e T

Quantum
Shannon
Theory

Aram Harrow (MIT)

QIP 2016 tutorial
9-10 January, 2016



the prehistory of quantum
information

ideas present in disconnected form
* 1927 Heisenberg uncertainty principle

* 1935 EPR paper / 1964 Bells theorem

* 1932 von Neumann entropy
subadditivity (Araki-Lieb 1970)
strong subadditivity (Lieb-Ruskai 1973)

* measurement theory
(Helstrom, Holevo, Uhlmann, etc., 1970s)



relativity: a close relative

Before Einstein, Maxwells equations were known to be
incompatible with Galilean relafivity.

Lorentz proposed a mathematical fix, but without the
right physical interpretation.

Einsteins solution redefined space/time, mass/momentum/
energy, eftc.

Space and fime had solid mathematical foundations
(Descartes, etc.), unlike information and computing.



theory of information
and computing

« 1948 Shannon created modern information theory (and to some
extent cryptography) and justified entropy as a measure of
information independent of physics. units of bits.

* Turing, Church, von Neumann, ..., Djikstra described a theory of
computation, algorithms, complexity, etc.

* This made it possible to formulate questions such as:
how do "quantum effects” change the capacity?
(= Holevo bound)

what is the thermodynamic cost of computing?
(Landauer principle, Bennett reversible computing)

what is the compufational complexity of simulating QM?
(= DMRG/QMC, and also Feynman)



some wacky ideas

Feynman ‘82: "Simulating Physics with Computers”

Classical computers require exponential overhead to simulate
quantum mechanics.

But quantum systems obviously dont need exp overhead to
simulate fhemselves.

Therefore they are doing something more computationally
powerful than our existing computers.

(Implicitly requires the idea of a universal Turing machine, and
the strong Church-Turing thesis.)

Wiesner 70: "Conjugate Coding”

The uncertainty principle restricts possible measurements.

In experiments, this is a disadvantage, but in crypto, limiting
information is an advantage.

(Requires crypto framework, notion of “adversary:.’)
Paper initially rejected by IEEE Trans. Inf. Th. ca. 1970



towards modern QIT

Deutsch, Jozsa, Bernstein, Vazirani, Simon, etc. — impractical
speedups

required oracle model, precursors to Shors algorithm, following
Feynman.

quantum key distribution (BB84, B90, E91) - following Weisner.

ca. 1995

* Shor and Grover algorithms

* quantum error-correcting codes

* fault-folerant quantum computing

* teleportation, super-dense coding

* Schumacher-Jozsa data compression
* HSW coding theorem

* resource theory of entanglement



modern QIT

semiclassical

* compression: S(0) = -tr [0 log(0)]
* CQ or QC channels: x({p,.0,3) = S(Z, p.0,) - 2.p,S(0,)
» hypothesis testing: D(pllg) = tr[ 0 (log(0) - log(T)]

]
“fully quantum”

» complementary channel: N(0) = tr, VoVt N¢(p) := tr, VoVt
* quantum capacity: QW(N) = max, [SIN(0)) - SIN(0))]

Q(N) = lim, 5., QU(N°")/n
» tools: purifications (Stinespring), decoupling

)
recent

* one-shot: S,(0) := log(tr o 2)/(1-a)
* applications to optimization, condensed matter, stat mech.



Relevant talks

Wed 9. Omar Fawzi and Renato Renner. Quantum conditional
mutual information and approximate Markov chains.

Wed 9:50. Omar Fawzi, Marius Junge, Renato Renner, David
Sutter, Mark Wilde and Andreas Winter. Universal
recoverability in quantum information theory.

Thurs 11. David Sufter, Volkher Scholz, Andreas Winter and
Renato Renner. Approximate degradable quantum channels

Thurs 4:15. Mario Berta, Joseph M. Renes, Marco Tomamichel,
Mark Wilde and Andreas Winfer.

Strong Converse and Finite Resource Tradeoffs for Quantum
Channels.



semi-relevant talks

Tues 11:50. Ryan O'Donnell and John Wright. Efficient quantum fomography
merged with

Jeongwan Haah, Aram Harrow, Zhengfeng Ji, Xiaodi Wu and Nengkun Yu.
Sample-optimal tomography of quantum states

Tues 3:35. Ke Li. Discriminating quantum states:the multiple Chernoff
distance

Thurs 10. Mark Braverman, Ankit Garg, Young Kun Ko, Jieming Mao and Dave
Touchette. Near optimal bounds on bounded-round quantum communication
complexity of disjointness

Thurs 3:35. Fernando Brandao and Aram Harrow. Estimating operator norms
using covering nets with applications to quantum information theory

Thurs 4:15. Michael Beverland, Gorjan Alagic, Jeongwan Haah, Gretchen
Campbell, Ana Maria Rey and Alexey Gorshkov. Implementing a quantum
algorithm for spectrum estimation with alkaline earth atoms.



outline

metrics

compressing quantum ensembles (Schumacher coding)
sending classical messages over q channels (HSW)
remote state preparation (RSP)

Schur duality

RSP and the strong converse

hypothesis testing

merging

quantum conditional mutual information and q Markov states



metrics

Trace distance T(p,0):=% |l p-0 |,
 Is a metric.
* monotone: T(0,0) 2 T(N(0 ),N(0))
* and this is achieved by a measurement
- T = max m'mt bias

Fidelity F(p, o) := ||\/pva|1 = tr \/\/gp\/g

* F=1iff p=0 and F=0 iff p L O
 monotone F(0,0) < F(N(o ).N(0))
* and this is achieved by a measurement!

Relation: Pure states with angle 6:

il _E2\1/2 F=cos(6)and T =sin(0).
1-F < T 2 (°h (exercise: which m'mts saturate?)



the case for fidelity

Uhlmanns theorem:
F(IOAI A) b max F(wABI ¢AB) 5.1'.
V=Y XYl, o= |¢><¢| NN O = O ,.

Note:
1. > from monotonicity.
= requires sweat

|

il

Church

of the
Larger
Hilbert
Space

2. Can fix either ¥ or ¢ and max over the other.

3. F(¥,®) = Ku|d)l. (Some use different convention.)

4. Implies that (1-F)“2is a metric.

Also F is multiplicative.



Compression

| »ecd

with probill encoder decoder =0

dim

Average fidelity: e

2, Px F(¥,, D(E(¥,))) < F(o, D(E(p)))

Simplification: use ensemble density matrix
o =23, py ¥,with eigenvalues A, 2> A,2 ..2 A,20

rank(o)=r = F(p0,0)2 < tr [P.o] = A, + .. + A,
P. projects onto fop r eigenvectors iAo

7T [P

Suggests optimal fidelity = (A, + ... + A )2



Too good 1o be true!

Ensemble density matrix: 0 =2 p, ¥,

Yes compression depends only on 0.

But reproducing 0 is not enough!

consider:
E(-)=10)<O0l
DIQEYe

Getfs the average right but not the correlations.



Reference system

Average fidelity: / S
5, Py F(¥,, E(D(¥,)) -
= F(2, p, IX<Xxl © ¥, 3, p IX){x] @ E(D(¥,)))

Not so easy to analyze.
Instead follow the Church of the Larger Hilbert Space.

Y)Y rg = D VPa 1T) g [We) g

Avg fidelity 2 F(p, (id; © D°Ey)(¢))
(pf: monotonicity under map that measures R.)

Protocol: E(w) =P, w P,. D =id.
achieves F = (p|l (I®P) lp) =tr [poP = A, + .. + A



Optimality
Complication: E, D might be noisy.
Solution: purify!

1. Write D(E(w)) = tro VwVt

where V is an isometry from Q -> Q®G.

2. Uhlmann -2
F(p, tre VoVt) = |<90|RQ<O|G \ |§0>RQ|

3. a little linear algebra -
F < tr[ o P] for P rank-r and [IPl|<1
< Ay + .



compressing I.1.d. sources

Quantum story = classical story

0" has eigenvalues A, A, -~ A, for X=(x,,...x,) € [d]".
Typically this is = X721 ... A4 — exp(—nH ()
H(A) = -3, A, log(A,) =S(0) =-tr[polog(0)]

distribution of -log(A, A, --- A

-

qubits fidelity
nH(A) + 20 n!/2 0.98
nH( A1) - 20 nl/2 0.02

H(A)+0
nH(1) ov/n il

1-exp(-nd2/203?)

n(H(A)-0)

exp(-n02/202)

o2=3, A (log(l/ A )-H)2




typicality

Definitions:
An eigenvector of o " is k-typical if its eigenvalue
is in the range exp(-nS(0) + ko nY/2).

Typical subspace V = span of typical eigenvectors
Typical projector P = projector onto V

Structure theorem for iid states: “asymptotic equipartition”

o tr [P o M>NIN=NES

« exp(-nS(p) - kaon’2) P < Ppen P < exp(-nS(0) + kon/2) P
« likewise tr[P] = exp(nS(0) + k o n'/2)

Almost flat spectrum.
Plausible because of permutation symmeftry.
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entropy

S(p) =-tr[plog O]
range: 0 < S(0) < log(d) A B
symmetry: S(o) = S(Up Ut)
multiplicative: S(oec) = S(0) + S(0)
continuity (Fannes-Audenaert):
| S(p) - S(0) | ¢ €log(d) + H(e 1-€) I(A:B)
e := || oS HCRila

S(AIB)

multipartite systems: 0 ag

S(A) = S(0.,), S(B) = S(05), etc.

conditional entropy: S(AIB) := S(AB) - S(B), can be < 0
mutual information: I(A:B) = S(A) + S(B) - S(AB)

= S(A) - S(AIB) = S(B) - S(BIA) > O “subadditivity”



CQ channel coding

CQ = Classical inpuf, Quantum output

Ix)<x| N . = N(Ix)¢xI)

Given n uses of N, how many bits can we send?

Allow error that 20 as n 2> o.

HSW theorem: Capacity = max x

X (P 0 41) = S(2, PO 4) = 2,PS(0,)
: wXQ X Zx Px |X><X| ®lox

LE X =1IXQ), = s(@) - s@IX)



HSW coding

’O e zXPX ’OX
X =5(0)- 2,p,S(0,)
= 5(Q) - s(@lX)
ambiguity in
total each message
information

If x=(x,..,x,) is p-typical then
typical subspace of p®" o el o) has typical
has dim =exp(n S(0)) subspace of dim = exp(nz, p, S(0 )

: ‘ . "Packing lemma”
‘ Can fit =exp(n x)
messages.



Packing lemma

Classically: random coding and maximum-likelihood decoding
Quantumly: messages do not commute with each other

Suppose 0=2,p, O,
) and there exist 1T, {11} s.t.
- 1. tr[lTo,]21-¢
/ 2. tr[MM, 0 ]21-¢

density < 1/D g Renln< 1T / D

Packing lemma:
We can send M messages with error O( € /2 + Md/D)

For HSW:
0 =p °" with typ proj TI. I ((0))
Oy = 0y © .. ®0, with typ proj TI,. d = exp(n S(QIX)).

1



Upper bound

XEXL, o, XM} ooy O0x= 0, © .00,

NN D Y
Q

PriY|X] = tr[ 0 D]
proof: nx 2 I(X;Q) 2 I(X;Y) 2 (1-O(€)) log(M)

additivity continuity
Wed 10:50 data-processing inequality
Cross-Li-Smith. L

also Shannon 1948 i I

s g I(X:Q) =
‘ VA I(X:YQ') 2

isometry



conditional mutual information

Claim that I(A:BC) - I(A:B) 2 0.

=: I(A:C|B) conditional mutual information

= S(AIB) + S(CIB) - S(ACIB) B
= S(AB) + S(BC) - S(ABC) - S(B)

A cni ¢

If B is classical, o = 2, p(b) Ib)<bl ® 0 (b)ac
then I(A:CIB) = 3, p(b) I(A:C) () 2 O from subadditivity

I(A:CIB) > O is strong subadditivity [Lieb-Ruskai ‘73].

I(A:CIB) = O for "quantum Markov states”
Wed morning you will hear I(A:C|B) > “non-Markovianity”



capacity of QQ channels

Additional degree of freedom: channel inputs | ).

C(l)(N) — mGX{Px,wx} X({lewx})

NP-hard optimization problem [Beigi-Shor, H.-Montanaro]

Worse: C(N) = lim_5., CO(N°")/n.
and 3 channels where C(N) > CO(N).

Open questions: Non-trivial upper bounds on capacity.
Strong converse (p,,.. -> O when sending n(C+ 0 ) bits.)
(see Berta et al, Thurs 4:15pm).



quantum capacity

How many qubits can be sent through a noisy channel?

QW(N) := max S(B) - S(E)
= max S(B) - S(RB)
= max -S(R|B)

“coherent information”

R
B
VN
=
isometry

Q(N) = lim_5., QW(N°")/n

not known when > O.
sometimes QW(N)= 0 < Q(N).



entanglement-assisted
capacity

Alice and Bob share unlimited free EPR pairs.

R R i . Bennett
Cc(N) = max I(R:B) o
Smolin
Q(N) = C:(N)/2 Thapliyal
A B q-ph/0106052
VN
E

1) additive

- effici b
2) concave in input efficiently computable



covering lemma

i Suppose 0=2,p, O,

: and there exist 1T, {11} s.t.
1. tr[lTo,]21-€
2. tr[lT O, ]21-¢

Covering lemma:
If x,, .., Xy are sampled randomly from p
and M >> (D/d) log(D)/ € 3 then with high probability
~ il 4
ow M




wiretap (CQQ) channel

X N 0 *ge = N(Ix)(xI)
Thm: Alice can send secret bits to Bob at rate
I(X:B) - I(X:E).

Proof: packing lemma -> coding =nI(X:B) bits for Bob
covering lemma -> sacrifice =nI(X:E) bits to decouple Eve



remote state preparation (RSP)

Q: Cost to transmit n qubits?
A: 2n cbits, n ebits using teleportation.

Cost is optimal given super-dense coding and entanglement
distribution.

visible coding: What if the sender knows the state?

We want to simulate the map: "¢ “ > |¥).
Requires 2n cbits, but above optimal arguments break.



RSP via covering

Consider the ensemble {U % Ut} for random U.
Average state is I/2".

Covering-type arguments [Aubrun arXiv:0805.2900] -
If we choose U, ..., Uy randomly with M >> 2"/ &2 then

with high probability, V ¥

277/
M(1+¢)

Set E; := U;hU]  Then (1-€)I ¢ 3, E, < I

So {E} is = a valid measurement. So what?



RSP finally

|Pg) |3) ® |4) e 2" Bt
=7l Z recall F; = — il
Lemma: (ASI)| P = (I @ AT P
Protocol: |
- {ET} I discard
| :
|
1D onng :
: A
oyt )

ocET © E, oc (U YU @ (U YUT)

cost = n cbits + n ebits.



RSP of ensembles

can simulate x -> 0, with cost X

~n X cbits + some ebits > N°" > =n x cbits

Lemma: Converting n(C-0 ) cbits + e ebits into nC cbits
will have success probability <exp(-n0).

implies strong converse:
sending n(x + 0 ) bits through N
has exp(-n0 ‘) success prob



simulation and strong converses

Let N be a general q channel.

visible product input X EPR
visible arbitrary input R EPR
arbitrary quantum input Ce embezzling

R is “strong converse rate”; i.e. min s.t. sending n(R+ &)
bits has success prob < exp(-nd )

x ' <ClRREs



merging and decoupling L
Reference p |a|)>RAIMB 4
I
A_ ...... iA' .....................................................
L20% : 2
I RAB
Alice M: e
.................................... e e
-/ &
Bob i : V
| AB

Let |w) = Ul®).
Claim: All we need is Wgy® Wg @ Wy.

Pf: The LHS is purified by |w) and the RHS by | ¥ )aasl @) pp
Uhlmanns theorem says 3V:MB - ABB’ making these close.



state redistribution ;f

[Luo-Devetak, Devetak-Yard] -
Reference p p

A A A
|¢ >RABC C U A,
1% rasc

Alice M e

: b ................................................. _ ........ B, ..............................

o)
8 Vv
e

IM| = % I(C:RIB) = % I(C:R|A) qubits communicated
entanglement consumed/created = H(C|RB)



quantum Markov states

relabel

e —— E

Bob can “redistribute” C to E with % I(A:CIB) qubits.
If I(A:CIB)=0 then this is reversible!

Implies recovery map R : B -> BC such that
(ids ® Re5c)(0 ag) = 0 asc

structure theorem: I(A:C|B)=0 iff

B=pDB «wB

B!,
; éaa B2, §
~

B3 | B3,
PABC = 69 pipil BL & PiBg%c \B‘*L B /

1




approximate Markov states

towards a structure thm: [Fawzi-Renner 1410.0664, others]
If I(A:CIB) ~ O then 3 approximate recovery map R, i.e.

(IdA ® RB->BC)(10 AB) ~ P asc

states with low CMI appear in condensed matter,
optimization, communication complexity, ...

structure theorem: I(A:C|B)=0 iff

B=(DB! B N

B B’
/BZ B2 \ .
L R \ c
S
7} )
B Gl eapi’OABL 2 IOB.RC B | B%

()




Relevant talks

Wed 9. Omar Fawzi and Renato Renner. Quantum
conditional mutual information and approximate Markov
chains.
. ; QCMI
Wed 9:50. Omar Fawzi, Marius Junge, Renato Renner,
David Sutter, Mark Wilde and Andreas Winter. Universal
recoverability in quantum information theory.

Thurs 11. David Sutter, Volkher Scholz, Andreas Winter
and Renato Renner. Approximate degradable quantum

channels channel

Thurs 4:15. Mario Berta, Joseph M. Renes, Marco capacities
Tomamichel, Mark Wilde and Andreas Winter.

Strong Converse and Finite Resource Tradeoffs for

Quantum Channels.



semi-relevant talks

Tues 11:50. Ryan O'Donnell and John Wright. Efficient quantum

tomography

merged with

Jeongwan Haah, Aram Harrow, Zhengfeng Ji, Xiaodi Wu and HSW
Nengkun Yu. Sample-optimal tomography of quantum states

meftrics
Tues 3:35. Ke Li. Discriminating quantum states:the multiple
Chernoff distance

Thurs 10. Mark Braverman, Ankit Garg, Young Kun Ko, Jieming Mao
and Dave Touchette. Near optimal bounds on bounded-round QCMI
quantum communication complexity of disjointness

Thurs 3:35. Fernando Brandao and Aram Harrow. Estimating ,
operator norms using covering nets with applications to quantum covering
information theory

Thurs 4:15. Michael Beverland, Gorjan Alagic, Jeongwan Haabh,

Gretchen Campbell, Ana Maria Rey and Alexey Gorshkov. en’rropy
Implementing a quantum algorithm for spectrum estimation with

alkaline earth atoms.
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