Quantum expanders from any classical Cayley graph expander

arXiv:0709.1142

Aram Harrow (Bristol) QIP "08" 19 Dec 2007

outline

- Main result.
- Definitions.
- Proof of main result.
- Applying the recipe: examples of quantum Cayley graph expanders.
- Related work.
- Coming attractions: tensor product expanders and k-designs.

The result

Given:

1. A classical Cayley graph expander on a group G with gap $1-\lambda_2$ and degree d.

2. An irrep $\mu(g)$ of G with dimension N.

3. An efficient method of implementing $\mu(g)$ (such as a QFT on G.)

We have:

An efficient quantum expander with dimension N, degree d and gap $\ge 1 - \lambda_2$.

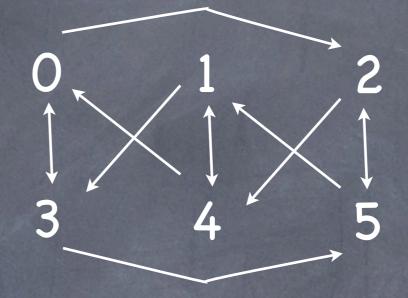
Definition: Cayley graph

Cayley graph:

- 1. Given by a group G and a generating set D. d=|D|
- 2. Vertices are elements of G.
- 3. Neighbours of $g \in G$ are $\{xg : x \in D\}$. Graph is d-regular.

Example: cyclic group

 $G = \mathbb{Z}_6$ $D = \{2,3\}.$



$$W = \frac{1}{|D|} \sum_{x \in D} L_x = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$

Definition: expander

(Classical) expander graph. Really a family of graphs with $N \rightarrow \infty$ vertices and degree d=O(1).

<u>Combinatorial definition</u>: Any not-too-big subset of vertices has lots of neighbours. <u>Spectral definition</u>: The random walk matrix on the graph has second-largest eigenvalue $\lambda_2 = 1 - \Omega(1)$.

<u>Quantum expander</u>: Spectral definition only.

A family of quantum operations \mathcal{E} acting on an N-dim system. d=O(1) Kraus operators. (Typically proportional to unitaries, so $\mathcal{E}(I/N) = I/N$.)

<u>Spectral gap</u>: As a linear operator on density matrices, $\lambda_2(\mathcal{E}) = 1 - \Omega(1)$.

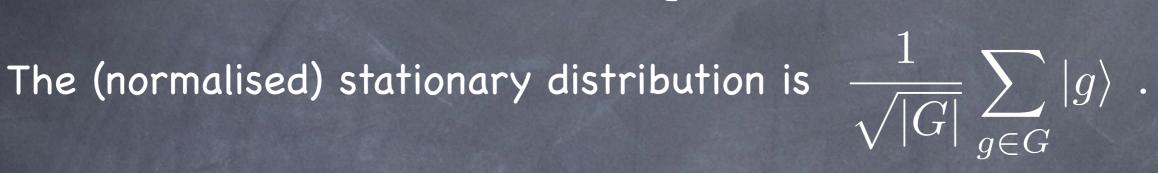
Representation theory defs

<u>Irrep</u>: μ is a map from G to operators on V_µ such that V_µ has no non-trivial µ-invariant subspace.

Efficiently implementing $\mu(g)$ means taking time poly(log N) to apply $\mu(g)$ to a log N – qubit register. N := $d_{\mu} = \dim V_{\mu}$.

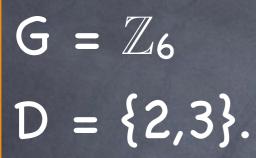
Quantum Fourier Transform: U_{QFT} Implements isomorphism $\mathbb{C}[G] \cong \bigoplus_{\mu} V_{\mu} \otimes V_{\mu}^{*}$ L_x is the left-multiplication operator: $L_x|g\rangle = |xg\rangle$ Then $U_{QFT}L_x U_{QFT}^{\dagger} = \sum_{\mu \in \hat{G}} |\mu\rangle\langle\mu| \otimes \mu(x) \otimes I_{d_{\mu}}$. So, if U_{QFT} and L_x can be implemented efficiently, then so can $\mu(x)$. (Assuming that poly(log |G|) is the same as poly(log d_µ).)

spectra of Cayley graphs The walk operator is $W = rac{1}{|D|} \sum_{x \in D} L_x$.



In the Fourier basis The walk operator is $\sum_{\mu} |\mu
angle \langle \mu| \otimes rac{1}{|D|} \sum_{x\in D} \mu(x) \otimes I_{d_{\mu}}$. The stationary distribution is $|\mu=trivial\rangle |0\rangle |0\rangle$. The second largest eigenvalue is $\lambda_2(W) = \max_{\mu \neq \text{trivial}} \left\| \frac{1}{|D|} \sum_{x \in D} \mu(x) \right\|_{\infty}$

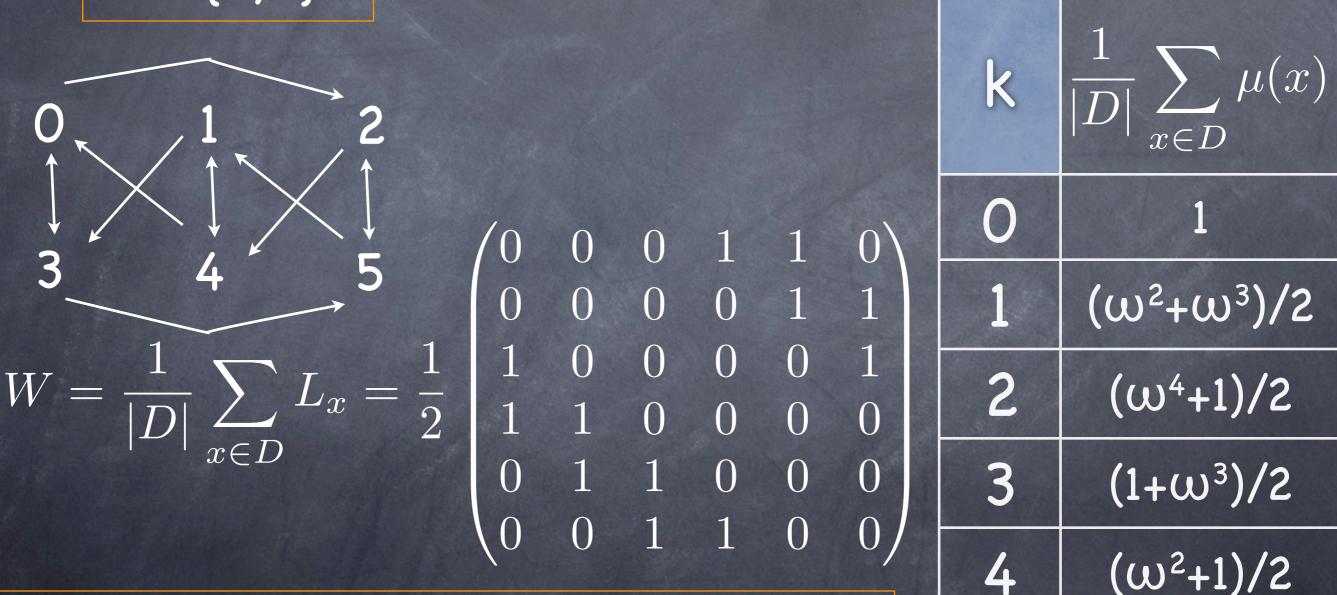
Example: cyclic group



 Fourier basis:
 k $\in \{0,1,2,3,4,5\}$
 $\mu_k(x) = \omega^{kx}$ $\omega = e^{2\pi i/6}$

 $(\omega^{4}+\omega^{3})/2$

5

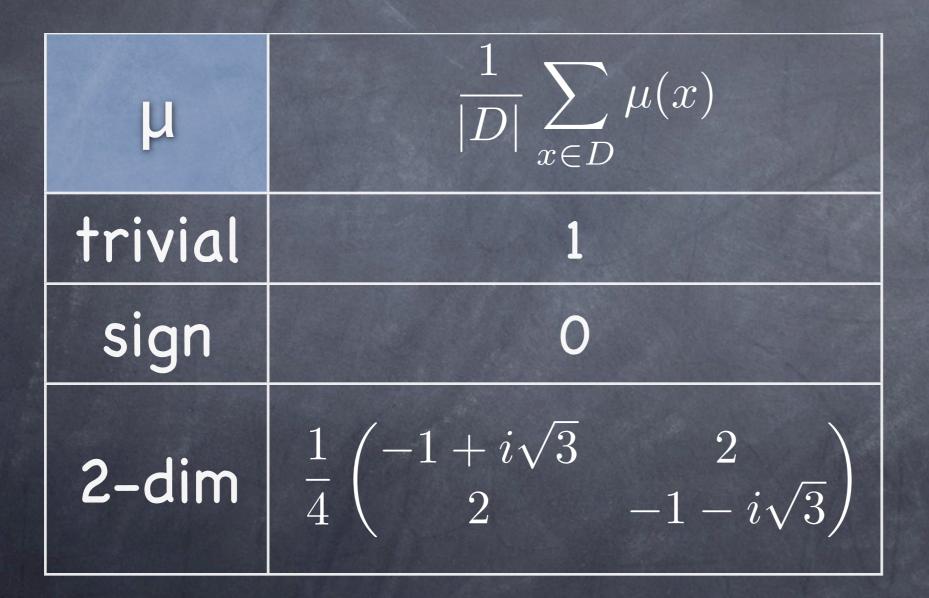


Warning!

Abelian groups can't have O(1) degree, $\Omega(1)$ gap.

Example: symmetric group

G = S₃ D = {(12), (123)}.



 $\lambda_2 = \frac{1}{2}$

The quantum expander construction

Given a classical Cayley graph with generators $D \subset G$ and given an irrep μ ; the quantum expander is:

$$\mathcal{E}(\rho) = \frac{1}{|D|} \sum_{x \in D} \mu(x) \rho \, \mu(x)^{\dagger}$$

Kraus operators = |D| = degree of classical expander \mathcal{E} is efficient if $\mu(x)$ is efficient. It remains to show that $\lambda_2(\mathcal{E}) \leq \lambda_2(W)$.

Analysis of quantum expander

$$\mathcal{E}(\rho) = \frac{1}{|D|} \sum_{x \in D} \mu(x) \rho \, \mu(x)^{\dagger}$$

As a linear operator (instead of a super-operator), this is:

$$\hat{\mathcal{E}} = \frac{1}{|D|} \sum_{x \in D} \mu(x) \otimes \mu(x)^*$$

We want $\lambda_2(\hat{\mathcal{E}}).$

Now the inevitable representation theory: $\mu \otimes \mu^*$ is a reducible representation of G, and can be decomposed into irreps. If v appears with multiplicity m_v , then $\mu(x) \otimes \mu(x)^* \cong \sum_{\nu} |\nu\rangle \langle \nu| \otimes \nu(x) \otimes I_{m_{\nu}}$

AND! Schur's Lemma says m_{trivial}=1.

Analysis of quantum expander

$$= \frac{1}{|D|} \sum_{x \in D} \mu(x) \otimes \mu(x)^*$$

 $\hat{\mathcal{E}}$

$$\cong \sum_{\nu} |\nu\rangle \langle \nu| \otimes \left(\frac{1}{|D|} \sum_{x \in D} \nu(x)\right) \otimes I_{m_{\nu}}$$

 $m_{trivial}=1$ corresponds to $\lambda_1=1$. The second largest eigenvalue is

$$\begin{split} \Lambda_{2}(\hat{\mathcal{E}}) &= \max_{\substack{\nu \neq \text{trivial} \\ m_{\nu} > 0}} \left\| \frac{1}{|D|} \sum_{x \in D} \nu(x) \right\|_{\infty} \\ &\leq \max_{\nu \neq 0} \left\| \frac{1}{|D|} \sum_{x \in D} \nu(x) \right\| \end{split}$$

 $\nu \neq \text{trivial}$

 $=\lambda_2(W)$

 $\|_{\infty}$

Applying the recipe

Recall: We want run-time to be poly(log d_{μ}), but implementing μ using a QFT usually requires poly(log |G|) time. This works when d_{μ} is sufficiently large.

PSL(2, \mathbb{F}_q): The LPS expander. d=6, $\lambda_2 = \sqrt{5} / 3$. Irreps are large, <u>but</u> no efficient QFT is known.

SU(2): Another LPS expander. d=6, $\lambda_2 = \sqrt{5} / 3$. Irreps are large, <u>but</u> no efficient QFT is known. quant-ph/0407140 claims to implement $\mu(x)$ in time poly(log d_µ), but the algorithm is incomplete.

Applying the recipe

WORKS

WORKS

(for any N)

S_n: The Kassabov expander. d=O(1), $\lambda_2 = 1-\Omega(1)$ Irreps are large: $\log d_{\mu} \approx (\log |S_n|) / 2$ QFT runs in poly($\log |S_n|$) = poly(n).

S_{N+1}: The Kassabov expander. d=O(1), $\lambda_2 = 1-\Omega(1)$ There is an N-dimensional irrep that can be directly implemented in time poly(log N).

HJHJ...: zig-zag product [Rozenman-Shalev-Wigderson] WORKS |H| = O(1). H=[H,H]. Has large irreps and efficient QFT.

Aff(2, \mathbb{F}_q): Margulis expander. d=8, $\lambda_2 \leq 5\sqrt{2}$ / 8. WORKS No efficient QFT but one irrep can be efficiently (for any N) constructed. [Eisert-Gross; 0710.0651]

Related work

quantum zig-zag product: [Ben-Aroya, Schwartz, Ta-Shma; 0709.0911] Not the same as applying my construction to the classical zig-zag product.

Another QFT-based construction: [Ben-Aroya, Ta-Shma; 0702129] Not yet known to be efficient.

Quantum Margulis expanders [Eisert-Gross; 0710.0651] Also yields efficient constant-gap, constant-degree expanders for any dimension.

Coming attractions!

expander

approx. 1-design {p_i, U_i} s.t. $\sum p_i U_i \rho U_i^{\dagger} \approx \int dU U \rho U^{\dagger}$

> approx. k-design $\{p_i, U_i\}$ s.t. $m U \otimes k \circ (U^{\dagger}) \otimes k$

k-tensor product expander $\sum_{i} p_{i} U_{i}^{\otimes k} \rho(U_{i}^{\dagger})^{\otimes k}$ $\approx \int dU U^{\otimes k} \rho(U^{\dagger})^{\otimes k}$

with M. Hastings: random unitaries are tensor product expanders. with R. Low: random circuits are tensor product expanders. (we think)

