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Outline

1. Random unitaries are amazing.

2.We can’t produce them.

3.But we can fake them.

4.Now what?



Random unitaries can...
Create random states.
Perform random measurements.
Randomize quantum states (in L1, L2 or L∞)
Hide data in bipartite states (accessible to global operators but 
not local operations and classical communication (LOCC))
Lock accessible information
Encode (or decode) for pretty much any problem in quantum 
Shannon theory:  [quant-ph/0606225]

Sending through [multiple access / broadcast] noisy 
quantum channels.
Entanglement-assisted channel coding.
State merging, fully quantum Slepian-Wolf, the quantum 
reverse Shannon theorem, entanglement distillation, etc....

Perform remote state preparation / super-dense coding of 
quantum states
Create thermal states (if we approximately conserve energy).



Random means
Haar uniform:
i.e. for any integrable function f on U(d) and any V∈U(d),

More on this later...

EU~Haar f(U) = EU~Haar f(VU)



application: state randomization
Fix random elements U1, ..., Un from U(d).

Hayden, Shor, Leung, Winter. “Randomizing quantum states.” quant-ph/0307104
Aubrun.  “A remark on the [above] paper.” 0802.4193

State randomization map:

Result: Compare:
d2 Paulis suffice for exact 
state randomization.

= a little more than d



why this is remarkable

Hayden, Shor, Leung, Winter. “Randomizing quantum states.” quant-ph/0307104
Aubrun.  “A remark on the [above] paper.” 0802.4193

1. (E ⊗ I) destroys LOCC-accessible correlations
Proof: Consider a measurement operator (A⊗B) that is part of a 

separable measurement.  Then (E†⊗I)(A⊗B) ≈ (I⊗B) (tr A/d).

2. But (E ⊗ I)(Φ) is far from I/d ⊗ I/d.
Proof: (E ⊗ I)(Φ) has rank n, which is ≪ d2.

3. Data hiding: We can find ≈ d2/n ≈ almost d orthogonal mixed 
states on Cd⊗Cd that are LOCC-indistinguishable.



information locking

Hayden, Shor, Leung, Winter. “Randomizing quantum states.” quant-ph/0307104

now take n = poly(log(d)).    ε ≫ log(log(d)) / log(d)

English Math
Q holds information about X 

that is “locked” by K.
accessible information
Iacc(X;Q) ≈ ε log(d).

Revealing key K unlocks
 the information about X. Iacc(X;KQ) = log(d)

Interpretations
Optimistic: exponentially shorter quantum one-time pads!
Pessimistic: accessible information is an unstable security definition.
Non-normative: statement about entropic uncertainty relations.



unfortunately

We can’t implement Haar-random unitaries on n qubits.

Approximating within ε requires exp(4n log(1/ε)) different 
unitaries and so an exponential amount of time and 
randomness.

Knill.  “Approximation by quantum circuits.” quant-ph/9508006

(c.f. Shannon 1949 result about how most classical functions 
require exponential size circuits)



pseudo-random unitaries
k-designs: A distribution μ on U(d) is a unitary k-design if 
it looks random whenever we take ≤k copies.

Three equivalent definitions:
1. EU~μ U⊗k ⊗ (U*)⊗k = EU~Haar U⊗k ⊗ (U*)⊗k

2. EU~μ U⊗k ρ (U†)⊗k = EU~Haar U⊗k ρ (U†)⊗k  for all states ρ
3. When k=2, EU~μ U Λ(U†ρU)U† = EU~Haar U Λ(U†ρU)U† for 
all channels Λ and all states ρ.  (twirling)

Gross, Audenart, Eisert. “...On the structure of unitary designs” quant-ph/0611002

approximate k-designs:



Variants of k-designs
Classical analogue: k-wise independent permutations
μ is a distribution on Sd such that for all distinct i1,...,ikε{1,...,d}
(π(i1),...,π(ik))π~μ is uniform over k-element subsets of {1,...,d}.

State analogue: state k-designs
μ is a distribution on unit vectors in Cd such that
Eψ~μ ψ⊗k = Eψ~Haar ψ⊗k, where ψ =  |ψ〉〈ψ|.

Ambainis and Emerson.  “Quantum t-designs...” quant-ph/0701126.
Aaronson. “Quantum copy protection.”  talk at QIP’08



Expanders
Like designs, but weaker and using fewer unitaries.

Degree: the degree of an expander is the size of the support 
of μ.  Ideally this will be a constant.

This condition is analogous to the spectral gap property of random 
walks on classical expander graphs.

Gap:

Generalization: k-tensor product expanders (k-TPE)

Note: A k-TPE is also a k’-TPE for k’≤k.
An ∞-TPE is an expander on C[U(d)], the group algebra of U(d).



Expanders vs. designs
number 
of copies

trace distance 
(L1)

operator distance 
(L∞)

1 approximate 1-
design expander

k approximate k-
design

k-tensor product 
expander

∞ Haar measure U(d) expander
(or Sn classically)

Also: repeatedly applying an expander yields a design.



k=∞ tensor product expanders
Define C[U(d)] to be the space of square-integrable functions on 
U(d).  U(d) acts on C[U(d)] according to g·f(x)= f(gx).
C[U(d)] is a (reducible) representation of U(d) which contains one 
copy of the trivial irrep (spanned by the uniform distribution) 
and at least one copy of every other irrep of U(d).

And every irrep of U(d) appears in some U⊗k⊗(U*)⊗k.

Therefore: rapidly mixing on U(d) ⇔ gapped on C[U(d)] ⇔ ∞-TPE

⇔  || EU~μ R(U) ||∞ ≤ λ < 1 for all nontrivial irreps R(U).

Partial converse: If {U1,...,Um} are a k-TPE with k≫N3/ε then 
{U1,...,Um} can ε-approximate any V∈U(d) with a string of length O

(log(1/ε)).  (c.f. O(log3(1/ε)) from Solovay-Kitaev)



Uses of k-designs
L1 state randomization makes use of 1-designs, since we 
want to approximate E UρU†.

Coding / entanglement generation / decoupling / 
thermalization require a 2-design (details to follow).

Twirling (used to efficiently estimate how noisy a channel 
is) requires a 2-design.

Random measurements require 4-designs to achieve the 
state identification results of [Sen, quant-ph/0512085].

Locking and L∞-state randomization require ???

Remote state preparation / super-dense coding of quantum 
states require 2-designs plus ???.



Entanglement generation 
from 2-designs

Draw bipartite ψAB from a state 2-design so

Entanglement = S(ψA) = -tr ψA log ψA 
% % % % % % % % % ≥ -log tr (ψA)2 = S2(ψA)

And by convexity S(ψA) ≥ -log tr E (ψA)2 ≈ log(dA) - O(dA/dB)



Efficient designs
Efficient: On n qubits, run-time should be poly(n).

1-designs:
-Paulis are exact 1-designs.  Require 2n random bits.
-Subsets of the Paulis yield approximate 1-designs using 
n + O(log n/ε) bits.  Use a δ-biased subset of {0,1}2n or an 
approximately 2-universal hash function to choose the Paulis.

Ambainis, Smith. “...derandomizing approximate quantum encryption.” quant-ph/0404075 
Desrosiers, Dupuis.  “Quantum entropic security and approx. q. encryption” 0707.0691

2-designs:
-Cliffords are exact 1-designs.  Require O(n2) random bits.
-Random quantum circuits yield approximate 2-designs 
using O(n log 1/ε) bits.

DiVincenzo, Leung, Terhal. “Quantum data hiding” quant-ph/0103098
Dankert, Cleve, Emerson, Livine. “Exact and approximate 2-designs...” quant-ph/0606161
Dahlsten, Oliveira, Plenio. “The emergence of typical entanglement...” quant-ph/0701125
Harrow, Low. “Random circuits are 2-designs” 0802.1919



Efficient expanders
Random unitaries [Hastings. 0706.0556]
Optimal gap (λ ≈ (#unitaries)-1/2) but not efficient.

Margulis expander. [Gross and Eisert. 0710.0651] 
Set of 8 affine transformations on ZN×ZN.  λ≤2√5/8.

zig-zag product [Ben-Aroya, Schartz and Ta-Shma. 0709.0911]
Iterative construction.  Start with an O(1)-dim random expander.

Cayley graph expanders [Harrow. 0709.1142]
Apply R(g) for R an irrep and g a generator of a Cayley graph.
Use the fact that R⊗R* contains only one trivial irrep and that  
gapped on C[G] ⇔ || Eg~μ R’(g) ||∞ ≤ λ < 1 for R’ a nontrivial irrep.

classical 2-tensor product expanders [Hastings, Harrow. 0803.soon]
A 2-TPE mixes the |i><j| terms over all i≠j.  Then apply a phase.

_



Open problems
Efficient constructions of k-TPE’s and k-designs.

Efficient implementations of L∞ state randomization, 
information locking and remote state preparation.

Hamiltonian analogues of random circuits.

Creating the Gibbs state on a quantum computer.
(Finding a quantum Metropolis algorithm.)

Constructing efficient Ramanujan expanders (meaning 
they have an optimal relationship between gap and 
degree).   This would improve L1 state randomization.



application: super-dense coding 
of quantum states

Harrow, Hayden, Leung. “Super-dense coding of quantum states” quant-ph/0307221
Abeyesinghe, Hayden, Smith, Winter. “Optimal SDC of entangled states.” quant-ph/0407061

SDC: share n ebits, send n qubits --> send 2n cbits
SDCQS: --> prepare a 2n qubit state in Bob’s lab
??!

caveat: To send |ψ> Alice holds not |ψ> but “ψ” (a classical description).  
This prevents iterating the protocol and sending an unlimited amount of 
information.

proof: Start with n ebits and let |ψ> be a 2n-qubit state.  If |ψ> is 
maximally entangled then Alice can locally convert the n ebits to |ψ> and 
then she can send her half to Bob using n qubits of communication.
Since most states are maximally entangled, we can use random unitaries in 
a clever way to make this work for all states.


