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entanglement
An old mystery of quantum theory:
“[not] one, but rather the characteristic trait of quantum 
mechanics, the one that enforces its entire departure from 
classical lines of thought.”
! ! ! ! ! ! ! ! ! ! ! ---Schrödinger, 1935

Spooky action at a distance
“This makes the reality of [quantities] P and Q depend upon 
the process of measurement carried out on the first system, 
which does not disturb the second system in any way.  No 
reasonable definition of reality could be expected to permit 
this.”
! ! ! ! --- Einstein, Podolsky and Rosen [EPR], 1935

canonical form:
EPR pair
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entanglement as resource
• Bell’s theorem [1964] describes a set of distributed 

measurements on |Φ2i that produce outcomes inconsistent 
with any correlated classical probability distribution.

• Super-dense coding [Bennett-Wiesner ’92] is a scheme for 
transmitting two classical bits (cbits) using one qubit and one 
EPR pair.

• Teleportation [BBCJPW93] is a method for sending one qubit 
using two classical bits and one EPR pair.

• Quantum key distribution achieves information-theoretic 
security using entanglement either implicitly [BB84] or 
explicitly [E91].

• Quantum computing exploits the exponential scaling to 
perform calculations that are hard to simulate classically.
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general entangled states

With free LO (local operations) + CC (classical communication):

• Local unitaries transform any state to a standard form:
|ψi ~ ∑i √λi |ii⊗|ii.  (Proof: use singular value decomposition.)

• The {λi} (Schmidt coeffs) are Schur-monotone under LOCC: 
i.e., if |ψi→|ψ’i then λ is majorized by λ’.

• Concentration and dilution [BBPS96] reduce many copies of
|ψi to -∑i λi log λi EPR pairs per copy.

Two-party entanglement:
Alice and Bob share |ψi = ∑ij cij |ii⊗|ji. 

But what if classical 
communication isn’t free?
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a different metaphor:
superselection constraints

The state space is partitioned 
according to some observable, 
such as total particle number.

Measurements and unitary 
evolutions are constrained to 
respect this partition.
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entanglement as conserved 
quantityIdea:

If Alice and Bob are allowed only local unitaries (LU) then the 
Schmidt coefficients of their state remain exactly the same.

Or less precisely, the ‘amount’ of entanglement is conserved.

Really?
1. |Φ2i⊗k and |Φ2i⊗l are only approximately orthogonal.
2. Technically we can only approximately decompose |ψi into

So the state |ψi is LU equivalent to 
with the # of EPR pairs (k) conserved under LU .



implications
1. Any transformation using local unitaries and Q qubits of 
communication has off-diagonal blocks decaying as 

2. ‘Exotic’ states, such as |01i⊗n  ± |Φ2i⊗n / √2 , should be 
difficult to create, and are potentially valuable.
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Traditional version:  A mysterious woman appears at the castle claiming 
to be a princess.  That night, a single pea placed under twenty 
mattresses keeps her from sleeping.  The prince realises that she is 
genuine and immediately asks her to marry him.

Quantum version: Our heroine is so delicate that she can distinguish 
                       from any orthogonal state.  In particular, she can
                       distinguish it from  +

-

However!   Adding or removing lots of mattresses is difficult.

requires
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Distinguishing                         from                        with a reversible

quantum circuit allows us to apply a phase (-1) to one of the states.

Should he marry her?
+ -

But                    in the                       basis is equivalent to

                         in the               ,                basis.  

±

This performs

Conclusion:   The “princess” is stronger than she looks!
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   |01i⊗n =                          |Φ2i⊗n =

•Therefore, distinguishing |01i⊗n  ± |Φ2i⊗n / √2 requires transmitting 
n/2 qubits.
Why?  Because any measurement in the {|αi ,|βi} basis using Q 
qubits of communication implies that the operation |αihα| - |βihβ| 
can be performed using 2Q qubits of communication.

•This bound holds even given unlimited EPR pairs. 
Why?  Because for any m, the same argument applies to the states 
           |Φ2i⊗m ⊗ (|01i⊗n  ± |Φ2i⊗n / √2) 
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•If λ1≥λ2≥...≥λr, then preparing |ψi = ∑i √λi |ii⊗|ii from EPR pairs 
requires log(rλ1)/2 qubits of communication (i.e. the “entanglement 
spread” of |ψi).
Why? r and λ1 each change by at most 2 for each qubit sent.  
For EPR pairs rλ1=1.  
[P. Hayden, A. Winter. quant-ph/0204092]

•Approximate versions also exist.

• If |ψi = ∑k √pk |ki|ki|Φ2i⊗k, then 
log(r)≈max{k : pk>0} and log(λ1)≈-min{k : pk>0}.
So the spread of |ψi ≈ the diameter of the support of p.

•Corollary: For |01i⊗n  + |Φ2i⊗n / √2, rλ1≈2n.  Therefore creating 
the state requires ≈n/2 qubits of communication.
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•Traditionally spread has been thought as a “sublinear” 
phenomenon, and as a result, has been neglected.

•Example: If |ψi is an entangled state, then |ψi⊗n  is very 
close to a state with spread O(√n).
Therefore, O(√n) bits of communication are necessary and 
sufficent to prepare  |ψi⊗n  from EPR pairs. (a.k.a. 
entanglement dilution.)  [Harrow and Lo; quant-ph/0204096]

•However, even in i.i.d. settings, entanglement spread can be 
size O(n).
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Example: Channel simulation

(Classical) Reverse Shannon Theorem:  N can be simulated on p⊗n using 
communication CN,p and shared randomness RN,p = H(AB)p - H(A)p.

Shannon’s (noisy coding) theorem:
Any noisy channel N using input distribution pA can code at rate 
CN,p = H(A)p + H(B)p - H(AB)p.

NA B

N

N

N

(asymptotically)

On general inputs:  
The capacity and simulation cost are replaced by C(N) = maxp CN,p. 
Randomness cost for simulation is maxp H(B)p - C(N).

=
(assuming free shared randomness)

[BSST01,Cuff08]
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• Coding with quantum channels:   Using shared EPR pairs, a quantum 

channel N can send noiseless qubits at rate 
maxρ QN,ρ = maxρ (H(A)ρ + H(B)ρ - H(AB)ρ) / 2.

• Quantum Reverse Shannon Theorem: For a quantum channel N and an 
input distribution ρ, N⊗n can be simulated on ρ⊗n using QN,ρ qubits of 
communication and EN,ρ = H(B)ρ - QN,ρ shared EPR pairs.
[BDHSW; arXiv:0912.5537]

• However, it does not follow that N⊗n can be simulated on arbitrary 
inputs using maxρ(QN,ρ) qubits of communication and maxρ(EN,ρ) 
shared EPR pairs!

• Problem: suppose that the input to N⊗n is (ρ⊗n + σ⊗n)/2 with QN,ρ = 
QN,σ but EN,ρ > EN,σ.  Then the naive method of combining the two 
simulations will require creating n(EN,ρ - EN,σ) entanglement spread.

• This requires either extra communication (forward or back) or 
embezzling states.
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The general goal: LOSE
• Definition: LOSE (local operations and shared entanglement) 

operations can be performed with local operations and arbitrary 
shared entangled states, but no communication.

• Determining membership in LOSE, even approximately, is NP-hard.
[Gutoski, arXiv:0805.2209]

• Question: When do EPR pairs help reduce the communication cost 
of a task?
Trivial examples: creating a shared entangled state; super-dense 
coding.

• Question: When do other forms of entanglement help more than 
EPR pairs?
Simulating noisy quantum channels.  More examples to follow.

• Communication complexity: Special case in which Alice holds x∈
{0,1}n, Bob holds y∈{0,1}n and they want to compute the bit f(x,y).
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• When communication is not free, EPR pairs are one of the weakest 
forms of entanglement.

• On the other hand, there is a family of k×k-qubit “embezzling states”
[van Dam and Hayden. quant-ph/0201041]

such that for any n×n-qubit entangled state |ψi, Alice and Bob can map 
|ζki to |ζki⊗|ψi with no communication, up to error O(n/k).

• The proper definition of “free entanglement” is thus closer to “an 
embezzling state of arbitrary finite size” than “unlimited EPR pairs.”
In particular, the entangled state in LOSE operations can be taken to be 
an embezzling state w.l.o.g.
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Uses of non-standard entanglement:
2. Non-local measurement

Measurement using reference states: Given |αi⊗m-1, we can 
determine whether an input state is equal to or orthogonal |αiup 
to error 1/m.

 |αi  |βi |αi  |αi  |αi  |αi

m-1 copies

 |αi=|βi hα|βi=0

Contained in 
symmetric subspace

Overlap 1/m with
symmetric subspace

Problem reduces to projecting onto symmetric subspace.
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Uses of non-standard entanglement:
2. Non-local measurement

•Non-local measurement using reference states: Given shared states 
|αi⊗m-1, Alice and Bob can distinguish |αi from |αi⊥ up to error 1/
m, using O(log m) qubits of communication.   
[Harrow, Leung, 0803.3066]

•Application:  Define the bipartite unitary operator 
U = I - 2 |αihα|, with  |αi=|01i⊗n  + |Φi⊗n / √2.  Then

•Simulating U requires O(n) qubits of communication, even using 
free EPR pairs.

•With general entanglement,  U can be simulated to accuracy ε 
using O(log 1/ε) qubits of communication.

•Corollary: U can asymptotically create O(n) EPR pairs/use, but can 
only send O(log(n)) bits/use.
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Communication complexity
•Alice gets x∈{0,1}n, Bob gets y∈{0,1}n and they would like to 
compute f(x,y) using as little communication as possible, 
allowing a small chance of error.

•Communication can be one-way or two-way.

•Shared randomness is known to help, but by Newman’s 
theorem, O(log n) bits of shared randomness always suffice.

•Free EPR pairs are known to help, although all known 
examples simply use them to turn classical communication 
into quantum communication.

•Can non-standard entanglement (e.g. embezzling states) save 
even more communication?
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Communication complexity
Claim: General entanglement is not much better than EPR pairs 
in reducing communication complexity.

Proof: Let |ψi= ∑k √pk |ki|ki|Φ2i⊗k be our starting state for a 
protocol that uses Q qubits of communication.  Then 
Pr[accept] is of the form

Thus we can replace |ψi with a mixture of states with spread 
O(Q/ε) and incur error ≤ε.

tr
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Open questions
•When does entanglement spread help, and when are EPR pairs 
good enough?

•Can spread be quantified and described as a resource, like EPR 
pairs?
(First step: log(rλ1)/2+O(log1/ε) qubits suffice to produce a 
state with Schmidt coefficients λ1≥λ2≥...≥λr up to accuracy ε 
[Harrow & Hayden].)

•Does spread connect to other forms of irreversibiliy in 
quantum information theory, such as creating noisy 
entanglement?

• In communication complexity, how useful even are EPR pairs?  
Can spread be used to argue that n EPR pairs are not useful 
for a Q-qubit protocol when n≫Q?



And they all lived happily 
ever after.

The end.


