Finding and counting small induced subgraphs efficiently

Angelos Assos
assos@mit.edu

June 21, 2023

Overview

(1) Listing all simplicial vertices
(2) Subgraphs on four vertices

- Diamond-free Graphs
- Counting the number of 4 -cliques
- Counting all subgraphs on 4 vertices

Simplicial vertices

In this section we are interested in listing all simplicial vertices of a simple connected graph $G(V, E)$ on n vertices and m edges.

Definition

A vertex $x \in G$ is simplicial if its neighborhood $N(x)$ is complete.

Figure: Example Graph; yellow vertices are simplicial

Simplicial vertices

Lemma 1

A vertex $x \in G$ is simplicial if and only if for every neighbor y it holds that $N[x] \subseteq N[y]$

Proof: By the definition of the simplicial vertex, if x is simplicial then it must be obvious that $N[x] \subseteq N[y]$ for every neighboring y.

For the other direction, assume that $N[x] \subseteq N[y]$ for all neighbors y of x. If x is not simplicial, then there are two neighbors of x, y and z, that are not connected. Then $z \in N[x]$ and $z \notin N[y]$ which contradicts $N[x] \subseteq N[y]$.

Simplicial vertices

Lemma 1

A vertex $x \in G$ is simplicial if and only if for every neighbor y of x it holds that $N(x) \subseteq N(y)$

Corollary 1

A vertex $x \in G$ is simplicial if and only if for every neighbor y of x it holds that $|N(x) \cap N(y)|=|N(x)|$

Take the $0 / 1$ adjacency matrix A of the graph G with 1 s on the diagonals. Consider A^{2}. We will have:

$$
\left(A^{2}\right)_{x, y}=|N[x] \cap N[y]|
$$

Simple algorithm for Simplicial vertices

Corollary 1

A vertex $x \in G$ is simplicial if and only if for every neighbor y of x it holds that $|N(x) \cap N(y)|=|N(x)|$

We present a simple algorithm for listing all simplicial vertices in $O\left(n^{\omega}\right)$:

- Construct A as described
- Compute A^{2} in $O\left(n^{\omega}\right)$
- Check for every vertex x if it is simplicial in $O(d(x))$ (for every neighbor y of x it must be $A_{x, y}^{2}=A_{x, x}^{2}$ from corollary 1).
\Longrightarrow total running time $O\left(n^{\omega}\right)$

Another approach

We present another algorithm for listing all simplicial vertices that uses the low degree high degree technique.

Whenever we use this technique, suppose the low degree vertices L are vertices that have degree at most D and high degree vertices have degree at least $D+1$.

Another approach

Key Observation 1: If a vertex of high degree is simplicial, then all of its neighbors are of high degree as well.

Another approach

Key Observation 1: If a vertex of high degree is simplicial, then all of its neighbors are of high degree as well.

Proof: Follows from Lemma 1.

Another approach

Key Observation 1: If a vertex of high degree is simplicial, then all of its neighbors are of high degree as well.

Proof: Follows from Lemma 1.
Key Observation 2: We can compute if a vertex x of low degree is simplicial in $O\left(d(x)^{2}\right)$

Another approach

Key Observation 1: If a vertex of high degree is simplicial, then all of its neighbors are of high degree as well.

Proof: Follows from Lemma 1.
Key Observation 2: We can compute if a vertex x of low degree is simplicial in $O\left(d(x)^{2}\right)$

Proof: We can check every pair of neighbors of x to see if they are connected which takes $O\left(d(x)^{2}\right)$.

Another approach

Key Observation 1: If a vertex of high degree is simplicial, then all of its neighbors are of high degree as well.

Proof: Follows from Lemma 1.
Key Observation 2: We can compute if a vertex x of low degree is simplicial in $O\left(d(x)^{2}\right)$

Proof: We can check every pair of neighbors of x to see if they are connected which takes $O\left(d(x)^{2}\right)$.

Key Observation 3: We can compute if there are simplicial high degree vertices in $O\left(\left(\frac{m}{D}\right)^{\omega}\right)$

Another approach

Key Observation 1: If a vertex of high degree is simplicial, then all of its neighbors are of high degree as well.

Proof: Follows from Lemma 1.
Key Observation 2: We can compute if a vertex x of low degree is simplicial in $O\left(d(x)^{2}\right)$

Proof: We can check every pair of neighbors of x to see if they are connected which takes $O\left(d(x)^{2}\right)$.

Key Observation 3: We can compute if a vertex x of high degree is simplicial in $O\left(\left(\frac{m}{D}\right)^{\omega}\right)$

Proof: We can disregard all high degree vertices that have neighbors in L. For the high degree vertices that remain, use the previous approach of $O\left(n^{\omega}\right)$ to find all simplicial vertices.

Another approach

$\Rightarrow(1),(2),(3)$ there is an $O\left(m^{\frac{2 \omega}{\omega+1}}\right)$ time algorithm that can list all simplicial vertices(by choosing D to be $m^{\frac{\omega-1}{\omega+1}}$)

Subgraphs on four vertices

Figure: All non-isomorphic graphs on 4 vertices

Diamond-free Graphs

Figure: The diamond graph

Diamond graph $=K_{4}-e$
Create an algorithm to check if a graph G is diamond-free.

Diamond-free Graphs

Lemma 2

A graph G is diamond-free if for every vertex $x, G[N(x)]$ is a cluster graph(a disjoint union of cliques)

Diamond-free Graphs

Lemma 2

A graph G is diamond-free if for every vertex $x, G[N(x)]$ is a cluster graph(a disjoint union of cliques)

Proof: Consider a vertex x of degree 3 in a certain diamond, the neighborhood of x contains a P_{3}, therefore $G[N(x)]$ is not a cluster graph. Conversely, if for some $x \in G, G[N(x)]$ is not a cluster graph then it must contain a P_{3}.

Diamond-free Graphs

Lemma 2

A graph G is diamond-free if for every vertex $x, G[N(x)]$ is a cluster graph(a disjoint union of cliques)

Proof: Consider a vertex x of degree 3 in a certain diamond, the neighborhood of x contains a P_{3}, therefore $G[N(x)]$ is not a cluster graph. Conversely, if for some $x \in G, G[N(x)]$ is not a cluster graph then it must contain a P_{3}.

Corollary 2

MAXIMUM CLIQUE is solvable in polynomial time $(O(n(n+m)))$ for diamond free graphs.

Diamond-free Graphs

Algorithm for checking if a graph G is diamond-free:

Diamond-free Graphs

Algorithm for checking if a graph G is diamond-free:

- Firstly, check if there exists a diamond with a low degree vertex of degree 3 in the diamond in $O\left(d(x)^{2}\right)$ for every vertex thus $O(D m)$ in total. (Check for every $x \in L$ if $N(x)$ is a cluster graph).

Diamond-free Graphs

Algorithm for checking if a graph G is diamond-free:

- Firstly, check if there exists a diamond with a low degree vertex of degree 3 in the diamond in $O\left(d(x)^{2}\right)$ for every vertex thus $O(D m)$ in total. (Check for every $x \in L$ if $N(x)$ is a cluster graph).
- Secondly, check if there exists a diamond with a low degree vertex of degree 2 in the diamond in $O\left(n^{\omega}+D m\right)$ (We have the cliques from before, so for every clique C of $N(x)$ check if $y, z \in C$ have a common neighbor outside C, i.e. if $A_{y, z}^{2}>|C|-1$).

Diamond-free Graphs

Algorithm for checking if a graph G is diamond-free:

- Firstly, check if there exists a diamond with a low degree vertex of degree 3 in the diamond in $O\left(d(x)^{2}\right)$ for every vertex thus $O(D m)$ in total. (Check for every $x \in L$ if $N(x)$ is a cluster graph).
- Secondly, check if there exists a diamond with a low degree vertex of degree 2 in the diamond in $O\left(n^{\omega}+D m\right)$ (We have the cliques from before, so for every clique C of $N(x)$ check if $y, z \in C$ have a common neighbor outside C, i.e. if $A_{y, z}^{2}>|C|-1$).
- Lastly, disregard all low degree vertices and repeat the method we used in the first bullet

$$
O\left(\sum_{x \in H} d(x)^{2}\right)=O(m|H|)=O\left(m^{2} / D\right)
$$

Diamond-free Graphs

\Longrightarrow we have an algorithm running in $O\left(n^{\omega}+m^{1.5}\right)$ (for $D=\sqrt{m}$) that detects if a graph G is diamond free.

4-cliques

Figure: A 4-clique

We will try to count how the number of 4 cliques in G.
There are 5 different types of 4-cliques, depending on how many low degree vertices the clique has(0-4).
$L_{i}=$ set of cliques of size 4 that have i low degree vertices in it.
$I_{i}=\left|L_{i}\right|$
We want to compute: $K=I_{0}+I_{1}+I_{2}+I_{3}+I_{4}$

$1^{\text {st }}$ equation

Computing 4-cliques containing vertices only in H
Let A be the adjacency matrix of $G[N(x) \cap H], x \in H$ with $d_{H}(x)$ vertices
Number of cliques containing $x=$ number of triangles in A
Triangle detection is equivalent to $\mathrm{BMM} \Longrightarrow$ we can find all triangles containing x in $O\left(d_{H}(x)^{\omega}\right)$

Running time: $O\left(\sum_{x \in H} d_{H}(x)^{\omega}\right)=O\left(\frac{m^{\omega}}{D^{\omega-1}}\right)$
because $\sum_{x \in H} d_{H}(x)^{\omega} \leq\left(\sum_{x \in H} d_{H}(x)\right) \frac{(2 m)^{\omega-1}}{D^{\omega-1}}=O\left(\frac{m^{\omega}}{D^{\omega-1}}\right)$ and $d_{H}(x) \leq \frac{2 m}{D}$

The above will give us exactly $4 I_{0}$

$2^{\text {nd }}$ equation

Similarly, we can compute 4-cliques containing vertices only in L
Let A be the adjacency matrix of $G[N(x) \cap L], x \in L_{\text {, }}$, with $d_{L}(x)$ vertices.
Number of cliques containing $x=$ number of triangles in A
Triangle detection is equivalent to $\mathrm{BMM} \Longrightarrow$ we can find all triangles containing x in $O\left(d_{L}(x)^{\omega}\right)$
Running time: $O\left(\sum_{x \in H} d_{H}(x)^{\omega}\right)=O\left(m D^{\omega-1}\right)$ because $\sum_{x \in L} d_{L}(x)^{\omega} \leq\left(\sum_{x \in L} d_{L}(x)\right) D^{\omega-1}=O\left(m D^{\omega-1}\right)$ and $d_{L}(x) \leq D$

The above will give us exactly $4 / 4$

$3^{\text {rd }}, 4^{\text {th }}, 5^{\text {th }}$ equations

Other 3 equations found similarly:

- Number of triangles of $G[N(x) \cap H]$ for $x \in L$ will give I_{1} in total time of $O\left(m D^{\omega-1}\right)$
- Number of triangles of $G[N(x)]$ for $x \in L$ will give $I_{1}+2 I_{2}+3 I_{3}+4 I_{4}$ in total time of $O\left(m D^{\omega-1}\right)$
- Number of triangles of $G[N(x)]$ for $x \in L$ will give $2 l_{2}+3 l_{1}$ in total time of $O\left(m D^{\omega-1}\right)$ - when counting triangles, count only the triangles that at least two of x neighbors are in H.

Combining results

Finally, we have 5 equations for 5 variables \Longrightarrow we can compute $I_{0}+I_{1}+I_{2}+I_{3}+I_{4}$
Running time: For $D=\sqrt{m}$ we get $O\left(m^{\frac{\omega+1}{2}}\right)$
\Longrightarrow we can compute K in $O\left(m^{\frac{\omega+1}{2}}\right)$

Finding all subgraphs on 4 vertices

Figure: 4-clique(K), Diamond(D), Paw(Q), Claw(Y), Square(S), 4-path(P)

For K, D, Q, Y, S, P we have the following equations, where A is the adjacency matrix of G and $C=\bar{A}$:

$$
\begin{aligned}
& \sum_{(x, y) \in E}\binom{\left(A^{2}\right)_{x, y}}{2}=6 K+D, \quad \sum_{(x, y) \notin E}\binom{\left(A^{2}\right)_{2, y}}{2}=D+2 S \\
& \sum_{(x, y) \in E}(A C)_{x, y}(C A)_{x, y}=4 S+P, \quad \sum_{x \in V}\left(A^{3}\right)_{x, x}=4 D+2 P+4 Q \\
& \sum_{(x, y) \in E}\binom{(A C)_{x, y}}{2}=Q+3 Y
\end{aligned}
$$

Finding all subgraphs on 4 vertices

From the above five equations, the LHS's can be computed in BMM time, i.e. $O\left(n^{\omega}\right)$

We are missing ,however, one equation ...what can we do?

Finding all subgraphs on 4 vertices

From the above five equations, the LHS's can be computed in BMM time, i.e. $O\left(n^{\omega}\right)$

We are missing ,however, one equation ...what can we do?
We can use the previous algorithm in which we computed K !
\Longrightarrow Running time: $O\left(n^{\omega}+m^{\frac{\omega+1}{2}}\right)$

The end

