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ABSTRACT

A method for detecting drivers’ intentions is essential to
facilitate operating mode transitions between driver and
driver assistance systems.  We propose a driver behavior
recognition method using Hidden Markov Models (HMMs)
to characterize and detect driving maneuvers and place it
in the framework of a cognitive model of human behavior.
HMM-based steering behavior models for emergency and
normal lane changes as well as for lane keeping were
developed using a moving base driving simulator.
Analysis of these models after training and recognition
tests showed that driver behavior modeling and
recognition of different types of lane changes is possible
using HMMs.

INTRODUCTION

Vigorous efforts are under way today to research and
develop partially or fully automated driver assistance
systems, such as those for headway distance control or
lane keeping control, which make use of Intelligent
Transportation System (ITS) technologies(1) (2). In
developing these systems, it is important to adopt
approaches aimed at improving the performance of the
whole driver-vehicle cooperative system by regarding
driving as interaction between the driver and the vehicle.
Achieving smooth control mode transitions from
automated to manual operation is one issue of human-
machine interaction in these systems. Such transitions
can be divided into instances of forced return to the
manual mode when the system encounters non-
supported situations or when it fails and instances initiated
spontaneously by a driver. In the latter cases, it is
important not to automatically interfere with driver induced
evasive maneuvers in emergency situations and also to
avoid feelings of incongruity in ordinary driving.
Accordingly, establishing a technique for detecting the
driver's intentions or for recognizing driver behavior is
imperative to facilitate smooth and appropriate control
mode transitions. The development of effective driver
behavior recognition methods requires a thorough
understanding of driver behavior and the construction of a

model capable of explaining and reproducing drivers’
behavioral characteristics. Among various driving actions,
this study focused on lane change maneuvers. Some
methods have been developed previously to estimate a
driver's lane change intention, for example, by making a
comparison with the maximum steering angle during
ordinary lane keeping, or by using the vehicle's yaw angle
relative to the traffic lane and steering data (3). However,
these methods are not human model-based.  We focus on
information processing models of human driver behavior
generation and utilize them to adopt a model based
approach in the development of a lane change detection
and recognition model.  The primary components are
skilled low level maneuvers whose initiation is managed
by higher level decision making components.
Development, analysis, and application of this model
using a driving simulator are described in this paper.

DRIVER BEHAVIOR RECOGNITION BASED ON
DRIVER MODEL

COGNITIVE APPROACH

The cognitive process underlying human actions has
been researched extensively over the years.  One of the
most famous approaches to modeling human-machine
interaction concerns the model proposed by Rasmussen
(4).  In Rasmussen’s model, information processing is
divided into three hierarchically organized levels based on
demand complexity: knowledge base, rule base, and skill
base.  In the driving context, an identical classification is
possible.  Michon showed the thought that the
organizational structure well suited for driver modeling
contains a strategic, a tactical and an operational level
which roughly correspond to the knowledge, rule, and skill
division in Rasmussen’s model (5).  Boer et al. proposed
an integrated driver model (IDM) which borrows from
Rasmussen’s and Michon’s model and incorporates the
concept of the dynamic aspects of driver behavior as well
as an important role of driver needs (6, 7). The concept of
their model is shown in Figure 1. Incorporating the idea of
attention management, this model focuses on the
switching of intra- or inter- process levels. It can explain



not only the selection of maneuvers in manual driving but
also the operation of mode transitions in driver assistance
systems. An understanding of attention management or
the characteristics of each process level is closely related
to  an understanding of the driver's intentions.

Primary focus in this paper is on the tactical and
operational levels.  The tactical level models driver’s task
scheduling in terms of determining when which
maneuvers are appropriate.  This can be characterized by
a set of heuristics or rules that translate a particular
environmental condition into a set of appropriate tasks.
The operational level models execution of maneuvers that
are learned and automated process thereby falling in the
category of skill-based activities.

DRIVER BEHAVIOR RECOGNITION METHOD BASED
ON THE HIDDEN MARKOV MODEL

Previous studies have found that driver behavior can be
characterized as sequence of basic actions each
associated with a particular state of the driver-vehicle-
environment and characterized by a set of observable
features (8)  Pentland et al. researched the modeling of
human action, taking into account this observation, and
represented driver behavior as a transition of states
internal to the driver.  They posited that only driving
actions can be observed and proposed a driver intention
detection method using a hidden Markov model (HMM) to
capture the sequential nature of these unobservable
internal states that are each associated with a set of
observable variables that shape drivers’ external behavior
(9).  An HMM is a superior method for recognizing
temporal data patterns, that can be expressed as

stochastic transitions among finite discrete states, and is
a mainstream speech recognition method (10). Its
application to manipulator movement recognition in
telerobotics is also being studied (11).

Liu et al. validated their model in an experiment conducted
with a driving simulator (12). The objective of that
validation test was to recognize different maneuvers such
as a right turn, a left turn, or stopping. However, in order to
apply such a model to a driver support system, we believe
that it is necessary to assess to what degree the HMM
based behavior recognition model also provides a
plausible model of human behavior generation.  This
knowledge may not only offer better insight into selecting
a particular HMM structure but also provide better insight
into potential limitations of the characterization in
situations that were not part of the training set that was
used to identify the HMM coefficients.  Therefore, a
detailed analysis was performed on HMM-based models
of lane changes and its applicability to a lane-change-
recognition driver-assist system critically evaluated.

The HMM-based driver behavior recognition model
described here characterizes three different maneuvers:
emergency lane change, normal lane change, and lane
keeping.  Each of these low level maneuvers can be
thought of as skills at the operational level in the
integrated driver model proposed by Boer et al., whereas
the decision to initiate any one of them is mediated at the
tactical level.  In other words, it recognizes different
processes as well as the related switching between them.

DEVELOPMENT OF THE HMM DRIVER BEHAVIOR
RECOGNITION MODEL IN LANE CHANGES

MEASUREMENT OF DATA

Apparatus

A driving simulator capable of simulating a motorway
traffic environment was used to measure driver behavior
data.  An image of the road ahead was generated by

Figure 2.  Motion Based Driving Simulator
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computer graphics and projected on a large field of view,
120 degrees in the horizontal by 30 degrees in the vertical.
In addition, a hexapod cooperative motor-driven motion
system provided a sense of motion and a digital sound
system generated sound while driving (13). The
appearance of the driving simulator and the system
configuration are shown in Figures 2 and 3 respectively.

Measurement

Subjects were asked to drive in the left lane (slower traffic
lane in Japan) of two lanes of traffic at  a constant speed
of approximately 80 kph (50 mph). Driver behavior data
were measured in the following situations.

1)  Ordinary lane change: When a text message
indicating a lane change was superimposed on the screen
showing the forward road view, a subject changed to the
right lane in the same way as in ordinary driving.

2)  Emergency lane change: A large truck was suddenly
presented as an obstacle in front of a subject without any
prior warning. Upon seeing it, the subject executed an
evasive steering maneuver. The position of the parked
truck was set at a forward distance equal to the vehicle
speed times 2.5 seconds. Subjects did not know in
advance when the obstacle would be presented. They
were instructed to change to the right lane immediately
upon discovering the truck so as to avoid it.

3)  Lane keeping: While a subject stayed in the same
lane on a straight segment, data were arbitrarily
measured by the operator.

Examples of the computer images presented at the onset
of each task are shown in Figure 4. During the lane-
keeping task, data were measured over particular time
intervals whose lengths correspond to those of a lane
change. The order in which the tasks were executed was
randomized. Ten subjects (five males and five females)
who had a driving license participated in the experiment.
The participants were in their 20s and 30s. Six runs were
executed for each condition per subject.

DEVELOPMENT OF THE HMM-BASED RECOGNITION
MODEL

Development tool

Using the measured driver behavior data, an HMM
consisting of three recognition categories--emergency
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lane change (LCE), ordinary lane change (LCN), and lane
keeping (LKN)--was developed. For the two types of lane
change situations, data were extracted in the period
between command presentation and the first peak of the
steering angle. For lane keeping, data were extracted for
a five-second interval from the original data measured
with the driving simulator. Figure 5 shows the data
extraction method. The HMM was developed using HTK
software which is a product of Entropic Inc. (14).

Definition of HMM grammar

A unique grammar concept was introduced for model
development that differs from the general approach for
three reasons. Firstly, it would be irrational to have the
same HMM structure (i.e. same number of states and
same set of transitions between them) because of large
differences with respect to number of clearly identifiable
stages in the action profile for each of the three
maneuvers (e.g. the characteristic steering profile of a
lane change does naturally not appear in lane keeping).
Secondly, the emergency lane change would involve a
large steering angle change whereas an ordinary lane
change would involve little change.  To improve specificity
of the recognition model, these two manifestations of the
same maneuver should be characterized separately.
Thirdly, it was necessary to have a model that could
perform continuous recognition, as will be explained later.
The adopted approach is one in which a basis sub-HMM
is used as a building block for a more complex model. The
selected grammar  is defined such that LCE and LCN had
m and n number of  sub-HMMs lcei and lcni respectively
and each sub-HMM proceeded in a normal order with the
lapse of time, such as from lce1 to lcem in LCE and from

lcn1 to lcnn in LCN.

A single sub-HMM, lkn, was established for LKN. In the
lane change situations in this experiment, the reaction
time domain continued until a subject initiated a steering
maneuver after command presentation. In the model, that
time period was assumed to be the same as for lane
keeping. Accordingly, lane change data for LCE, for
example, proceeded in the manner of  "lkn, lce1, ... , lcem"
along with the grammar. A conceptual diagram of the
grammar adopted in this study is shown in Figure 6.

Structure of the HMM

Figure 7 shows the structure of the sub-HMM used in this
study. Three sub-HMMs were used for both LCN and
LCE. Each sub-HMM consisted of three states with a
left-to-right configuration which did not allow for skipping
of states or backward state transition. The steering angle,
steering angle velocity, and steering force were used for
the observation data sequence. Different subsets of these
three measurements were used to identify the three
maneuver models.

Training of the HMM

The HMM was trained to estimate the parameters ( )ka i

and ( )kb Y  and to maximize ( )Pr |Y λ , where λ  is the

parameter vector. Parameter estimation was completed in
three stages.

First, an initial set of parameter values was obtained from
the training data based on a more or less arbitrary
segmentation of the data (i.e. collecting statistics of the
measurements in each state as represented by the
segments). That was followed by repeated use of Viterbi
alignment to re-segment the training data. The Viterbi
algorithm can be viewed as a special form of the
forward-backward algorithm where only the maximum
path of transitions through the states at each time step is
taken instead of all paths. This optimization reduces the
computational load and additionally allows the recovery of
the most likely state sequences. The most likely state
sequence determines the new segmentation of the
observation sequence, and the parameters of each state
are re-estimated according to this new segmentation.
Second, a Baum-Welch re-estimation of individual HMMs
was performed using the training set. Here, the probability
of being in each state in each time frame is calculated
using the forward-backward algorithm. A new estimate for
the respective output probability can be assigned.Since
either the forward or backward algorithm can be used to
evaluate the posterior probability with respect to the
previous estimation, this technique can be used iteratively
to converge the model to some error criterion.  Third,
parameter re-estimation was performed using an
embedded training version of the Baum-Welch algorithm.
In this case, all model parameters were simultaneously
re-estimated from unsegmented training data. Further
details about these procedures can be found in (10).
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Figure 6.  Grammar in Lane Change HMM
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PERFORMANCE OF THE MODEL

Lane Change Recognition

Lane change recognition using the trained HMM was
executed. Recognition by the HMM involved calculating
the probability   that the given observation data sequence
Y would be generated by one of the three models li. The
model associated with the highest likelihood is used as
the recognition result.

To recognize whether drivers are performing or initiating a
particular maneuver, one compares the pattern of driver
behavior to the HMM of that particular maneuver. That is,
given an observation sequence and a model, the
probability that the observed sequence would be
generated by the model is needed. The forward-backward
algorithm is often used in practice to compute this
probability. Using this algorithm, once this probability has
been evaluated for all competing models for an
observation data sequence, then the model with the
highest probability supports recognition of the maneuver it
characterizes. In other words, one of three categories,

LKN, LCE, or LCN, is output as a recognition result for
each set of driving action data given. Figure 8 shows the
configuration of the HMM-based lane change recognizer.
To obtain the recognition result for novel driving action
data, the leave-one-out method was used. This involves
training the model using data for 9 of 10 subjects and
executing a recognition test for the one subject left out and
then repeating the procedure for all 10 subject cases. The
recognition rate by category for different observation data
is shown in Table 1. LCE was recognized correctly with all
combinations of data. For LCN and LKN, a recognition
rate of 100% was obtained by only using the steering
angle and steering angle velocity for the observation data
sequences. These results suggest that the use of an
HMM is a promising lane change recognition technique.
They also indicate the importance of observation data
selection in building an HMM-based recognizer.

Learning performance of the HMM

The capability of the HMM as a method of driver behavior
modeling was analyzed using performance statistics of
the identified models. The observation data output
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Table 1.  Recognition Rate by Category

a) steering angle
b) steering force
c) steering angle velocity

a
b
c
a+b
a+c

100.0
100.0
100.0
100.0
100.0

85.0
10.0
90.0
80.0

100.0

100.0
100.0
78.3

100.0
100.0

observation              recognition rate (%)

                   LCE        LCN        LKNdata

(a)   LCE



probability of the HMM developed in this study is given in
the form of a Gaussian distribution. The change in the
average values of the output distribution accompanying
state transitions was used to study the performance of the
HMM in lane changes. The model examined was the one
that provided the best recognition results for both the
steering angle and steering angle velocity. The average
values of the steering angle and steering angle velocity in
each state of the sub-HMMs are shown in Figure 9. It is
seen that the change in the steering data in the transition
of the LCE sub-HMMs corresponded well to the typical
change in steering action. This indicates that the HMM
fully learned the characteristics of an emergency lane
change. On the other hand, for LCN, although the average
of the steering angle velocity of S3 was smaller than that
of state S2, the steering angle increased with the progress
of the lane change. Furthermore, the minimum absolute
average values of the steering angle and steering angle
velocity of each state in LKN were less than 0.003 rad  and
0.008 rad/s respectively. In summary, it can be
considered that HMMs learn well the characteristics of a
temporal change in the steering pattern in a lane change,
indicating they that can be used to build a driver behavior
recognition model.

CONTINUOUS RECOGNITION OF LANE CHANGES

The recognition method in the previous section generated
a single output for each set of data containing a time
interval between command presentation and the
execution of a steering maneuver for changing lanes.
However, in order to recognize a lane change at an early
stage when a driver support system is operating, it is
necessary  to generate output continuously. Using a
revised version of the recognition method, the possibility
of operating the recognition system continuously was
examined and the characteristics of driver behavior were
also analyzed based on the recognition results.

EXAMINATION METHOD

Driving action data were divided into fixed time length
buffers and HMM recognition was executed for the
individually divided data. In addition, grammar constraints
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were eliminated so that one of the sub HMMs, that is,
either lkn, lcn1 to lcnn, or lce1 to lcem, would be output as
the recognition result. The steering angle and steering
angle velocity were used for observation data, and the
recognition period was set to 50 msec. The configuration
of the HMM recognizer is shown in Figure 10.

RECOGNITION RESULTS

As an example of the recognition results, steering data
and the recognition result sequence in LCE and LCN are
shown in Figure 11. In the figure, time 0 indicates the time
of command presentation and lateral position stands for
the distance from the edge of the left and right lanes. For
LCE, it is observed that lce1 appeared almost
simultaneously with the initiation of steering, followed by

lce2 and lce3 in regular order, indicating that recognition in
the steering time portion was performed correctly. The
recognition rate was 98.3% when the sequential output of
lce1, lce2, and lce3 after the start of steering is regarded
as correct recognition. The rate at which lces were
recognized for LCN and LKN data by mistake was 0% for
LCN and 0.29% for LKN respectively.

Trajectories of the steering angle and steering angle
velocity in LCE for a male and a female subject are shown
in Figure 12. It is obvious that lane changes were
recognized just after both subjects initiated steering
action, although the profiles of the two subjects differ
considerably. The distribution of the time to generate lce1
after command presentation in cases where LCE were
correctly recognized is shown in Figure 13. The timing of
lce1 recognition was concentrated in the region between
0.5 and 0.7 sec., which corresponds to the general
reaction time for the initiation of evasive steering action.
These recognition results suggest the possibility of
continuous HMM recognition and detection of an
emergency lane change at an early stage of an evasive
steering maneuver. It should be noted that lcn in addition
to lkn are recognized as actions that the driver performs
during the reaction time period thus indicating that the
individual sub-HMMs of LKN and LCN overlap
significantly in terms of the measurement sequence that
they can generate with high likelihood. The recognition
results for LCN show the same tendency as that seen in
the reaction time domain of LCE.  The decline in the
recognition rate of LCN and LKN as a result of eliminating
the grammar is thought to suggest the importance of
context, i.e., the sequence in the time domain, in driver
behavior. To achieve continuous recognition of normal
lane changes and lane keeping, it will be necessary to use
an HMM that takes into account contextual dependence,
such as through improvement of the time length or
grammar.

Furthermore, toward the application to driver assistance
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systems, it is imperative to enhance the model to cope
with more realistic situation. One of those issues is a
problem of road environment such as exit or merge at
interchanges on highways or curved road, for instance. An
attempt to expand current recognition system by simply
increasing recognition categories seems to be
impractical, because it is supposed to easily cause
explosion of the number of categories. Substantially, we
should consider a framework to generalize current
recognition system. The limit of the current system would
be noticed from the fact not treating information for
external environment, but only using steering action data.
Accordingly, incorporating those information into the
model seems to be helpful. A method of implementation is
that we build a recognition system which firstly identify
running situation by using data from image processing,
navigation, or communication system between road and
vehicle, just like pruning procedure, then execute
recognition for focused candidates. For curved road, a
method identifying of curvature by above mentioned way,
then have recognition apply steering data eliminated the
component of curvature would be promising. These ideas
described here are aimed at taking into account driver
behavior strategy which is involved in strong interaction
between environment, which also well correspond to the
concept of IDM.

CONCLUSION

Using driver behavior data measured with a driving
simulator, an HMM-based driver behavior recognition
model in lane changes was developed that takes into
account the characteristics of the driver model within the
driver model framework, and its fundamental
performance was analyzed. Primary conclusions are as
follows.

1) The results suggest that HMMs can be used to model
driver behavior and build a system for recognizing driver
behavior in lane changes. Further, HMMs have the
potential  to detect a lane change in the very early stage of
steering.

2) An analysis conducted with the HMM-based model
indicated the formularity and importance of context in
driver behavior.  A modeling approach for improving early
recognition of lane changes was also found.

3) To apply HMM-based driver behavior recognition to
driver assistance systems, it will be necessary to develop
general models and assure robustness corresponding to
actual driving situations, in addition to improving
recognition performance by resolving the above-
mentioned issues.
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