separable states, unique games and monogamy

Aram Harrow (MIT) TQC 2013 arXiv:1205.4484

<u>based on work with</u> Boaz Barak (Microsoft) Fernando Brandão (UCL) Jon Kelner (MIT) David Steurer (Cornell) Yuan Zhou (CMU)

motivation:

approximation problems with intermediate complexity <u>1. Unique Games (UG)</u>:

Given a system of linear equations: $x_i - x_j = a_{ij} \mod k$. Determine whether $\ge 1-\epsilon$ or $\le \epsilon$ fraction are satisfiable.

2. Small-Set Expansion (SSE):

Is the minimum expansion of a set with $\leq \delta n$ vertices $\geq 1-\epsilon$ or $\leq \epsilon$?

3. 2->4 norm:

Given $A \in \mathbb{R}^{m \times n}$. Define $||x||_p := (\Sigma_i |x_i|^p)^{1/p}$ Approximate $||A||_{2 \to 4} := \sup_x ||Ax||_4 / ||x||_2$

4. h_{Sep}:

Given M with $0 \le M \le I$ acting on $C^n \otimes C^n$, estimate $h_{Sep}(M) = max\{tr M \rho : \rho \in Sep\}$

5. weak membership for Sep: Given ρ such that either $\rho \in \text{Sep}$ or dist(ρ , Sep) > ε , determine which is the case.

unique games motivation

CSP = constraint satisfaction problem

Example: MAX-CUT

- trivial algorithm achieves ½-approximation
- SDP achieves 0.878...-approximation
- NP-hard to achieve 0.941...-approximation
 If UG is NP-complete, then 0.878... is optimal!

Theorem: [Raghavendra '08] If the unique games problem is NP-complete, then for every CSP, $\exists \alpha > 0$ such that

• an α -approximation is achievable in poly time using SDP

• it is NP-hard to achieve a $\alpha + \varepsilon$ approximation

TFA≈E

UG <---> SSE <---> 2->4 <-->

Raghavendra Steurer Tulsiani CCC `12

this work

convex optimization (ellipsoid): Gurvits, STOC '03 Liu, thesis '07 Gharibian, QIC '10 Grötschel-Lovász-Schrijver, '93

 $\langle - \rangle$

n_{Sep}

WMEM

(Sep)

...quasipolynomial (=exp(polylog(n)) upper and lower bounds for unique games

progress so far

small-set expansion (SSE) ≈ 2->4 norm

G = normalized adjacency matrix P_{λ} = largest projector s.t. G $\geq \lambda P$

Definitions

volume = fraction of vertices weighted by degree expansion of set S = Pr [e leaves S | e has endpoint in S]

 $2 \rightarrow 4 \text{ norm} \approx h_{\text{Sep}}$ $A = \sum |i\rangle \langle a_i|$ $M = \sum |a_i\rangle \langle a_i| \otimes |a_i\rangle \langle a_i|$ Easy direction: h_{Sep} ≥ 2->4 norm $\|Ax\|_4^4 = \sum_i \langle a_i, x \rangle^4 = \mathrm{tr} M \rho_{\mathbf{k}}$ $\rho = |x\rangle \langle x| \otimes |x\rangle \langle x|$ $||A||_{2\to 4}^4 = h_{\text{Sep}}(M)$

Harder direction:

2->4 norm $\geq h_{Sep}$ Given an arbitrary M, can we make it look like $\sum_i |a_i\rangle\langle a_i| \otimes |a_i\rangle\langle a_i|$?

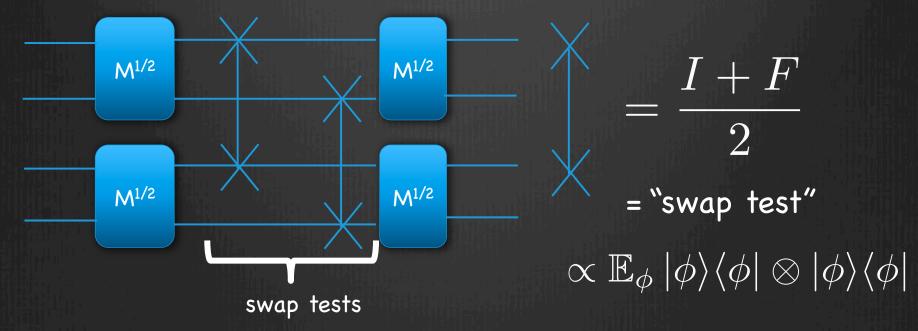
reduction from h_{Sep} to 2->4 norm

Goal:

Convert any M≥0 into the form $\Sigma_i |a_i\rangle \langle a_i| \otimes |a_i\rangle \langle a_i|$ while approximately preserving $h_{Sep}(M)$.

Construction: [H.-Montanaro, 1001.0017]

- Amplify so that h_{Sep}(M) is ≈1 or ≪1.
 Let |a_i⟩ = M^{1/2}(|φ⟩⊗|φ⟩) for Haar-random |φ⟩.



SSE hardness??

 Estimating h_{Sep}(M) ± 0.1 for n-dimensional M is at least as hard as solving 3-SAT instance of length ≈log²(n).
 [H.-Montanaro 1001.0017] [Aaronson-Beigi-Drucker-Fefferman-Shor 0804.0802]

2. The Exponential-Time Hypothesis (ETH) implies a lower bound of $\Omega(n^{\log(n)})$ for $h_{Sep}(M)$.

3. I lower bound of $\Omega(n^{\log(n)})$ for estimating $||A||_{2\rightarrow4}$ for some family of projectors A.

4. These A might not be P_{λ} for any graph G.

5. (Still, first proof of hardness for constant-factor approximation of $\|\cdot\|_{2 \to 4}$).

algorithms:

semi-definite programming (SDP) hierarchies [Parrilo '00; Lasserre '01]

Problem:

Maximize a polynomial f(x) over $x \in \mathbb{R}^n$ subject to polynomial constraints $g_1(x) \ge 0$, ..., $g_m(x) \ge 0$.

SDP:

Optimize over "pseudo-expectations" of k'th-order moments of x. Run-time is $n^{O(k)}$.

 $\tilde{\mathbb{E}}[p(x) + q(x)] = \tilde{\mathbb{E}}[p(x)] + \tilde{\mathbb{E}}[q(x)]$ $\tilde{\mathbb{E}}[p(x)^2] \ge 0$

Dual:

min λ s.t. λ - f(x) = r₀(x) + r₁(x)g₁(x) + ... + r_m(x)g_m(x) and r₀, ..., r_m are SOS (sums of squares).

SDP hierarchy for Sep

Relax *ρ* ^{AB}∈Sep to

1. $\tilde{\rho}^{A_1...A_kB_1...B_k}$ symmetric under permuting A₁, ..., A_k, B₁, ..., B_k and partial transposes.

2. require
$$ho^{AB}= ilde
ho^{A_iB_j}$$
 for each i,j.

Lazier versions

1. Only use systems $AB_1...B_k$. \rightarrow "k-extendable + PPT" relaxation. 2. Drop PPT requirement. \rightarrow "k-extendable" relaxation.

the dream: quantum proofs for classical algorithms

- Information-theory proofs of de Finetti/monogamy, e.g. [Brandão-Christandl-Yard, 1010.1750] [Brandão-H., 1210.6367] h_{Sep}(M) ≤ h_{k-Ext}(M) ≤ h_{Sep}(M) + (log(n) / k)^{1/2} ||M|| if M∈1-LOCC
- 2. $M = \sum_{i} |a_{i}\rangle \langle a_{i}| \otimes |a_{i}\rangle \langle a_{i}|$ is \propto 1-LOCC.
- 3. Constant-factor approximation in time $n^{O(log(n))}$?
- 4. Problem: ||M|| can be ≫ h_{Sep}(M). Need multiplicative approximaton.
 Also: implementing M via 1-LOCC loses dim factors
- 5. Still yields subexponential-time algorithm.

the way forward

conjectures \rightarrow hardness

Currently approximating $h_{Sep}(M)$ is at least as hard as 3-SAT[log²(n)] for M of the form $M = \sum_i |a_i\rangle\langle a_i| \otimes |a_i\rangle\langle a_i|$.

Can we extend this so that $|a_i\rangle = P_{\geq \lambda} |i\rangle$ for $P_{\geq \lambda}$ a projector onto the $\geq \lambda$ eigenspace of some symmetric stochastic matrix?

Or can we reduce the 2->4 norm of a general matrix A to SSE of some graph G?

Would yield $n^{\Omega(\log(n))}$ lower bound for SSE and UG.

conjectures \rightarrow algorithms

<u>Goal</u>: $M = (P_{\geq \lambda} \otimes P_{\geq \lambda})^{\dagger} \Sigma_{i} |i\rangle \langle i| \otimes |i\rangle \langle i| (P_{\geq \lambda} \otimes P_{\geq \lambda})$ Decide whether $h_{Sep}(M)$ is $\geq 1000/n$ or $\leq 10/n$.

<u>Known</u>: [BCY] can achieve error $\varepsilon \lambda$ in time $\exp(\log^2(n)/\varepsilon^2)$ where $\lambda = \min \{\lambda : M \le \lambda N \text{ for some 1-LOCC N}\}$

Improvements?

1. Remove 1–LOCC restriction: replace λ with ||M||

2. Multiplicative approximation: replace λ with $h_{sep}(M)$.

Multiplicative approximation would yield n^{O(log(n))}-time algorithm for SSE and (sort of) UG.

difficulties

Antisymmetric state on $C^n \otimes C^n$ (a.k.a. "the universal counter-example")

- (n-1)-extendable
- far from Sep
- although only with non-PPT measurements
- also, not PPT

Analyzing the k-extendable relaxation using monogamy

Survey of Sorta BRITANNIA between SCYLLA & CHARYBDIS. Jointon 2019 or The Vefsel of the Constitution stared clear of the Rock of Democracy, and the Whirtpool of Arbitary Power.

 $h_{k-\mathrm{Ext}}(M)$ $h_{\mathrm{Sep}}($

Near-optimal and explicit
Bell inequality violations"
[Buhrman, Regev, Scarpa, de Wolf
1012.5043]
M ∈ LO

• based on UG

 \sim $k\log^2(n)$

n

room for hope?

Improvements?

1. Remove 1-LOCC restriction: replace λ with min{ $\lambda : M \le \lambda N$, N \in SEP}

2. Multiplicative approximation: replace λ with $h_{Sep}(M)$.

1. Note: $\lambda = ||M||$ won't work because of antisymmetric counterexample <u>Need</u>:

- a) To change 1-LOCC to SEP in the BCY bound.
- b) To hope that ||M|| is not too much bigger than h_{sep}(M) in relevant cases.

2. Impossible in general without PPT (because of Buhrman et al. example) Only one positive result for k-Ext + PPT.

[Navascues, Owari, Plenio. 0906.2731] trace dist(k-Ext, Sep) ~ n/k trace dist(k-Ext+PPT, Sep) ~ (n/k)²

more open questions

- What is the status of QMA vs QMA(k) for k = 2 or poly(n)? Improving BCY from 1-LOCC to SEP would show QMA = QMA(poly). Note that QMA = BellQMA(poly) [Brandão-H. 1210.6367]
- How do monogamy relations differ between entangled states and general no-signaling boxes? (cf. 1210.6367 for connection to NEXP vs MIP*)
- More counter-example states.
- What does it mean when $I(A:B|E)=\varepsilon$? Does it imply $O(1/\varepsilon)$ -extendability?

