action rules. A third direction is to support OWL ontologies, i.e.,
the Description Logic KR which is a fragment of FOL. This is needed in order
to semantically integrate ontologies so that RuleML rules can make use of
predicates defined in OWL ontologies while ensuring completeness and con-
sistency w.r.t. the semantics of those ontologies [12,9]. A fourth direction for
future work is to support the emerging standards for semi-structured databases
encoded in XML: XQuery, the new W3C standard for XML databases, and the
as-yet loose area of RDF query languages / systems. In current work, we with
collaborators are pursuing aspects of all these four directions. Each of these
four directions requires some degree of new theoretical research. In particular,
we (with student Boris Motik of University of Karslruhe, Germany) have de-
veloped a running prototype system, called SweetOnto, that translates from

34 http://www.swsi.org
35 http://www.oasis-open.org
36 http://www.ebxml.org
37 www.oasis-open.org/committees/ubl

24

a subset of OWL to Horn RuleML by implementing the Description Logic
Programs approach [9], and plan to provide a free public Web-downloadable
version of it in the near future.

Acknowledgements

Harold Boley and Said Tabet are my close collaborators in leading the RuleML
Initiative. Hoi Chan of IBM T.J. Watson Research Center contributed much
to the the implementation of IBM CommonRules including design details of
Business Rules Markup Language. Mohammed Youssef Kabbaj, student at
MIT, contributed to the initial SweetRules prototype’s XSLT implementation.
Earl J. Wagner, student at MIT, contributed to the front-end components of
SweetRules. Funding support was provided by grants from the DARPA Agent
Markup Language (DAML) program and the Center for eBusiness @ MIT
Vision Fund.

References

[1] Chitta Baral and Michael Gelfond. Logic programming and knowledge
representation. Journal of Logic Programming, 19,20:73–148, 1994. Includes
extensive review of literature.

[2] Benjamin N. Grosof. Building Commercial Agents: An IBM Research
Perspective (Invited Talk). In Proceedings of the Second International
Conference and Exhibition on Practical Applications of Intelligent Agents and
Multi-Agent Technology (PAAM97), P.O. Box 137, Blackpool, Lancashire,
FY2 9UN, UK. http://www.demon.co.uk./ar/PAAM97, April 1997. Practical
Application Company Ltd. Held London, UK. Also available as IBM Research
Report RC 20835 at World Wide Web http://www.research.ibm.com .

[3] Benjamin N. Grosof. Courteous logic programs: Prioritized conflict
handling for rules. Technical report, IBM T.J. Watson Research Center,
http://www.research.ibm.com , search for Research Reports; P.O. Box 704,
Yorktown Heights, NY 10598, Dec. 1997. IBM Research Report RC 20836.
This is an extended version of [4].

[4] Benjamin N. Grosof. Prioritized Conflict Handling for Logic Programs. In
Jan Maluszynski, editor, Logic Programming: Proceedings of the International
Symposium (ILPS-97), pages 197–211, Cambridge, MA, USA, 1997. MIT Press.
Held Port Jefferson, NY, USA, Oct. 12-17, 1997. http://www.ida.liu.se/~ilps97.
Extended version available as IBM Research Report RC 20836 at
http://www.research.ibm.com .

25

[5] Benjamin N. Grosof. Compiling Prioritized Default Rules Into Ordinary
Logic Programs. Technical report, IBM T.J. Watson Research Center,
http://www.research.ibm.com , search for Research Reports; P.O. Box 704,
Yorktown Heights, NY 10598. USA, May 1999. IBM Research Report RC
21472.

[6] Benjamin N. Grosof. A Courteous Compiler from Generalized Courteous Logic
Programs To Ordinary Logic Programs (Preliminary Report). Technical report,
IBM T.J. Watson Research Center, http://www.research.ibm.com ; P.O. Box
704, Yorktown Heights, NY 10598. USA, July 1999. This is a supplementary
followon to IBM Research Report RC 21472. Revised version forthcoming as
a MIT report; see author’s webpage. Included as part of documentation in
the IBM CommonRules 1.0 alpha prototype Web release of July 30, 1999 at
http://alphaworks.ibm.com .

[7] Benjamin N. Grosof. Representing E-Business Rules for the Semantic Web:
Situated Courteous Logic Programs in RuleML. In Jeffrey Parsons and Olivia
Sheng, editors, Proceedings of the 11th Workshop on Information Technologies
and Systems (WITS ’01), 2001. (http://www.busi.mun.ca/parsons/wits2001/)
Held Dec. 15–16, 2001, New Orleans, LA, USA, in conjunction with the
International Conference on Information Systems (ICIS ’01). Available at
author’s website, along with extended report version of Dec. 2002.

[8] Benjamin N. Grosof, Mahesh D. Gandhe, and Timothy W. Finin.
SweetJess: Translating DamlRuleML to Jess. In Proc. International
Workshop on Rule Markup Languages for Business Rules on the Semantic
Web, 2002. (http://tmitwww.tm.tue.nl/staff/gwagner/RuleML-BR-SW.html)
Held 14 June 2002, Sardinia (Italy) in conjunction with the First
International Semantic Web Conference (ISWC-2002). Extended and updated
Working Paper available at first author’s website. Prototype available via
http://www.daml.umbc.edu/sweetjess.

[9] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker.
Description Logic Programs: Combining Logic Programs with Description
Logic. In Proceedings of the 12th International Conference on the World Wide
Web (WWW-2003). ACM Press, 2003. (http://www.www2003.org) Held May
20–23, 2003, Budapest, Hungary.

[10] Benjamin N. Grosof and Yannis Labrou. An Approach to using XML
and a Rule-based Content Language with an Agent Communication
Language. In Frank Dignum and Mark Greaves, editors, Issues in Agent
Communication. Springer-Verlag, 2000. Slightly revised from version in:
Proc. IJCAI-99 Workshop on Agent Communication Languages (ACL-99)
(http://wwwis.win.tue.nl/acl99), available also as IBM Research Report RC
21491 (May 1999).

[11] Benjamin N. Grosof, Yannis Labrou, and Hoi Y. Chan. A Declarative
Approach to Business Rules in Contracts: Courteous Logic Programs in XML.
In Michael P. Wellman, editor, Proceedings of the 1st ACM Conference on
Electronic Commerce (EC-99). ACM Press, 1999. Held in Denver, CO.

26

[12] Benjamin N. Grosof and Terrence C. Poon. SweetDeal: Representing
Agent Contracts with Exceptions using XML Rules, Ontologies, and Process
Descriptions. In Proceedings of the 12th International Conference on the World
Wide Web (WWW-2003). ACM Press, 2003. (http://www.www2003.org) Held
May 20–23, 2003, Budapest, Hungary. Extended version submitted to journal
is available at author’s website.

[13] Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. Delegation logic:
A logic-based approach to distributed authorization. ACM Transactions on
Information Systems Security (TISSEC), 6(1), Feb. 2003.

[14] Daniel M. Reeves, Michael P. Wellman, and Benjamin N. Grosof. Automated
negotiation from declarative contract descriptions. Computational Intelligence,
18(4):482–500, Nov. 2002. Special issue on Agent Technologies for Electronic
Commerce.

[15] A. Van Gelder, K. Ross, and J. Schlipf. The well-founded semantics for general
logic programs. Journal of ACM, 38(3):620–650, 1991.

27

