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the prehistory of quantum 
information



ideas present in disconnected form


•  1927 Heisenberg uncertainty principle



•  1935 EPR paper / 1964 Bell’s theorem



•  1932 von Neumann entropy���
subadditivity (Araki-Lieb 1970)���
strong subadditivity (Lieb-Ruskai 1973)






•  measurement theory���

(Helstrom, Holevo, Uhlmann, etc., 1970s)








relativity: a close relative



•  Before Einstein, Maxwell’s equations were known to be 
incompatible with Galilean relativity.



•  Lorentz proposed a mathematical fix, but without the 
right physical interpretation.



•  Einstein’s solution redefined space/time, mass/momentum/
energy, etc.



•  Space and time had solid mathematical foundations 
(Descartes, etc.), unlike information and computing.





theory of information ���
and computing



•  1948 Shannon created modern information theory (and to some 
extent cryptography) and justified entropy as a measure of 
information independent of physics.  units of bits.



•  Turing, Church, von Neumann, ..., Djikstra described a theory of 
computation, algorithms, complexity, etc.



•  This made it possible to formulate questions such as: ���
how do “quantum effects” change the capacity?���
(à Holevo bound) ���
���
what is the thermodynamic cost of computing?���
(Landauer principle, Bennett reversible computing)���
���
what is the computational complexity of simulating QM?���
(à DMRG/QMC, and also Feynman)





some wacky ideas


Feynman ’82: “Simulating Physics with Computers”


•  Classical computers require exponential overhead to simulate 

quantum mechanics.


•  But quantum systems obviously don’t need exp overhead to 

simulate themselves.


•  Therefore they are doing something more computationally 

powerful than our existing computers.


•  (Implicitly requires the idea of a universal Turing machine, and 

the strong Church-Turing thesis.)



Wiesner ’70: “Conjugate Coding”


•  The uncertainty principle restricts possible measurements.


•  In experiments, this is a disadvantage, but in crypto, limiting 

information is an advantage.


•  (Requires crypto framework, notion of “adversary.”)


•  Paper initially rejected by IEEE Trans. Inf. Th. ca. 1970





towards modern QIT


•  Deutsch, Jozsa, Bernstein, Vazirani, Simon, etc. – impractical 

speedups���
required oracle model, precursors to Shor’s algorithm, following 
Feynman.



•  quantum key distribution (BB84, B90, E91) – following Weisner.



•  ca. 1995


•  Shor and Grover algorithms


•  quantum error-correcting codes


•  fault-tolerant quantum computing


•  teleportation, super-dense coding


•  Schumacher-Jozsa data compression


•  HSW coding theorem


•  resource theory of entanglement





modern QIT


semiclassical



•  compression: S(ρ) = -tr [ρlog(ρ)]


•  CQ or QC channels: χ({px,ρx}) = S(∑x pxρx) - ∑xpxS(ρx)


•  hypothesis testing: D(ρ||σ) = tr[ρ(log(ρ) - log(σ)]



“fully quantum”



•  complementary channel: N(ρ) = tr2 VρV†, Nc(ρ) := tr1 VρV†


•  quantum capacity: Q(1)(N) = maxρ [S(N(ρ)) - S(Nc(ρ))]���

Q(N) = limnà∞ Q(1)(N⊗n)/n


•  tools: purifications (Stinespring), decoupling



recent



•  one-shot: Sα(ρ) := log(tr ρα)/(1-α)


•  applications to optimization, condensed matter, stat mech.





Relevant talks


•  Wed 9. Omar Fawzi and Renato Renner. Quantum conditional 

mutual information and approximate Markov chains.



•  Wed 9:50. Omar Fawzi, Marius Junge, Renato Renner, David 
Sutter, Mark Wilde and Andreas Winter. Universal 
recoverability in quantum information theory.



•  Thurs 11. David Sutter, Volkher Scholz, Andreas Winter and 
Renato Renner. Approximate degradable quantum channels



•  Thurs 4:15. Mario Berta, Joseph M. Renes, Marco Tomamichel, 
Mark Wilde and Andreas Winter.���
Strong Converse and Finite Resource Tradeoffs for Quantum 
Channels.





semi-relevant talks


•  Tues 11:50. Ryan O'Donnell and John Wright. Efficient quantum tomography���

merged with���
Jeongwan Haah, Aram Harrow, Zhengfeng Ji, Xiaodi Wu and Nengkun Yu. 
Sample-optimal tomography of quantum states



•  Tues 3:35. Ke Li. Discriminating quantum states:the multiple Chernoff 
distance



•  Thurs 10. Mark Braverman, Ankit Garg, Young Kun Ko, Jieming Mao and Dave 
Touchette. Near optimal bounds on bounded-round quantum communication 
complexity of disjointness



•  Thurs 3:35. Fernando Brandao and Aram Harrow. Estimating operator norms 
using covering nets with applications to quantum information theory



•  Thurs 4:15. Michael Beverland, Gorjan Alagic, Jeongwan Haah, Gretchen 
Campbell, Ana Maria Rey and Alexey Gorshkov. Implementing a quantum 
algorithm for spectrum estimation with alkaline earth atoms.





outline


•  metrics



•  compressing quantum ensembles (Schumacher coding)



•  sending classical messages over q channels (HSW)



•  remote state preparation (RSP)



•  Schur duality



•  RSP and the strong converse



•  hypothesis testing



•  merging



•  quantum conditional mutual information and q Markov states





metrics


Trace distance    T(ρ,σ) := ½ || ρ-σ ||1


•  Is a metric.


•  monotone: T(ρ,σ) ≥ T(N(ρ),N(σ))


•  and this is achieved by a measurement ���

à T = max m’mt bias ���




Fidelity���



•  F=1 iff ρ=σ and F=0 iff ρ⊥σ


•  monotone F(ρ,σ) ≤ F(N(ρ),N(σ))


•  and this is achieved by a measurement!



F (⇢,�) := kp⇢
p
�k1 = tr

qp
�⇢

p
�

Pure states with angle θ:


F = cos(θ) and T = sin(θ).���
(exercise: which m’mts saturate?)



Relation: ���
1-F ≤ T ≤ (1-F2)1/2





the case for fidelity


Uhlmann’s theorem: ���
F(ρA, σA) = maxψ,φ F(ψAB, φAB) s.t. ���
ψ=|ψ⟩⟨ψ|, φ=|φ⟩⟨φ|, ψA = ρA, φA = σA.



Note:


1.  ≥ from monotonicity. ���

= requires sweat



2.  Can fix either ψ or φ and max over the other.



3.  F(ψ,φ) = |⟨ψ|φ⟩|. (Some use different convention.)



4.  Implies that (1-F)1/2 is a metric.



Also F is multiplicative.



Church


of the


Larger


Hilbert


Space





Compression


|ψx⟩∈Cd ���
with prob px



encoder


dim���
r < d



decoder

 ≈|ψx⟩



Average fidelity: ���
∑x px F(ψx, D(E(ψx))) ≤ F(ρ, D(E(ρ)))



Simplification: use ensemble density matrix���
ρ = ∑x px ψx with eigenvalues λ1 ≥ λ2 ≥ ... ≥ λd ≥ 0



rank(σ)=r ⇒ F(ρ,σ)2 ≤ tr [Prρ] = λ1 + ...  + λr���
Pr projects onto top r eigenvectors



Suggests optimal fidelity = (λ1 + ... + λr)1/2.


� =

Pr⇢Pr

tr[Pr⇢]



Too good to be true!


Ensemble density matrix: ρ = ∑x px ψx



Yes compression depends only on ρ.



But reproducing ρ is not enough!



consider:���
 E(∙)=|0⟩⟨0|


 D(∙)=ρ





Gets the average right but not the correlations.





Reference system


Average fidelity: ���
∑x px F(ψx, E(D(ψx))) 




= F(∑x px |x⟩⟨x| ⊗ ψx, ∑x px |x⟩⟨x| ⊗ E(D(ψx)))



Not so easy to analyze.


Instead follow the Church of the Larger Hilbert Space.



|'i
RQ

:=
X

x

p
p

x

|xi
R

| 
x

i
Q

Avg fidelity ≥ F(𝜑, (idR ⊗ D∘EQ)(𝜑))


(pf: monotonicity under map that measures R.)



Protocol: E(ω) = Pr ω Pr.   D = id.


achieves F = ⟨𝜑| (I ⊗ Pr) |𝜑⟩ = tr [ρPr] = λ1 + ... + λr





Optimality


Complication: E, D might be noisy.



Solution: purify!





1. Write D(E(ω)) = trG VωV†


where V is an isometry from Q -> Q⊗G.





2. Uhlmann à


F(𝜑, trG V𝜑V†) = |⟨𝜑|RQ⟨0|G V |𝜑⟩RQ|





3. a little linear algebra à ���
F ≤ tr[ρP] for P rank-r and ||P||≤1


  ≤ λ1 + ... + λr





compressing i.i.d. sources 


Quantum story ≈ classical story



ρ⊗n has eigenvalues λx1 λx2 
⋅⋅⋅ λxn 

for X=(x1,...,xn) ∈ [d]n .



distribution of -log(λx1 λx2 
⋅⋅⋅ λxn 

)






nH(λ)

 �
p
n

σ2=∑x λx (log(1/λx)-H)2



qubits

 fidelity



nH(λ) + 2σn1/2

 0.98



nH(λ) - 2σn1/2

 0.02



n(H(λ)+δ)

 1-exp(-nδ2/2σ2)



n(H(λ)-δ)

 exp(-nδ2/2σ2)



�n�1
1 · · ·�n�d

d = exp(�nH(�))

H(λ) = -∑x λx log(λx) = S(ρ) = -tr[ρlog(ρ)]


Typically this is ≈





typicality


Definitions: ���
An eigenvector of ρ⊗n is k-typical if its eigenvalue���
is in the range exp(-nS(ρ) ± kσn1/2).





Typical subspace V = span of typical eigenvectors


Typical projector P = projector onto V



Structure theorem for iid states: “asymptotic equipartition”


•  tr [Pρ⊗n] ≥ 1 – k-2


•  exp(-nS(ρ) - kσn1/2) P ≤ Pρ⊗n P ≤ exp(-nS(ρ) + kσn1/2) P


•  likewise tr[P] ≈ exp(nS(ρ) + kσn1/2)



Almost flat spectrum.���
Plausible because of permutation symmetry.
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entropy


•  range: 0 ≤ S(ρ) ≤ log(d)


•  symmetry: S(ρ) = S(UρU†)


•  multiplicative: S(ρ⊗σ) = S(ρ) + S(σ)


•  continuity (Fannes-Audenaert): ���

| S(ρ) – S(σ) | ≤ εlog(d) + H(ε,1-ε)���
ε := || ρ – σ ||1 / 2



S(ρ) = -tr [ρlog ρ]



•  multipartite systems: ρAB ���
S(A) = S(ρA), S(B) = S(ρB), etc.



•  conditional entropy: S(A|B) := S(AB) – S(B), can be < 0


•  mutual information: I(A:B) = S(A) + S(B) – S(AB) ���

= S(A) – S(A|B) = S(B) – S(B|A) ≥ 0     “subadditivity”






A

 B



A

 B



S(A|B)



I(A:B)





CQ channel coding


CQ = Classical input, Quantum output



|x⟩⟨x|

 N

 ρx = N(|x⟩⟨x|)



Given n uses of N, how many bits can we send?



Allow error that à0 as n à∞.



HSW theorem: Capacity = maxχ


χ({px,ρx}) = S(∑x pxρx) - ∑xpxS(ρx)



ωXQ = ∑x px |x⟩⟨x| ⊗ρx 


χ = I(X;Q)ω = S(Q) – S(Q|X)





HSW coding


ρ = Σx px ρx


χ = S(ρ) - Σx px S(ρx)




= S(Q) – S(Q|X)



total


information



ambiguity in ���
each message



typical subspace of ρ⊗n ���
has dim ≈exp(n S(ρ))



If x=(x1,...,xn) is p-typical then ���
ρx1

 ⊗ρx2
 ⊗ ... ⊗ρxn 

has typical 
subspace of dim ≈ exp(n∑x px S(ρx))



“Packing lemma” ���
Can fit ≈exp(nχ) ���
messages.





Packing lemma


Classically: random coding and maximum-likelihood decoding


Quantumly: messages do not commute with each other



For HSW:


σ=ρ⊗n with typ proj Π.                D ≈ exp(n S(Q))


σx = ρx1

 ⊗ ... ⊗ρxn 
with typ proj Πx. d ≈ exp(n S(Q|X)).



Packing lemma: ���
We can send M messages with error O(ε1/2 + Md/D)



Suppose σ=Σx px σx���
and there exist Π, {Πx} s.t.


1.  tr[Πσx] ≥ 1-ε


2.  tr[Πxσx] ≥ 1-ε


3.  tr[Πx] ≤ d


4.  ΠσΠ ≤ Π / D

density ≤ 1/D

 size ≤ d





Upper bound


X∈{X1, ..., XM}



N⊗n

 D

 Y



Pr[Y|X] = tr[ρXDY]



∑Y DY = I


ρX = ρx1

 ⊗ ... ⊗ρxn




Q



proof: nχ ≥ I(X;Q) ≥ I(X;Y) ≥ (1-O(ε)) log(M)



additivity


Wed 10:50���
Cross-Li-Smith.���
also Shannon 1948



continuity


data-processing inequality



D

Q

 Y

 ≅


VD



Q

 Y



Q’


isometry



I(X:Q) = ���
I(X:YQ’) ≥���
I(X:Y)





conditional mutual information


Claim that I(A:BC) - I(A:B) ≥ 0.



=: I(A:C|B)     conditional mutual information


= S(A|B) + S(C|B) – S(AC|B)


= S(AB) + S(BC) – S(ABC) – S(B)



If B is classical, ρ = ∑b p(b) |b⟩⟨b| ⊗ σ(b)AC���
then I(A:C|B) = ∑b p(b) I(A:C)σ(b) ≥ 0 from subadditivity



I(A:C|B) ≥ 0 is strong subadditivity [Lieb-Ruskai ’73].���
���
I(A:C|B) = 0 for “quantum Markov states”���
Wed morning you will hear I(A:C|B) ≥ “non-Markovianity”



A

 C



B



CMI





capacity of QQ channels



Additional degree of freedom: channel inputs |ψx⟩.





C(1)(N) = max{px,ψx} χ({px,ψx}) 



NP-hard optimization problem [Beigi-Shor, H.-Montanaro]



Worse: C(N) = limnà∞ C(1)(N⊗n)/n.


and ∃ channels where C(N) > C(1)(N).



Open questions: Non-trivial upper bounds on capacity.


Strong converse (psucc -> 0 when sending n(C+δ) bits.) ���
(see Berta et al, Thurs 4:15pm).





quantum capacity



N

A

 B

 ≅

 VN


A

 B



E


isometry



R

R



How many qubits can be sent through a noisy channel?



Q(1)(N) := max S(B) – S(E)




 

= max S(B) – S(RB)




 

= max –S(R|B)



“coherent information”



Q(N) = limnà∞ Q(1)(N⊗n)/n



not known when > 0.


sometimes Q(1)(N)= 0 < Q(N).





entanglement-assisted 
capacity



Alice and Bob share unlimited free EPR pairs.



VN


A

 B



E



R

R

 CE(N) = max I(R:B)



QE(N) = CE(N)/2



Bennett


Shor


Smolin


Thapliyal���
q-ph/0106052



1)  additive


2)  concave in input

 à efficiently computable





covering lemma



Suppose σ=Σx px σx���
and there exist Π, {Πx} s.t.


1.  tr[Πσx] ≥ 1-ε


2.  tr[Πxσx] ≥ 1-ε


3.  tr[Π] ≤ D


4.  ΠxσxΠx ≤ Πx / d

size ≤ D

 density≤ 1/d



Covering lemma: ���
If x1, ..., xM are sampled randomly from p


and M >> (D/d) log(D)/ε3 then with high probability







 � ⇡O(✏1/4)

�x1 + · · ·+ �xM

M



wiretap (CQQ) channel



X

 ρx
BE = N(|x⟩⟨x|)

N

 B



E



Thm: Alice can send secret bits to Bob at rate���
I(X:B) – I(X:E).



Proof: packing lemma -> coding ≈nI(X:B) bits for Bob ���
covering lemma -> sacrifice ≈nI(X:E) bits to decouple Eve





remote state preparation (RSP)



Q: Cost to transmit n qubits?



A: 2n cbits, n ebits using teleportation.



Cost is optimal given super-dense coding and entanglement ���
distribution.



visible coding: What if the sender knows the state?



We want to simulate the map: “ψ” à |ψ⟩.���
Requires ≥n cbits, but above optimal arguments break.





RSP via covering


Consider the ensemble {UψU†} for random U.


Average state is I/2n.





Covering-type arguments [Aubrun arXiv:0805.2900] à ���
If we choose U1, ..., UM randomly with M >> 2n / ε2 then 



�����
1

M

MX

i=1

Ui U
†
i � I

2n

�����  ✏

2n
with high probability, ∀ψ



Set

Ei :=
2n

M(1 + ✏)
Ui U

†
i Then (1-ε)I ≤ ∑i Ei ≤ I



So {Ei} is ≈ a valid measurement.  So what?





RSP finally



Lemma: (A⊗I)|Φd⟩ = (I ⊗ AT)|Φd⟩



|�di :=
1p
d

dX

i=1

|ii ⌦ |ii Ei :=
2n

M(1 + ✏)
Ui U

†
i

recall



∝Ei
T ⊗ Ei ∝ (UiψUi†)T ⊗ (UiψUi†)



cost ≈ n cbits + n ebits.



Ui†



i



|ψ⟩



Protocol:



|Φ2n⟩AB



{Ei
T}

 discard





RSP of ensembles


can simulate x -> ρx with cost χ



≈nχ cbits + some ebits ≥ N⊗n ≥ ≈nχcbits



Lemma: Converting n(C-δ) cbits + ∞ ebits into nC cbits���
will have success probability ≤exp(-nδ).



implies strong converse: ���
sending n(χ+δ) bits through N⊗n ���
has exp(-nδ’) success prob





simulation and strong converses


Let N be a general q channel.



R is “strong converse rate”; i.e. min s.t. sending n(R+δ)���
bits has success prob ≤ exp(-nδ’)



Type of simulation

 cbit simulation 
cost



also needs



visible product input

 χ

 EPR



visible arbitrary input

 R

 EPR



arbitrary quantum input

 CE

 embezzling



χ ≤ C ≤ R ≤ CE





merging and decoupling


R



A



B



U



M


|ψ⟩RAB



A’



V


AB



B’



|Φ⟩

Alice



Bob



Reference



|ψ⟩RAB



Pf: The LHS is purified by |ω⟩ and the RHS by |ψ⟩RAB|Φ⟩A’B’


Uhlmann’s theorem says ∃V:MB à ABB’ making these close.



Let |ω⟩ = U|ψ⟩.


Claim: All we need is ωRA’ ≈ ωR ⊗ ωA’.



|ω⟩RA’MB





state redistribution


R



A



B



U



M



|ψ⟩RABC


A



V


BC



B’



|Φ⟩

Alice



Bob



Reference



C

 A’


|ψ⟩RABC



|M| = ½ I(C:R|B) = ½ I(C:R|A) qubits communicated


entanglement consumed/created = H(C|RB)



[Luo-Devetak, Devetak-Yard]





quantum Markov states


relabel

 A

 B

 C

 E



Bob can “redistribute” C to E with ½ I(A:C|B) qubits.


If I(A:C|B)=0 then this is reversible!


Implies recovery map R : B -> BC such that


(idA ⊗ RB->BC)(ρAB) = ρABC



B1
L

 B1

R



B2
L

 B2

R



B3
L

 B3

R



B4
L

 B4

R



B =
M

i

BL
i ⌦BR

i

structure theorem: I(A:C|B)=0 iff



⇢ABC =
M

i

pi⇢
i
ABL

i
⌦ ⇢iBR

i C

A

 C





approximate Markov states



B =
M

i

BL
i ⌦BR

i

structure theorem: I(A:C|B)=0 iff



⇢ABC =
M

i

pi⇢
i
ABL

i
⌦ ⇢iBR

i C

A

 C



B1
L

 B1

R



B2
L

 B2

R



B3
L

 B3

R



B4
L

 B4

R



towards a structure thm: [Fawzi-Renner 1410.0664, others]


If I(A:C|B) ≈ 0 then ∃approximate recovery map R, i.e.���
(idA ⊗ RB->BC)(ρAB) ≈ ρABC



states with low CMI appear in condensed matter, ���
optimization, communication complexity, ...





Relevant talks


•  Wed 9. Omar Fawzi and Renato Renner. Quantum 

conditional mutual information and approximate Markov 
chains.



•  Wed 9:50. Omar Fawzi, Marius Junge, Renato Renner, 
David Sutter, Mark Wilde and Andreas Winter. Universal 
recoverability in quantum information theory.



•  Thurs 11. David Sutter, Volkher Scholz, Andreas Winter 
and Renato Renner. Approximate degradable quantum 
channels



•  Thurs 4:15. Mario Berta, Joseph M. Renes, Marco 
Tomamichel, Mark Wilde and Andreas Winter.���
Strong Converse and Finite Resource Tradeoffs for 
Quantum Channels.



QCMI



channel


capacities





semi-relevant talks


•  Tues 11:50. Ryan O'Donnell and John Wright. Efficient quantum 

tomography���
merged with���
Jeongwan Haah, Aram Harrow, Zhengfeng Ji, Xiaodi Wu and 
Nengkun Yu. Sample-optimal tomography of quantum states



•  Tues 3:35. Ke Li. Discriminating quantum states:the multiple 
Chernoff distance



•  Thurs 10. Mark Braverman, Ankit Garg, Young Kun Ko, Jieming Mao 
and Dave Touchette. Near optimal bounds on bounded-round 
quantum communication complexity of disjointness



•  Thurs 3:35. Fernando Brandao and Aram Harrow. Estimating 
operator norms using covering nets with applications to quantum 
information theory



•  Thurs 4:15. Michael Beverland, Gorjan Alagic, Jeongwan Haah, 
Gretchen Campbell, Ana Maria Rey and Alexey Gorshkov. 
Implementing a quantum algorithm for spectrum estimation with 
alkaline earth atoms.



HSW ���
metrics



QCMI



covering



entropy





reference



Mark Wilde.  arXiv:1106.1445. ���
“From Classical to Quantum Shannon Theory”���
Last update Dec 2, 2015.  768 pages.




