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adiabatic algorithm

[Farhi, Goldstone, Gutmann, Sipser ‘00]
Problem: Given f:{0,1}" = Z, minimize f(z).
Approach: apply H(s) = (1-s) Hy + s H,

Hy = — 3 GOUNUR f(-) ) (-

z€{0,1}7

equiv: H(s) = (1-s) (hypercube Laplacian) + s diag(f)

Adiabatic theorem:
Running for time poly(l / min, [ A ,(s)- A ,(s)])
guarantees that we will end in the ground state of H,.

Not discussed in this talk:
noisy dynamics
non-stoquastic Hamiltonians



QAO vs simulated annealing (SA)

Farhi
* Given state x repeatedly Goldstone
« Choose random neighbor y Gutmann
»  With probability min(1, exp((f(x)-f(y))/T) q-ph/0201013

replace x with y. Otherwise do nothing.
* Gradually lower T
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Hamming "bush of
weight implications”

Which problem features make QAO outperform classical?



possibilities for
adiabatic optimization

pessimistic: There is a classical simulafor that runs in time
< poly(time required by the adiabatic algorithm).

® Grover exhibits quadratic separation.
® evidence in favor: QMC (for stoquastic Hamiltonians).

optimistic: Stoquastic adiabatic evolution is universal for quantum
computing.

® Would imply collapse of PH & “approx counting = exact counting”.
(Proof uses QMC + post-selection.)

® Nothing rules out fast adiabatic algorithms for factoring or 3SAT.

intermediate: Exponential speedups (i.e. no simulation) but weaker
than general-purpose QC.

® Oracle speedup for mostly adiabatic evolution (NSK ‘12)
® evidence in favor: QMC sometimes takes exponential time



quantum Monte Carlo (QMC)

stoquastic Hamiltonians: H,, < O for x#y.
|17
* implies , — IS entrywise nonnegative
tnieme
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aside: H gapped > p(z)=¢z| ¥ ,>2 has high conductance
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What is H_?
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e.g. 1-D transverse Ising model: H=2,Z Z, - [ 2, X

2-D classical ferromagnetic Ising model

| | | | Vertical bonds:
o0 ferromagnetic
A energy =In(BL/[), i.e.
disagree prob =3 [ /L.
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standard part of QMC

1. Use local moves (Glauber or Metropolis)
to generate samples from t(z,, ..., z|).
Run-time/accuracy tradeoff unknown in general.

2. Use sampling-to-counting equivalence to estimate Z
or (O)=tr[O e-AH]/zZ.

!roglem re!uces !o Eounalng mixing !lme

(equiv. gap) of a classical Markov chain.
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The Markov chain
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weight(z) =
exp(- 8 (E(z;) + ... + E(z))) / L)
: (B [ /L)# vertical jumps

S
rapidly mixing?



can QMC simulate adiabatic
evolution?

* Only if gap > 1/poly(n).
since we need 3> 1/gap for e PH = |gs)(gsl
and B o # of imaginary time steps

* Only if we follow the adiabatic path.
* Otherwise would solve NP-complete problems.

« Technically useful as a "warm start” and to avoid
unphysical/unlikely configurations.

* Even then there may be fopological obstructions
[Hastings-Freedman '13] m—



[see also

the path measure  Jsivm

1603.01293]
random walk z,,...,z, on hypercube {0,1}"

 conditioned to return (z,,; = z,)
* alternatively can use open boundary conditions.
« typically =5 [ n total jumps

Suppose that f(z) depends only on Hamming weight [z|.
* look only at Hamming weight: {0,1}" -> {0,1,...,n;.
e take n->c and {0,1,...,n} = [0,1].
 Brownian motion, or with closed B.C., “Brownian bridge”

with local Z fields ->
Brownian motion with drift
"Ornstein-Uhlenbeck bridge”
dx(t) = 6 (u-x(1)) dt + o dB(1)
6 =drift, 4 = mean, 0 = diffusion

Imaginary time

Hamming weight



local times of Brownian motion

Local time: LX(t) = amount of time Brownian motion B(t)
spends at point x.

Levy's theorem: {LO(t): 120} and {S(t): +20}
have the same distribution, where S(t) = sup,.; B(S).

In fact, (S-B, S) =4 (|B|, LO)
Additionally, S =4 |B|.



local times of Brownian motion

Local time: LX(t) = amount of time Brownian motion B([O,1])
spends at point x.

Levy's theorem: (S-B, S) =4 (|Bl, L9)

Proof: consider discrete r walk: = X(1) + ... + X(n) with X(t) = +1.
Let = max(W(0), ..., W(n)).
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| M = # of times M-W

remains at O =d |0 figure adapted from
Y(f) A M(f)—W(f) ~d |W(1')| Brownian Motion

by Morters and Peres.



FGG '02
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Hamming weight + spike ‘s
F(lzl) JSIBMTN '16
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width n® exp(-natb-1/2)
height nb
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QMC and tunnelling

spike
(width n® height n®)

ST = normalized spike fime
~d |N(O, na-1/2)|

proof using either Levys thm
or quantum-classical
correspondence.

imaginary time

Hamming weight

Feynman-Kac thm:
Prlpath | spike] = exp(- B ST nP) Pr[path | no spike]

> if then typical paths dont notice the spike.



iInstantons on the cheap

spike ,
: ik 1 a<1/2 cf JSIBMTN'16
(width n® height n®) e

steps to traverse spike = n2e

min ST=n2%/ B I n

imaginary time

: ; Feynman-Kac -
Hamming weight prob reduced by =

.« 2a+bz<l is the theshold to cross the spike once.



canonical paths

Given Markov chain P(x,y) with stationary

distribution m(x) and Q(x,y) = P(x,y) m(y) = Q(y,x).

TFAE:

* P has a 21/poly(n) gap between the top two
eigenvalues

* The conductance ® is 21/poly(n). conductance
® = ming Q(S, S°) / n(S) m(S°)

* For any x,y there exists a path 7 ,, from x ->
y routing m(x) m(y) units of flow such that
each edge e has load < poly(n) Q(e).
(“canonical paths/flows”)

Heuristics analyze some plausible cut.
Proofs analyze all cuts or construct paths. canonical paths



open questions

multidimensional / non-bit-symmetric tunneling.
The a+b<1/2 approach generalizes to whenever

* The unperturbed problem has good canonical paths.
* The perturbation is small relative to the gap.
What about the 2a+b < 1 scenario?

Quantum state geometry vs QMC geometry.

* Ground states of gapped Hamiltonian have high conductance.
* When does this imply that paths in QMC do too?

Poly-time simulation of AQC or exponential separation?



1-d canonical path

X1 Xaa K31 X4,

X2 Xza X3z %X4p

X13 X3 X33 X43
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energy penalty:
< 2 new jumps
<1 term from H;
(L bonds each
with weight 1/L.)
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QMC on the spike

energy

E’(Z) = IZI + n¢ 1|z|=n/4 Hamming

weight

Quantum gap o< 1-n%-”2 for @ «<1/2 [Reichardt]
or n%-2 for a>1/2.
We show QMC works when a<1/2.

relate to spikeless Hamiltonian

E(z) = |zl

m(z,, ... z,,) = Tig(Z] e RS2 2\ )
n decoupled 1-D Ising models.

m'(z) = C n(z) exp(-n?® [# lz| = n/4] / L)



