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the prehistory of quantum 
information


ideas present in disconnected form

•  1927 Heisenberg uncertainty principle


•  1935 EPR paper / 1964 Bell’s theorem


•  1932 von Neumann entropy���
subadditivity (Araki-Lieb 1970)���
strong subadditivity (Lieb-Ruskai 1973)




•  measurement theory���

(Helstrom, Holevo, Uhlmann, etc., 1970s)






relativity: a close relative


•  Before Einstein, Maxwell’s equations were known to be 
incompatible with Galilean relativity.


•  Lorentz proposed a mathematical fix, but without the 
right physical interpretation.


•  Einstein’s solution redefined space/time, mass/momentum/
energy, etc.


•  Space and time had solid mathematical foundations 
(Descartes, etc.), unlike information and computing.




theory of information ���
and computing


•  1948 Shannon created modern information theory (and to some 
extent cryptography) and justified entropy as a measure of 
information independent of physics.  units of bits.


•  Turing, Church, von Neumann, ..., Djikstra described a theory of 
computation, algorithms, complexity, etc.


•  This made it possible to formulate questions such as: ���
how do “quantum effects” change the capacity?���
(à Holevo bound) ���
���
what is the thermodynamic cost of computing?���
(Landauer principle, Bennett reversible computing)���
���
what is the computational complexity of simulating QM?���
(à DMRG/QMC, and also Feynman)




some wacky ideas

Feynman ’82: “Simulating Physics with Computers”

•  Classical computers require exponential overhead to simulate 

quantum mechanics.

•  But quantum systems obviously don’t need exp overhead to 

simulate themselves.

•  Therefore they are doing something more computationally 

powerful than our existing computers.

•  (Implicitly requires the idea of a universal Turing machine, and 

the strong Church-Turing thesis.)


Wiesner ’70: “Conjugate Coding”

•  The uncertainty principle restricts possible measurements.

•  In experiments, this is a disadvantage, but in crypto, limiting 

information is an advantage.

•  (Requires crypto framework, notion of “adversary.”)

•  Paper initially rejected by IEEE Trans. Inf. Th. ca. 1970




towards modern QIT

•  Deutsch, Jozsa, Bernstein, Vazirani, Simon, etc. – impractical 

speedups���
required oracle model, precursors to Shor’s algorithm, following 
Feynman.


•  quantum key distribution (BB84, B90, E91) – following Weisner.


•  ca. 1995

•  Shor and Grover algorithms

•  quantum error-correcting codes

•  fault-tolerant quantum computing

•  teleportation, super-dense coding

•  Schumacher-Jozsa data compression

•  HSW coding theorem

•  resource theory of entanglement




modern QIT

semiclassical


•  compression: S(ρ) = -tr [ρlog(ρ)]

•  CQ or QC channels: χ({px,ρx}) = S(∑x pxρx) - ∑xpxS(ρx)

•  hypothesis testing: D(ρ||σ) = tr[ρ(log(ρ) - log(σ)]


“fully quantum”


•  complementary channel: N(ρ) = tr2 VρV†, Nc(ρ) := tr1 VρV†

•  quantum capacity: Q(1)(N) = maxρ [S(N(ρ)) - S(Nc(ρ))]���

Q(N) = limnà∞ Q(1)(N⊗n)/n

•  tools: purifications (Stinespring), decoupling


recent


•  one-shot: Sα(ρ) := log(tr ρα)/(1-α)

•  applications to optimization, condensed matter, stat mech.




Relevant talks

•  Wed 9. Omar Fawzi and Renato Renner. Quantum conditional 

mutual information and approximate Markov chains.


•  Wed 9:50. Omar Fawzi, Marius Junge, Renato Renner, David 
Sutter, Mark Wilde and Andreas Winter. Universal 
recoverability in quantum information theory.


•  Thurs 11. David Sutter, Volkher Scholz, Andreas Winter and 
Renato Renner. Approximate degradable quantum channels


•  Thurs 4:15. Mario Berta, Joseph M. Renes, Marco Tomamichel, 
Mark Wilde and Andreas Winter.���
Strong Converse and Finite Resource Tradeoffs for Quantum 
Channels.




semi-relevant talks

•  Tues 11:50. Ryan O'Donnell and John Wright. Efficient quantum tomography���

merged with���
Jeongwan Haah, Aram Harrow, Zhengfeng Ji, Xiaodi Wu and Nengkun Yu. 
Sample-optimal tomography of quantum states


•  Tues 3:35. Ke Li. Discriminating quantum states:the multiple Chernoff 
distance


•  Thurs 10. Mark Braverman, Ankit Garg, Young Kun Ko, Jieming Mao and Dave 
Touchette. Near optimal bounds on bounded-round quantum communication 
complexity of disjointness


•  Thurs 3:35. Fernando Brandao and Aram Harrow. Estimating operator norms 
using covering nets with applications to quantum information theory


•  Thurs 4:15. Michael Beverland, Gorjan Alagic, Jeongwan Haah, Gretchen 
Campbell, Ana Maria Rey and Alexey Gorshkov. Implementing a quantum 
algorithm for spectrum estimation with alkaline earth atoms.




outline

•  metrics


•  compressing quantum ensembles (Schumacher coding)


•  sending classical messages over q channels (HSW)


•  remote state preparation (RSP)


•  Schur duality


•  RSP and the strong converse


•  hypothesis testing


•  merging


•  quantum conditional mutual information and q Markov states




metrics

Trace distance    T(ρ,σ) := ½ || ρ-σ ||1

•  Is a metric.

•  monotone: T(ρ,σ) ≥ T(N(ρ),N(σ))

•  and this is achieved by a measurement ���

à T = max m’mt bias ���



Fidelity���


•  F=1 iff ρ=σ and F=0 iff ρ⊥σ

•  monotone F(ρ,σ) ≤ F(N(ρ),N(σ))

•  and this is achieved by a measurement!


F (⇢,�) := kp⇢
p
�k1 = tr

qp
�⇢

p
�

Pure states with angle θ:

F = cos(θ) and T = sin(θ).���
(exercise: which m’mts saturate?)


Relation: ���
1-F ≤ T ≤ (1-F2)1/2




the case for fidelity

Uhlmann’s theorem: ���
F(ρA, σA) = maxψ,φ F(ψAB, φAB) s.t. ���
ψ=|ψ⟩⟨ψ|, φ=|φ⟩⟨φ|, ψA = ρA, φA = σA.


Note:

1.  ≥ from monotonicity. ���

= requires sweat


2.  Can fix either ψ or φ and max over the other.


3.  F(ψ,φ) = |⟨ψ|φ⟩|. (Some use different convention.)


4.  Implies that (1-F)1/2 is a metric.


Also F is multiplicative.


Church

of the

Larger

Hilbert

Space




Compression

|ψx⟩∈Cd ���
with prob px


encoder

dim���
r < d


decoder
 ≈|ψx⟩


Average fidelity: ���
∑x px F(ψx, D(E(ψx))) ≤ F(ρ, D(E(ρ)))


Simplification: use ensemble density matrix���
ρ = ∑x px ψx with eigenvalues λ1 ≥ λ2 ≥ ... ≥ λd ≥ 0


rank(σ)=r ⇒ F(ρ,σ)2 ≤ tr [Prρ] = λ1 + ...  + λr���
Pr projects onto top r eigenvectors


Suggests optimal fidelity = (λ1 + ... + λr)1/2.

� =

Pr⇢Pr

tr[Pr⇢]



Too good to be true!

Ensemble density matrix: ρ = ∑x px ψx


Yes compression depends only on ρ.


But reproducing ρ is not enough!


consider:���
 E(∙)=|0⟩⟨0|

 D(∙)=ρ



Gets the average right but not the correlations.




Reference system

Average fidelity: ���
∑x px F(ψx, E(D(ψx))) 


= F(∑x px |x⟩⟨x| ⊗ ψx, ∑x px |x⟩⟨x| ⊗ E(D(ψx)))


Not so easy to analyze.

Instead follow the Church of the Larger Hilbert Space.


|'i
RQ

:=
X

x

p
p

x

|xi
R

| 
x

i
Q

Avg fidelity ≥ F(𝜑, (idR ⊗ D∘EQ)(𝜑))

(pf: monotonicity under map that measures R.)


Protocol: E(ω) = Pr ω Pr.   D = id.

achieves F = ⟨𝜑| (I ⊗ Pr) |𝜑⟩ = tr [ρPr] = λ1 + ... + λr




Optimality

Complication: E, D might be noisy.


Solution: purify!



1. Write D(E(ω)) = trG VωV†

where V is an isometry from Q -> Q⊗G.



2. Uhlmann à

F(𝜑, trG V𝜑V†) = |⟨𝜑|RQ⟨0|G V |𝜑⟩RQ|



3. a little linear algebra à ���
F ≤ tr[ρP] for P rank-r and ||P||≤1

  ≤ λ1 + ... + λr




compressing i.i.d. sources 

Quantum story ≈ classical story


ρ⊗n has eigenvalues λx1 λx2 
⋅⋅⋅ λxn 

for X=(x1,...,xn) ∈ [d]n .


distribution of -log(λx1 λx2 
⋅⋅⋅ λxn 

)




nH(λ)
 �
p
n

σ2=∑x λx (log(1/λx)-H)2


qubits
 fidelity


nH(λ) + 2σn1/2
 0.98


nH(λ) - 2σn1/2
 0.02


n(H(λ)+δ)
 1-exp(-nδ2/2σ2)


n(H(λ)-δ)
 exp(-nδ2/2σ2)


�n�1
1 · · ·�n�d

d = exp(�nH(�))

H(λ) = -∑x λx log(λx) = S(ρ) = -tr[ρlog(ρ)]

Typically this is ≈




typicality

Definitions: ���
An eigenvector of ρ⊗n is k-typical if its eigenvalue���
is in the range exp(-nS(ρ) ± kσn1/2).



Typical subspace V = span of typical eigenvectors

Typical projector P = projector onto V


Structure theorem for iid states: “asymptotic equipartition”

•  tr [Pρ⊗n] ≥ 1 – k-2

•  exp(-nS(ρ) - kσn1/2) P ≤ Pρ⊗n P ≤ exp(-nS(ρ) + kσn1/2) P

•  likewise tr[P] ≈ exp(nS(ρ) + kσn1/2)


Almost flat spectrum.���
Plausible because of permutation symmetry.
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entropy

•  range: 0 ≤ S(ρ) ≤ log(d)

•  symmetry: S(ρ) = S(UρU†)

•  multiplicative: S(ρ⊗σ) = S(ρ) + S(σ)

•  continuity (Fannes-Audenaert): ���

| S(ρ) – S(σ) | ≤ εlog(d) + H(ε,1-ε)���
ε := || ρ – σ ||1 / 2


S(ρ) = -tr [ρlog ρ]


•  multipartite systems: ρAB ���
S(A) = S(ρA), S(B) = S(ρB), etc.


•  conditional entropy: S(A|B) := S(AB) – S(B), can be < 0

•  mutual information: I(A:B) = S(A) + S(B) – S(AB) ���

= S(A) – S(A|B) = S(B) – S(B|A) ≥ 0     “subadditivity”




A
 B


A
 B


S(A|B)


I(A:B)




CQ channel coding

CQ = Classical input, Quantum output


|x⟩⟨x|
 N
 ρx = N(|x⟩⟨x|)


Given n uses of N, how many bits can we send?


Allow error that à0 as n à∞.


HSW theorem: Capacity = maxχ

χ({px,ρx}) = S(∑x pxρx) - ∑xpxS(ρx)


ωXQ = ∑x px |x⟩⟨x| ⊗ρx 

χ = I(X;Q)ω = S(Q) – S(Q|X)




HSW coding

ρ = Σx px ρx

χ = S(ρ) - Σx px S(ρx)


= S(Q) – S(Q|X)


total

information


ambiguity in ���
each message


typical subspace of ρ⊗n ���
has dim ≈exp(n S(ρ))


If x=(x1,...,xn) is p-typical then ���
ρx1

 ⊗ρx2
 ⊗ ... ⊗ρxn 

has typical 
subspace of dim ≈ exp(n∑x px S(ρx))


“Packing lemma” ���
Can fit ≈exp(nχ) ���
messages.




Packing lemma

Classically: random coding and maximum-likelihood decoding

Quantumly: messages do not commute with each other


For HSW:

σ=ρ⊗n with typ proj Π.                D ≈ exp(n S(Q))

σx = ρx1

 ⊗ ... ⊗ρxn 
with typ proj Πx. d ≈ exp(n S(Q|X)).


Packing lemma: ���
We can send M messages with error O(ε1/2 + Md/D)


Suppose σ=Σx px σx���
and there exist Π, {Πx} s.t.

1.  tr[Πσx] ≥ 1-ε

2.  tr[Πxσx] ≥ 1-ε

3.  tr[Πx] ≤ d

4.  ΠσΠ ≤ Π / D
density ≤ 1/D
 size ≤ d




Upper bound

X∈{X1, ..., XM}


N⊗n
 D
 Y


Pr[Y|X] = tr[ρXDY]


∑Y DY = I

ρX = ρx1

 ⊗ ... ⊗ρxn



Q


proof: nχ ≥ I(X;Q) ≥ I(X;Y) ≥ (1-O(ε)) log(M)


additivity

Wed 10:50���
Cross-Li-Smith.���
also Shannon 1948


continuity

data-processing inequality


D
Q
 Y
 ≅

VD


Q
 Y


Q’

isometry


I(X:Q) = ���
I(X:YQ’) ≥���
I(X:Y)




conditional mutual information

Claim that I(A:BC) - I(A:B) ≥ 0.


=: I(A:C|B)     conditional mutual information

= S(A|B) + S(C|B) – S(AC|B)

= S(AB) + S(BC) – S(ABC) – S(B)


If B is classical, ρ = ∑b p(b) |b⟩⟨b| ⊗ σ(b)AC���
then I(A:C|B) = ∑b p(b) I(A:C)σ(b) ≥ 0 from subadditivity


I(A:C|B) ≥ 0 is strong subadditivity [Lieb-Ruskai ’73].���
���
I(A:C|B) = 0 for “quantum Markov states”���
Wed morning you will hear I(A:C|B) ≥ “non-Markovianity”


A
 C


B


CMI




capacity of QQ channels


Additional degree of freedom: channel inputs |ψx⟩.



C(1)(N) = max{px,ψx} χ({px,ψx}) 


NP-hard optimization problem [Beigi-Shor, H.-Montanaro]


Worse: C(N) = limnà∞ C(1)(N⊗n)/n.

and ∃ channels where C(N) > C(1)(N).


Open questions: Non-trivial upper bounds on capacity.

Strong converse (psucc -> 0 when sending n(C+δ) bits.) ���
(see Berta et al, Thurs 4:15pm).




quantum capacity


N
A
 B
 ≅
 VN

A
 B


E

isometry


R
R


How many qubits can be sent through a noisy channel?


Q(1)(N) := max S(B) – S(E)


 
= max S(B) – S(RB)


 
= max –S(R|B)


“coherent information”


Q(N) = limnà∞ Q(1)(N⊗n)/n


not known when > 0.

sometimes Q(1)(N)= 0 < Q(N).




entanglement-assisted 
capacity


Alice and Bob share unlimited free EPR pairs.


VN

A
 B


E


R
R
 CE(N) = max I(R:B)


QE(N) = CE(N)/2


Bennett

Shor

Smolin

Thapliyal���
q-ph/0106052


1)  additive

2)  concave in input
 à efficiently computable




covering lemma


Suppose σ=Σx px σx���
and there exist Π, {Πx} s.t.

1.  tr[Πσx] ≥ 1-ε

2.  tr[Πxσx] ≥ 1-ε

3.  tr[Π] ≤ D

4.  ΠxσxΠx ≤ Πx / d
size ≤ D
 density≤ 1/d


Covering lemma: ���
If x1, ..., xM are sampled randomly from p

and M >> (D/d) log(D)/ε3 then with high probability




 � ⇡O(✏1/4)

�x1 + · · ·+ �xM

M



wiretap (CQQ) channel


X
 ρx
BE = N(|x⟩⟨x|)
N
 B


E


Thm: Alice can send secret bits to Bob at rate���
I(X:B) – I(X:E).


Proof: packing lemma -> coding ≈nI(X:B) bits for Bob ���
covering lemma -> sacrifice ≈nI(X:E) bits to decouple Eve




remote state preparation (RSP)


Q: Cost to transmit n qubits?


A: 2n cbits, n ebits using teleportation.


Cost is optimal given super-dense coding and entanglement ���
distribution.


visible coding: What if the sender knows the state?


We want to simulate the map: “ψ” à |ψ⟩.���
Requires ≥n cbits, but above optimal arguments break.




RSP via covering

Consider the ensemble {UψU†} for random U.

Average state is I/2n.



Covering-type arguments [Aubrun arXiv:0805.2900] à ���
If we choose U1, ..., UM randomly with M >> 2n / ε2 then 


�����
1

M

MX

i=1

Ui U
†
i � I

2n

�����  ✏

2n
with high probability, ∀ψ


Set
Ei :=
2n

M(1 + ✏)
Ui U

†
i Then (1-ε)I ≤ ∑i Ei ≤ I


So {Ei} is ≈ a valid measurement.  So what?




RSP finally


Lemma: (A⊗I)|Φd⟩ = (I ⊗ AT)|Φd⟩


|�di :=
1p
d

dX

i=1

|ii ⌦ |ii Ei :=
2n

M(1 + ✏)
Ui U

†
i

recall


∝Ei
T ⊗ Ei ∝ (UiψUi†)T ⊗ (UiψUi†)


cost ≈ n cbits + n ebits.


Ui†


i


|ψ⟩


Protocol:


|Φ2n⟩AB


{Ei
T}
 discard




RSP of ensembles

can simulate x -> ρx with cost χ


≈nχ cbits + some ebits ≥ N⊗n ≥ ≈nχcbits


Lemma: Converting n(C-δ) cbits + ∞ ebits into nC cbits���
will have success probability ≤exp(-nδ).


implies strong converse: ���
sending n(χ+δ) bits through N⊗n ���
has exp(-nδ’) success prob




simulation and strong converses

Let N be a general q channel.


R is “strong converse rate”; i.e. min s.t. sending n(R+δ)���
bits has success prob ≤ exp(-nδ’)


Type of simulation
 cbit simulation 
cost


also needs


visible product input
 χ
 EPR


visible arbitrary input
 R
 EPR


arbitrary quantum input
 CE
 embezzling


χ ≤ C ≤ R ≤ CE




merging and decoupling

R


A


B


U


M

|ψ⟩RAB


A’


V

AB


B’


|Φ⟩
Alice


Bob


Reference


|ψ⟩RAB


Pf: The LHS is purified by |ω⟩ and the RHS by |ψ⟩RAB|Φ⟩A’B’

Uhlmann’s theorem says ∃V:MB à ABB’ making these close.


Let |ω⟩ = U|ψ⟩.

Claim: All we need is ωRA’ ≈ ωR ⊗ ωA’.


|ω⟩RA’MB




state redistribution

R


A


B


U


M


|ψ⟩RABC

A


V

BC


B’


|Φ⟩
Alice


Bob


Reference


C
 A’

|ψ⟩RABC


|M| = ½ I(C:R|B) = ½ I(C:R|A) qubits communicated

entanglement consumed/created = H(C|RB)


[Luo-Devetak, Devetak-Yard]




quantum Markov states

relabel
 A
 B
 C
 E


Bob can “redistribute” C to E with ½ I(A:C|B) qubits.

If I(A:C|B)=0 then this is reversible!

Implies recovery map R : B -> BC such that

(idA ⊗ RB->BC)(ρAB) = ρABC


B1
L
 B1

R


B2
L
 B2

R


B3
L
 B3

R


B4
L
 B4

R


B =
M

i

BL
i ⌦BR

i

structure theorem: I(A:C|B)=0 iff


⇢ABC =
M

i

pi⇢
i
ABL

i
⌦ ⇢iBR

i C

A
 C




approximate Markov states


B =
M

i

BL
i ⌦BR

i

structure theorem: I(A:C|B)=0 iff


⇢ABC =
M

i

pi⇢
i
ABL

i
⌦ ⇢iBR

i C

A
 C


B1
L
 B1

R


B2
L
 B2

R


B3
L
 B3

R


B4
L
 B4

R


towards a structure thm: [Fawzi-Renner 1410.0664, others]

If I(A:C|B) ≈ 0 then ∃approximate recovery map R, i.e.���
(idA ⊗ RB->BC)(ρAB) ≈ ρABC


states with low CMI appear in condensed matter, ���
optimization, communication complexity, ...




Relevant talks

•  Wed 9. Omar Fawzi and Renato Renner. Quantum 

conditional mutual information and approximate Markov 
chains.


•  Wed 9:50. Omar Fawzi, Marius Junge, Renato Renner, 
David Sutter, Mark Wilde and Andreas Winter. Universal 
recoverability in quantum information theory.


•  Thurs 11. David Sutter, Volkher Scholz, Andreas Winter 
and Renato Renner. Approximate degradable quantum 
channels


•  Thurs 4:15. Mario Berta, Joseph M. Renes, Marco 
Tomamichel, Mark Wilde and Andreas Winter.���
Strong Converse and Finite Resource Tradeoffs for 
Quantum Channels.


QCMI


channel

capacities




semi-relevant talks

•  Tues 11:50. Ryan O'Donnell and John Wright. Efficient quantum 

tomography���
merged with���
Jeongwan Haah, Aram Harrow, Zhengfeng Ji, Xiaodi Wu and 
Nengkun Yu. Sample-optimal tomography of quantum states


•  Tues 3:35. Ke Li. Discriminating quantum states:the multiple 
Chernoff distance


•  Thurs 10. Mark Braverman, Ankit Garg, Young Kun Ko, Jieming Mao 
and Dave Touchette. Near optimal bounds on bounded-round 
quantum communication complexity of disjointness


•  Thurs 3:35. Fernando Brandao and Aram Harrow. Estimating 
operator norms using covering nets with applications to quantum 
information theory


•  Thurs 4:15. Michael Beverland, Gorjan Alagic, Jeongwan Haah, 
Gretchen Campbell, Ana Maria Rey and Alexey Gorshkov. 
Implementing a quantum algorithm for spectrum estimation with 
alkaline earth atoms.


HSW ���
metrics


QCMI


covering


entropy




reference


Mark Wilde.  arXiv:1106.1445. ���
“From Classical to Quantum Shannon Theory”���
Last update Dec 2, 2015.  768 pages.



