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1 Introduction

1.1 Introduction to the problem

The convex body chasing problem, first introduced by Friedman and Linial [FL93], is a rather
important competitive analysis problem with a long line of work. The problem itself is easy
to state and understand: We control a point in Rd initially at x0 “ 0, and for each time
step t P N , the adversary gives a convex body Kt Ď Rd as a request, and the player picks
a point inside the convex body, i.e. pick an xt such that xt P Kt. (In essence we are moving
our point to lie within Kt.) The goal is to minimize the total distance moved over all time
steps T , which is:

T
ÿ

t“1

||xt ´ xt´1||

In this paper, we work in the framework of competitive analysis. The Friedman-Linial Con-
jecture states it is possible to achieve constant competitiveness in any d dimensional space
Rd. In fact, this constant is at least

?
d, as shown later in section 5.1. This conjecture has

remained open for over two decades, but it recently gained a lot of attention because of its
connections to machine learning.

1.2 Past Results and Roadmap for this paper

As we mentioned before, the idea of the Convex Bodies Chasing problem was initiated by
the questions asked by Linial and Friedman [FL93] back in the 90’s, when they were trying
to understand the interplay between geometry and competitive ratios in online problems on
metric spaces. They provided us with a lower bound of

?
d for the competitive ratio where d

is the number of dimensions. After many years of little to no substantial progress (especially

in the cases where d ě 3), people start to shift their attention to the restricted variant of
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the problem: Nested Convex Bodies Chasing, in which the sequence of bodies pKtq must be
nested (i.e. inside the last request):

K1 Ě K2 Ě ⋯ Ě KT

Bansal et al. [BBE`18] gave an exponential competitive algorithm for the nested case of the
problem. Shortly after, Argue et al. [ABC`19] improved the algorithm by moving to the cen-
troid of each requested convex body and managed to get Opd log dq competitiveness on the
nested case (covered in section 5.3). The trick is that every time we do that, the volume of
the body shrinks by at least a constant factor, and so after a small amount of moves, we are
going to ‘eliminate’ a dimension (imagine if we had a 3d body, after a few moves it will look
like a pancake).

A year later Bubeck et al. [BLLS18] managed to chase an even better point than the cen-
troid, namely the Steiner Point (defined in Section 2). They manage to improve the bound
to Opmin pd,

?
d logT qq where T is the number of bodies to be followed, which we would ex-

amine in section 6.

Notice that all the aforementioned bounds are for the nested case. Argue et al. [AGTG21]
managed to generalize the Opmin pd,

?
d logT qq competitive algorithm of the nested case to

the general case. We will give a brief overview of the algorithm in Section 7. At the end of
this paper we give current results for all versions of the problems and all norms.

2 Preliminaries

Before we dive in the specifics of convex body chasing, this section is introducing some of the
basic concepts of computational geometry and some objects that we are going to examine
through this paper, including lp norm, centroid, and most importantly, the Steiner Point.

Definition 2.1. For a real number l ě 1, the lp norm of a vector x is defined by:

||x||p “ p|x1|
p ` |x2|

p `⋯` |xn|pq1{p

In the special case of p “ 2, we have the Euclidean norm:

||x|| “ ||x||2 “

b

px2
1 ` x2

2 `⋯` x2
nq

In the special case of p “ 8, we have the maximum norm:

||x|| “ ||x||8 “ maxt|x1|, |x2|,⋯, |xn|u

For most of the paper, we will be talking about Euclidean norm. However, there are results
for the maximum norm at the end of the paper that will be briefly talked about.

Definition 2.2. First, a ball in dimension d with radius r is denoted by Br, i.e.

Br “ tx P Rd ∶∥x∥ ď ru

and we use B to represent the unit circle, i.e. B “ B1.
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Definition 2.3. We denote the centroid or center of mass of a convex body K as cgpKq. It
is the average of every points, formally defined as:

cgpKq “

ş

xPK
x dx

ş

xPK
dx

Now, we have the following 3 definitions for the Steiner Point of a convex body K, denoted
by stpKq:

Definition 2.4. For any direction θ P Sd´1 (where Sd´1 denotes the boundary of a hyper-
sphere in d-dimension), let fKpθq “ arg maxxPK pθ ¨ xq which is the extreme point in K at
direction θ. Then we have:

stpKq “

ż

θPSd´1

fKpθqdθ

Note that fK is the gradient of the body K. Also note that here we integrate over the uni-
form probability measure on Sd´1

Figure 1: the Steiner Point is the weighted average of extreme points, where the weight is
represented by the area of these circular sectors. Note they are perpendicular to the edges.

Definition 2.5. For any direction θ P Sd´1, let hKpθq “ maxxPK pθ ¨ xq, so that hK is the
support function of K. Then we have:

stpKq “ d

ż

θPSd´1

θ ¨ hKpθqdθ

Definition 2.6. [Prz96]: the Steiner Point of a convex body is defined as:

stpKq “ lim
sÑ8

cgpK ` sBq
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The above three definitions are all useful in their own way; the first definition tells us that
the Steiner Point will always be inside the body K. The second definition is used to bound
the movement. The third definition will also be helpful in the general case. Actually, the in-
tegrals of the first two definitions of the Steiner Point can be proved to be equivalent due to
the divergence theorem, once we noteme that fKpθq “ ∇hKpθq.

Let us finally define the work function which we will use in section 7. The work function up
to query t of point x, is the optimal trajectory that satisfies the first t queries and ends up at
point x. Therefore:

wtpxq “ min
x1,x2,...,xt

ÿ

i“1..t

∥xi ´ xi´1∥`∥x ´ xt∥

s.t. xi P Ki

Definition 2.7. A 1-dimensional projection on the k’th dimension is the set

Sk “ txk ∶ px1, x1, ..., xk, xk`1, ..., xdq P K}

In other words, it is all the points xk such that there is a point in K that contains xk in their
k’th coordinate. The length of the projection is defined as lk “ maxxPSk

x ´ minxPSk
x.

Definition 2.8. The width of a convex body K wpKq is the average length random 1-dimensional
projection on the body K.

The last two definitions will only be used in the later sections of the paper. Now, let us look
at some special cases of the algorithm to provide some intuition.

3 Function chasing

Before we dive into the specifics of the algorithms, we would first like to present the general
problem of chasing convex functions and how it can be reduced to the easier subproblem of
chasing convex bodies using the technique from [BLLS19]. When chasing convex functions,
each request, instead of corresponding to a convex set as in convex bodies chasing, corre-
sponds to a convex function ft : Rd Ñ R` Y t`8u (that is, each point in the space has an ex-
tra cost called service cost, which is a positive number that can be infinity). In other words,
in addition to the movement cost between two points xt´1 and xt, there is now also a service
cost of ftpxtq that varies on the position the point ends up at each step and varies between
request, and we are minimizing

T
ÿ

t“1

p||xt ´ xt´1|| ` ftpxtqq

It is easy to see that convex body chasing is a special case of convex function chasing by es-
sentially making the service cost infinity anywhere outside of the convex set and zero inside
the convex set. We can even furthermore argue that these problems are roughly equivalent in
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Figure 2: The reduction from 1d Convex Function Chasing to 2d Convex Body Chasing

competitive analysis, as argued by Bubeck et al, in that a convex function chasing problem
in dimension d can be reduced to a convex body chasing problem in dimension d ` 1 (with
only a loss of constant factor). This is achieved via replacing the function request with two
requests: one requesting the point to be on the area above the graph of the function, (which
is feasible since the function is convex itself), another requesting the point to be back on the
axis (formally Rd ˆ t0u.), and thus the moving cost is covered by the horizontal distance in
first part and the service cost covered by the vertical distance in the second part. (see figure
2) Because they are roughly equivalent, we would be dealing with the Convex Body Chasing
case with no service cost inside the convex set.

4 Line Chasing

Line Chasing is a special case of convex set chasing, where all the convex set are lines. In its
introduction by Friedman and Linial [FL93], a 28.53 competitive ratio in 2d plane is achieved
by doing greedy algorithm on the lines after some transformations (this ratio increases as the
dimension gets higher). After decades, Bienkowski et al [BBC`18]. proposed a extremely ele-
gant algorithm named DRIFT that achieves a competitive ratio of 3 for all dimensions.

The DRIFT algorithm (see figure 3) has the following intuition: suppose the last requested
line is L and we need to move from P P L to L1, the greedy algorithm (making a perpendicu-
lar line to move the shortest distance) will move to P P L1, which could potentially be bad if
we simply alternate between L and L1, where DRIFT drifts a distance x “ 1?

2
ph`s´rq (as in

figure 3) toward the intersection. (If they do not intersect, we do the same as greedy.) Its 3-
competitiveness can be proved by analyzing the potential function ϕpP,Aq depending on the
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Figure 3: Instead of greedily going to P , DRIFT drift toward the intersection s

locations P,A P L of the algorithm’s and the adversary’s point. The higher-dimension cases
can solved by projecting the lines to a carefully chosen plane.

This idea of drifting toward the center will be used later.

5 Lower bound and Baseline Ideas

5.1 Lower bound

An easily illustrated lower bound for the competitive ratio is
?
d. In a d-dimensional cube, we

can cut the dimensions one by one by requesting a pd´1q-dimensional cube, and each time we
are forced to use the center of the pd ´ 1q-dimensional cube because otherwise our adversary
could take advantage of that by requesting the opposite of wherever we drifted.

Figure 4: in a square (2d), we move to the center of requested line (1d)

Eventually our request will be just a point, the end of the path. While our algorithm moved
the Manhattan distance to get to the point, the clairvoyant algorithm knows that it could
just move to the final point, costing the Euclidean distance.

According to Pythagoras’s theorem for Euclidean space (see figure 5), we know that the ratio
between the two would be

?
d.
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Figure 5: Manhattan distance v.s. Euclidean Distance

5.2 Greedy Algorithm

Figure 6: being greedy can make us non-competitive with OPT

Being greedy and choosing the closest point in the convex body from where we currently are
does not work. For a counterexample, see figure 6. If we start near the perimeter of a circle
and each request is a slightly more tilted semicircle, we are just greedily making a perpen-
dicular line and going in spirals, where the adversary could have just gone to the center and
solved the requests once and for all. This results in an arbitrarily large competitive ratio, de-
pending on how much we tilt the semicircle each time (after all, a tangent line of a circle is
always perpendicular to the diameter).

5.3 Centroid Algorithm

Notice that in greedy algorithms we just go to the edge of the convex shape. The opposite
approach would be always moving toward the center of the convex shape to save time for the
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next request. The high level idea behind the centroid algorithm by Argue et al. [ABC`19]
is that the point always moves to the centroid of the shapes (when they are not already in
the request, of course), where centroid is defined by the mean of all points. The competitive
ratio for this algorithm is Opd log dq (in the nested case). Here is a rough proof. The worst
case for the centroid algorithm, in a 2d example, is when we start from a rectangle, then the
adversary alternately requests slanted rectangles and normal rectangles, resulting in a zig-zag
pattern. (see figure 7)

Figure 7: Worst case: we follow the centroid through the slanted shapes

Suppose the rectangle has a side length of r, while the optimum can just spend Oprq to move
to the side, our algorithm needs to basically “thin out” a dimension (known as the “pan-
cake” argument) after logarithmic number of request (According to Grunbaum’s Theorem,
any half-plane that cuts through the centroid reduces the volume by 1{e.). Each zig-zag costs
Oprq, resulting in a total cost of Opr log dq for one dimension. There are a total of d dimen-
sions, each costing Opr log dq, and in the ratio, r cancel each other out, which is where the
Opd log dq comes from.

This is one step closer to our main topic, the Steiner Point algorithm, where the center is not
the mean of all points, but the weighted average of the extreme points.

6 Follow the Steiner Point (Nested Case)

In this section we are going to analyze the competitiveness of the Follow the Steiner Point al-
gorithm, for the nested case. We will first prove an Opdq ratio that can be achieved by using
the second definition of the Steiner Point as seen in Section 2, and then we will get a bound
that depends on the number of queries.

Before we jump to out first proof, let us prove some useful lemmas:

Lemma 6.1. For θ P Sd´1, and a vector v P Rd, we have:

θ ¨ v ď v
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Figure 8: Following the Steiner Point is much smoother

Proof. θ has magnitude of 1.

Lemma 6.2. For convex bodies K and K 1 where K Ě K 1 we have that:

hKpθq ě hK1pθq

Proof. Recall that hKpθq “ maxxPK pθ ¨ xq. Then we have that if x is the vector that maxi-
mizes hK1pθq for K 1, then since K Ě K 1, x P K as well, Therefore

max
xPK

pθ ¨ xq ě max
xPK1

pθ ¨ xq

Lemma 6.3. For a convex body K we have that:

hKpθq ` hKp´θq ě 0

Proof. Recall that hKpθq “ maxxPK pθ ¨ xq. Assume that hKpθq ě 0. Then hKp´θq “ maxxPK p´θ ¨ xq ě

p´θq ¨ x and thus:
hKpθq ` hKp´θq ě θ ¨ x ` p´θq ¨ x “ 0

We are now ready to get our Opdq bound for the nested case. Note that in the following theo-
rem we assume that we start from the unit ball for simplicity:

Theorem 6.4. Let B “ K1 Ě K2 Ě ... Ě KT be a sequence of nested convex bodies. Then:

T´1
ÿ

i“1

∥stpKi`1q ´ stpKiq∥ ď d

Proof. The idea is that simply instead of summing the distances, we can sum over all θ since
for each fixed θ, the intergrand decreases by a total of at most 2 (since we are in the 1 unit
ball). So the total budget for movement is 2d. To save the factor 2 we combine ˘θ, noting
that they can change by at most 2 in total. We have:

T´1
ÿ

i“1

∥stpKi`1q ´ stpKiq∥ “

T´1
ÿ

i“1

∥d
ż

θPSd´1

θ ¨ hKi
pθqdθ ´ d

ż

θPSd´1

θ ¨ hKi`1
pθqdθ∥
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from the second definition of the Steiner Point as defined in section 2. Now we use Lemma
6.1 to simplify the above expression and we also rearrange the sum with the integral:

d
T´1
ÿ

i“1

∥
ż

θPSd´1

θ ¨ hKi
pθqdθ ´

ż

θPSd´1

θ ¨ hKi`1
pθqdθ∥ ď d

T´1
ÿ

i“1

∥
ż

θPSd´1

hKi
pθqdθ ´

ż

θPSd´1

hKi`1
pθqdθ∥

ď d

ż

θPSd´1

T´1
ÿ

i“1

∣hKi
pθq ´ hKi`1

pθq∣

Now from lemma 6.2 we get that hKi
pθq ě hKi`1

pθq. Then we can simplify the above telescop-
ing sums to:

d

ż

θPSd´1

T´1
ÿ

i“1

∣hKi
pθq ´ hKi`1

pθq∣ “ d

ż

θPSd´1

T´1
ÿ

i“1

hKi
pθq´hKi`1

pθq “

ż

θPSd´1

T´1
ÿ

i“1

hK1pθq´

ż

θPSd´1

T´1
ÿ

i“1

hKT
pθq

To end the proof note that the first intergrand cannot be bigger than 1 since we are in the
unit ball and the second intergrand is nonnegative because hKT

pθq ` hKT
p´θq ě 0 (from

lemma 6.3). Thus:
ż

θPSd´1

T´1
ÿ

i“1

hK1pθq ´

ż

θPSd´1

T´1
ÿ

i“1

hKT
pθq ď 1

and the problem is proved.

The above algorithm can be generalized for bodies outside of the unit ball using the same
algorithm. Now that we found our Opdq competitive algorithm, we can move on to calculate
the other bound we want.

Notice that the idea in the Opdq algorithm was to bound the total distance we could move
in each direction by a constant. Since we could bound that, we can get an Opdq distance at
most. Now, the idea is to bound the distance we can move in each step. Lemma 6.5 below
shows that we can bound the distance we travel in each step by Op

?
d ¨ fpλqq. The distance

depends on λ which is defined as:

λ “
wpKiq ´ wpKi`1q

2

The following lemma from [BLLS18] bounds the distance travelled in one move and will help
us achieve the bound we need for every time step:

Lemma 6.5. [BLLS18]: For any convex bodies K 1 and K such that K 1 ` B1 Ě K Ě K 1 and

λ “
wpKq´wpK1q

2 we have:

∥spKq ´ spK 1q∥ ď λ
a

d log pλ´1q

Recall that wpKq is the width of the convex body, i.e. the maximum distance we can travel
in one dimension on that body. We are not going to give a proof of Lemma 6.2 as it is too
technical, but we will try to give the intuition as to why it is true.
The idea is that initially we have a ’budget’ we want to spend, which is
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d

ż

θPSd´1

hK1pθq ´ d

ż

θPSd´1

hKT
pθq

Note that every time we move to the Steiner Point we spend

d

ż

θPSd´1

hKi
pθq ´ d

ż

θPSd´1

hKi`1
pθq

from our budget, but we actually go a distance

d

ż

θPSd´1

hKi
pθqθ ´ d

ż

θPSd´1

hKi`1
pθq

The intuition is if we make a move that costs a lot of budget, we most likely made a move
that does not correspond to a big distance. This is just because a lot of the θ’s end up can-
celling up in the calculation and therefore not adding up in the right way. In other words, the
moves that take a lot of our budget, are not moves that hurt our distance sum, and once we
lose budget we can’t claim it back since we are in the nested case. Therefore the best thing
for an adversary is to make us use our budget we have slowly.

Now we have everything ready to proceed to the proof of the main theorem.

Theorem 6.6. Following the Steiner Point in nested case, starting from B1, and following
requests B1 “ K1 Ě K2 Ě ⋯ Ě KT gives total movement

Opmin pd,
a

dlogT qq

after T requests

Proof. Set λi “
wpKiq´wpKi`1q

2 for i “ 0, ..., T ´ 1. Then for each step we have from Lemma 3.2:

T´1
ÿ

i“1

∥stpKiq ´ stpKi`1q∥ ď d1{2 ¨

T´1
ÿ

i“1

λi

b

logλ´1
i

Now note that we have that
ř

i λi ď 1 since it is a telescoping sum and note that
?

logx is
a concave function. From Jensen inequality we have that for concave functions f such that
a1 ` a2 ` ... ` an ď 1:

fpa1x1 ` ... ` anxnq ě a1fpx1q ` ... ` anfpxnq

Now using fpxq “
?

logx we have that:

T´1
ÿ

i“1

λi

b

logλ´1
i “

g

f

f

elog
T´1
ÿ

i“1

λiλ
´1
i “

a

logT

In the end we have after combining everything:

T´1
ÿ

i“1

∥stpKiq ´ stpKi`1q∥ ď d1{2
T´1
ÿ

i“1

λi

b

logλ´1
i ď d1{2

a

logT

as desired. Adding the bound from theorem 6.1, we get the final bound.
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7 Follow the Steiner Point (General Case)

In this section, we will try to generalize the ideas shown in the nested case, and try to prove
some bounds for the general problem of chasing convex bodies, without the restriction of
them being nested.

We take the algorithm that follows the Steiner Point and use it in the general case as well.
The high level idea is that instead of just blindly moving to the Steiner Point of the newly
asked shape, we move to the Steiner Point of the body we are asked that is extended to a
certain amount.

7.1 The Algorithm

The algorithm is very similar to the algorithm presented for the nested case. Instead of fol-
lowing the Steiner Point of the next body Kt, we follow the Steiner Point of a somehow ex-
tended Kt body, extended by a distance 2r, where r is an estimate of the distance covered so
far by the optimal route, r P rOPT {2,OPT s, and r is calculated with the help of the work
function, as defined in section 2.

Algorithm 1 ExtendedSteinerPointChasing
1: x0 Ð 0
2: r Ð distpx0,K1q Ź Initializing our variables
3: for t “ 1 to T do Ź For every query
4: Ωt Ð tx|wtpxq ď 2ru Ź Get the 2r hitting set
5: while Ωt “ H do Ź Go on until you find a point that is almost optimal
6: r Ð 2r
7: Ωt Ð tx|wtpxq ď 2ru

8: end while
9: xt Ð stpΩtq Ź Chase the Steiner Point

10: end for

The natural question that comes after looking at the above algorithm is why is the Steiner
Point of Ωt falling inside the body Kt. This is the main Lemma we need to prove in order to
guarantee correctness for our algorithm. Once we prove that, we can use Theorem 6.3 to get
the bound we want, and the proof will be over. In order to prove that Ωt lies within the body
Kt we will take a useful lemma:

Lemma 7.1. The work function is a convex function and the Ωt’s for t “ 1,2, ..., T are
bounded convex sets.

Now we are now ready to prove our important Lemma.

Lemma 7.2. For xi as chosen in the algorithm above, we get that xi lies within the body Kt.

Proof. By the third definition of the Steiner Point, we only want to prove that:

cgpΩt ` sBq P Kt
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Figure 9: Since there are more inside, the Steiner Point is going to be inside

To prove that, we prove that cgpΩt ` sBq is in every halfspace that contains Kt.

Let H ∶“ tx P Rd ∶ a ¨ x ě bu be a halfspace containing Kt and let H“ be the plane cutting the
border of this halfspace. Define ρpxq to be the reflection of x across H“:

ρpxq “ x ` 2pb ´ pa ¨ xqqa

Recall that the work function is:

wipxq “ min
yPKt

∥x ´ y∥` wi´1pyq

and let y be the argmin of the expression on the right. Since y P Kt Ď H, if we choose a point
x that is in Ωt but not in H, we have:

wtpxq “∥x ´ y∥` wt´1pyq ě∥ρpxq ´ y∥` wt´1pyq ě wtpρpxqq

just because ρpxq P H but x R H. Therefore we have that if a point x P Ωt{H, then its reflec-
tion is going to be in Ωt as well. Similarly we can prove this for Ωt ` sB as well.

To finish the proof, split Ωt ` sB into three parts; Ωt ` sB “ Ω´ Y Ω` Y Ω̂ where Ω´ “

pΩt ` sBq{H, Ω` “ ρpΩ´q and Ω̂ “ ppΩt ` sBq X Hq{Ω`. The idea is that the combined cen-
troid of Ω´ and Ω` is going to be on the border of the halfspace and Ω̂ will have its centroid
strictly inside the the halfspace, therefore overall the centroid of Ω ` sB is going to be inside
the halfsapce and therefore we are done. (see 9 for a better illustration)

Now we are ready to prove our important theorem:

Theorem 7.3. Following the Steiner Point in the general case we get a

Opmin pd,
a

d logT qq

competitive algorithm after T requests
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Proof. We consider the progression of the algorithm in phases; each new phase begins when
r changes. Suppose the phase corresponding to some value of r consists of times tt1, t1 `

1, ..., t2u. From the fact that the work function is non-decreasing over time, i.e., wt ď wt`1,
as we move more and more, and also the fact that Ωt “ tx|wtpxq ď 2ru it follows that the
bigger our work function is, the smallest the Ωt set is. Therefore:

Ωt1 Ě Ωt1`1 Ě ..Ωt2

Bounding Ω1 in a ball of radius 2r allows us to use Theorem 6.3 for the above Ω’s. Following
the Steiner Point of the Ω’s leads to a

p2rq ¨ Opmin pd,
a

d logT qq

for each phase, where the optimal algorithm spends Oprq distance. In total we spend rfinal ¨

Opmin pd,
?
d logT qq, where rfinal is the sum of all the r for all the phases. OPT uses only

Oprfinalq therefore the competitive ratio desired is achieved.

8 Conclusion

8.1 Summary

In our paper we tried to give a short overview of the problem of Convex Body Chasing. We
gave problems that are similar and belong in the same family of problems, examined a very
interesting and well studied case of the problem, the nested case, and gave some of the cur-
rent best known algorithms, both for the general but also in the nested case. Below we sum-
marize the current best known competitive algorithms for the nested and general case for all
the different lp norms, where p ě 2 and the lower bounds for each of them:

Norm Problem Case Lower Bound Current best By who

l2 Nested Op
?
dq Op

?
d log dq [BLLS18]

l2 General Op
?
dq Opmin p

?
d logT , dqq [AGTG21]

lp, p ą 2 Nested Opd1´ 1
p q Opd1´ 1

p
?

log dq [BLLS18]

lp, p ą 2 General Opd1´ 1
p q Not yet found -

l8 Nested Opdq Opdq [BLLS18]
l8 General Opdq Not yet found -

As we can see from the table, a lot of ground has been covered in the last few years. For the
nested case, we have almost found the tightest algorithms that are only a factor of

?
log d

apart from the optimal ratio. [BLLS18] proved that the Steiner Point is the optimal point of
a convex body to chase. Lastly, recently [Sel20] proved that following the Steiner Point in the
function setting, as described in section 3, achieves competitive ratio Opd logT q

In the general case, we still need progress. the Steiner Point helped us achieve a good algo-
rithm which is at worse Op

?
dq away from the optimal ratio. In the cases where the norm is

greater than 2 we could not find any papers that achieved any good competitive ratio, so it
would be no surprise if in the near future we see some new developments in that area.s
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