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We propose that many human behaviors can be accurately described as
a set of dynamic models (e.g., Kalman �lters) sequenced together by a
Markov chain. We then use these dynamic Markov models to recognize
human behaviors from sensory data and to predict human behaviors over
a few seconds time. To test the power of this modeling approach, we
report an experiment in which we were able to achieve 95% accuracy
at predicting automobile drivers’ subsequent actions from their initial
preparatory movements.

1 Introduction

Our approach to modeling human behavior is to consider the human as
a device with a large number of internal mental states, each with its own
particular control behavior and interstate transition probabilities. Perhaps
the canonical example of this type of model would be a bank of standard
linear controllers (e.g., Kalman �lters plus a simple control law), each using
different dynamics and measurements, sequenced together with a Markov
network of probabilistic transitions. The states of the model can be hierar-
chically organized to describe both short-term and longer-term behaviors;
for instance, in the case of driving an automobile, the longer-term behav-
iors might be passing, following, and turning, while shorter-term behaviors
would be maintaining lane position and releasing the brake.

Such a model of human behavior could be used to produce improved
human-machine systems. If the machine could recognize the human’s be-
havior or, even better, if it could anticipate the human’s behavior, it could
adjust itself to serve the human’s needs better. To accomplish this, the ma-
chine would need to be able to determine which of the human’s control
states was currently active and to predict transitions between control states.
It could then con�gure itself to achieve its best overall performance.

Because the internal states of the human are not directly observable, this
scenario requires that the human’s internal state be determined through
an indirect estimation process. To accomplish this, we have adapted the
expectation-maximization methods developed for use with hidden Markov
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models (HMM). By using these methods to identify a user’s current pattern
of control and predict the most likely pattern of subsequent control states,
we have been able to recognize human driving behaviors accurately and
anticipate the human’s behavior for several seconds into the future.

Our research builds on the observation that although human behaviors
such as speech (Rabinee & Juang, 1986), handwriting (Starner, Makhoul,
Schwartz, & Chou, 1994), hand gestures (Yang, Xu, & Chen, 1997; Pent-
land, 1996), and even American Sign Language (Pentland, 1996; Starner &
Pentland, 1995) can be accurately recognized by use of HMMs, they do not
produce a model of the observations that is accurate enough for simulation
or prediction. In these cases, the human behavior displays additional prop-
erties, such as smoothness and continuity, that are not captured within the
HMM statistical framework.

We believe that these missing additional constraints are typically due
to the physical properties of human movement and consequently best de-
scribed by dynamic models such as the well-known Kalman �lter (Kalman
& Bucy, 1961). Our proposal is to describe the small-scale structure of human
behavior by a set of dynamic models (thus incorporating constraints such
as smoothness and continuity) and the large-scale structure by coupling to-
gether these control states into a Markov chain. It has been proposed that
the basic element of cortical processing can be modeled as a Kalman �lter
(e.g., Pentland, 1992; Rao & Ballard, 1997); in this article, we are proposing
that these basic elements are chained together to form larger behaviors.

The resulting framework, �rst proposed by Pentland and Liu (1995), is
related to research in robot control (Meila & Jordan 1995), and machine vi-
sion (Isard & Blake, 1996; Bregler, 1997), in which elements from dynamic
modeling or control theory are combined with stochastic transitions. These
efforts have shown utility in tracking human motion and recognizing atomic
actions such as grasping or running. Our approach goes beyond this to de-
scribe and classify more extended and elaborate behaviors, such as passing
a vehicle while driving, which consist of several atomic actions chained to-
gether in a particular sequence. Our framework has consequently allowed
us to predict sequences of human behaviors from initial, preparatory mo-
tions.

2 Simple Dynamic Models

Among the simplest nontrivial models that have been considered for mod-
eling human behavior are single dynamic processes,

PXk D f.Xk; t/ C ».t/; (2.1)

where the function f models the dynamic evolution of state vector Xk at time
k. Let us de�ne an observation process,

Yk D h.Xk; t/ C ´.t/; (2.2)
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where the sensor observations Y are a function h of the state vector and
time. Both » and ´ are white noise processes having known spectral density
matrices.

Using Kalman’s result, we can then obtain the optimal linear estimate OXk
of the state vector Xk by use of the following Kalman �lter,

OXk D X¤
k C Kk.Yk ¡ h.X¤

k ; t//; (2.3)

provided that the Kalman gain matrix Kk is chosen correctly (Kalman &
Bucy, 1961). At each time step k, the �lter algorithm uses a state prediction
X¤

k , an error covariance matrix prediction P¤
k , and a sensor measurement Yk

to determine an optimal linear state estimate OXk, error covariance matrix
estimate OPk, and predictions X¤

kC1, P¤
kC1 for the next time step.

The prediction of the state vector X¤
kC1 at the next time step is obtained

by combining the optimal state estimate OXk and equation 2.1:

X¤
kC1 D OXk C f. OXk; t/1t: (2.4)

In some applications this prediction equation is also used with larger
time steps, to predict the human’s future state. For instance, in a car, such
a prediction capability can allow us to maintain synchrony with the driver
by giving us the lead time needed to alter suspension components. In our
experience, this type of prediction is useful only for short time periods, for
instance, in the case of quick hand motions for up to one-tenth of a second
(Friedmann, Starner, & Pentland, 1992a).

Classically f, h are linear functions and » , ´ assumed gaussian. It is com-
mon practice to extend this formulation to “well-behaved” nonlinear prob-
lems by locally approximating the nonlinear system by linear functions
using a local Taylor expansion; this is known as an extended Kalman �lter.
However, for strongly nonlinear problems such as are addressed in this arti-
cle, one must either employ nonlinear functions and/or multimodal noises,
or adopt the multiple-model and sequence-of-models approach described
in the following sections.

3 Multiple Dynamic Models

Human behavior is normally not as simple as a single dynamic model. The
next most complex model of human behavior is to have several alternative
models of the person’s dynamics, one for each class of response (Willsky,
1986). Then at each instant we can make observations of the person’s state,
decide which model applies, and make our response based on that model.
This multiple model approach produces a generalized maximum likelihood
estimate of the current and future values of the state variables. Moreover,
the cost of the Kalman �lter calculations is suf�ciently small to make the
approach quite practical, even for real-time applications.
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Intuitively, this approach breaks the person’s overall behavior down into
several prototypical behaviors. For instance, in the driving situation, we
might have dynamic models corresponding to a relaxed driver, a very tight
driver, and so forth. We then classify the driver’s behavior by determining
which model best �ts the driver’s observed behavior.

Mathematically, this is accomplished by setting up a set of states S, each
associated with a Kalman �lter and a particular dynamic model,

OX.i/
k D X¤.i/

k C K.i/
k .Yk ¡ h.i/.X¤.i/

k ; t//; (3.1)

where the superscript .i/ denotes the ith Kalman �lter. The measurement
innovations process for the ith model (and associated Kalman �lter) is then

0.i/
k D Yk ¡ h.i/.X¤.i/

k ; t/: (3.2)

The measurement innovations process is zero-mean with covariance R.
The ith measurement innovations process is, intuitively, the part of the

observation data that is unexplained by the ith model. The model that ex-
plains the largest portion of the observations is, of course, the model most
likely to be correct. Thus, at each time step, we calculate the probability Pr.i/

of the m-dimensional observations Yk given the ith model’s dynamics,

Pr.i/.Yk |X¤
k / D

exp
±

¡ 1
20

.i/T
k R¡10

.i/
k

²

.2¼/m=2Det.R/1=2 ; (3.3)

and choose the model with the largest probability. This model is then used to
estimate the current value of the state variables, predict their future values,
and choose among alternative responses. After the �rst time step, where
R and Pk are assumed known a priori, they may be estimated from the
incoming data (Kalman & Bucy, 1961).

Note that when optimizing predictions of measurements 1t in the future,
equation 3.2 must be modi�ed slightly to test the predictive accuracy of state
estimates from 1t in the past:

0.i/
k D Yk ¡ h.i/.X¤.i/

k¡1t C f.i/. OX.i/
k¡1t; 1t/1t; t//: (3.4)

We have used this method accurately to remove lag in a high-speed tele-
manipulation task by continuously reestimating the user’s arm dynamics
(e.g., tense and stiff, versus relaxed and inertia dominated) (Friedmann,
Starner, & Pentland, 1992b). We found that using this multiple-model ap-
proach, we were able to obtain signi�cantly better predictions of the user’s
hand position than was possible using a single dynamic or static model.
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Figure 1: A Markov dynamic model of driver action. Only the substates in the
Prepare state will be used for action recognition.

4 Markov Dynamic Models

In the multiple dynamic model, all the processes have a �xed likelihood at
each time step. However, this is uncharacteristic of most situations, where
there is often a �xed sequence of internal states, each with its own dynamics.
Consider driving through a curve. The driver may be modeled as having
transitioned through a series of states ¸ D .s1; s2; : : : ; sk/; si²S, for instance,
entering a curve, in the curve, and exiting a curve. Transitions between these
states happened only in the order indicated.

Thus, in considering state transitions among a set of dynamic models, we
should make use of our current estimate of the driver’s internal state. We
can accomplish this fairly generally by considering the Markov probability
structure of the transitions between the different states. The input to decide
the person’s current internal state (e.g., which dynamic model currently
applies) will be the measurement innovations process as above, but instead
of using this directly in equation 3.3, we will also consider the Markov
interstate transition probabilities.

We will call this type of multiple dynamic model a Markov dynamic
model (MDM). Conceptually, MDMs are exactly like HMMs except that the
observations are the innovations (roughly, prediction errors) of a Kalman
�lter or other dynamic, predictive process. In the case of the dynamic pro-
cesses used here, these innovations correspond to accelerations that were
not anticipated by the model. Thus, our MDMs describe how a set of dy-
namic processes must be controlled in order to generate the observed signal
rather than attempting to describe the signal directly.

The initial topology for an MDM can be determined by estimating how
many different states are involved in the observed phenomenon. Fine-
tuning this topology can be performed empirically. Figure 1, for instance,
shows a four-state MDM to describe long-time-scale driver behavior. Each
state has substates, again described by an MDM, to describe the �ne-grain
structure of the various behaviors.
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As with HMMs, there are three key problems in MDM use (Huang, Ariki,
& Jack, 1990): the evaluation, estimation, and decoding problems. The eval-
uation problem is that given an observation sequence and a model, what
is the probability that the observed sequence was generated by the model
(Pr.Y |¸/)? If this can be evaluated for all competing models for an observa-
tion sequence, then the model with the highest probability can be chosen
for recognition.

As with HMMs, the Viterbi algorithm provides a quick means of evaluat-
ing a set of MDMs as well as providing a solution for the decoding problem
(Huang et al., 1990; Rabiner & Juang, 1986). In decoding, the goal is to
recover the state sequence given an observation sequence. The Viterbi algo-
rithm can be viewed as a special form of the forward-backward algorithm
where only the maximum path at each time step is taken instead of all paths.
This optimization reduces computational load and allows the recovery of
the most likely state sequence.

Since Viterbi guarantees only the maximum of Pr.Y; S|¸/ over all state
sequences S (as a result of the �rst-order Markov assumption) instead of the
sum over all possible state sequences, the resultant scores are only an ap-
proximation. However, Rabiner and Juang (1986) show that this is typically
suf�cient.

Because the innovations processes that drive the MDM interstate transi-
tions are continuous, we must employ the actual probability densities for
the innovations processes. Fortunately, Baum-Welch parameter estimation,
the Viterbi algorithm, and the forward-backward algorithms can be modi-
�ed to handle a variety of characteristic densities (Huang et al., 1990; Juang,
1985). However, in this article, the densities will be assumed to be as in
equation 3.3.

5 An Experiment Using Markov Dynamic Models

Driving is an important, natural-feeling, and familiar type of human be-
havior that exhibits complex patterns that last for several seconds. From
an experimental point of view, it is important that the number of distinct
driving behaviors is limited by the heavily engineered nature of the road
system, and it is easy to instrument a car to record human hand and foot
motions. These characteristics make driving a nearly ideal experimental
testbed for modeling human behaviors. We have therefore applied MDMs
to try to identify automobile drivers’ current internal (intentional) state and
to predict the most likely subsequent sequence of internal states. In the case
of driving, the macroscopic actions are events like turning left, stopping,
or changing lanes. The internal states are the individual steps that make
up the action, and the observed variables will be changes in heading and
acceleration of the car.

The intuition is that even apparently simple driving actions can be broken
down into a long chain of simpler subactions. A lane change, for instance,
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may consist of the following steps: (1) a preparatory centering the car in
the current lane, (2) looking around to make sure the adjacent lane is clear,
(3) steering to initiate the lane change, (4) the change itself, (5) steering to
terminate the lane change, and (6) a �nal recentering of the car in the new
lane.

In this article we are statistically characterizing the sequence of steps
within each action and then using the �rst few preparatory steps to identify
which action is being initiated. To continue the example, the substates of
“prepare” shown in Figure 1 might correspond to centering the car, checking
the adjacent lane, and steering to initiate the change.

To recognize which action is occurring, one compares the observed pat-
tern of driver behavior to Markov dynamic models of each action, in order
to determine which action is most likely given the observed pattern of steer-
ing and acceleration and braking. This matching can be done in real time on
current microprocessors, thus potentially allowing us to recognize a driver’s
intended action from his or her preparatory movements.

If the pattern of steering and acceleration is monitored internally by the
automobile, then the ability to recognize which action the driver is begin-
ning to initiate can allow intelligent cooperation by the vehicle. If heading
and acceleration are monitored externally by video cameras (as in Boer, Fer-
nandez, Pentland, & Liu, 1996), then we can more intelligently control the
traf�c �ow.

5.1 Experimental Design. The goal is to test the ability of our frame-
work to characterize the driver’s steering and acceleration and braking pat-
terns in order to classify the driver’s intended action. The experiment was
conducted within the Nissan Cambridge Basic Research driving simulator,
shown in Figure 2a. The simulator consists of the front half of a Nissan
240SX convertible and a 60 degree (horizontal) by 40 degree (vertical) im-
age projected onto the wall facing the driver. The 240SX is instrumented
to record driver control input such as steering wheel angle, brake position,
and accelerator position.

Subjects were instructed to use this simulator to drive through an exten-
sive computer graphics world, illustrated in Figure 2b. This world contains
a large number of buildings, many roads with standard markings, and other
moving cars. Each subject drove through the simulated world for approxi-
mately 20 minutes; during that time, the driver’s control of steering angle
and steering velocity, car velocity, and car acceleration were recorded at
1=10 second intervals. Drivers were instructed to maintain a normal driv-
ing speed of 30 to 35 miles per hour (13–15 meters per second).

From time to time during this drive, text commands were presented on-
screen for 1 second, whereupon the subjects had to assess the surrounding
situation, formulate a plan to carry out the command, and then act to execute
the command. The commands were: (1) stop at the next intersection, (2) turn
left at the next intersection, (3) turn right at the next intersection, (4) change
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(a) (b)

Figure 2: (a) Nissan Cambridge Basic Research simulator. (b) Part of the simu-
lated world seen by the subjects.

lanes, (5) pass the car in front of you, and (6) do nothing (e.g., drive normally,
with no turns or lane changes). A total of 72 stop, 262 turn, 47 lane change,
24 passing, and 208 drive-normal episodes were recorded from eight adult
male subjects. The time needed to complete each command varied from
approximately 5 to 10 or more seconds, depending on the complexity of
both the action and the surrounding situation.

Command presentation was timed relative to the surroundings in order
to allow the driver to execute the command in a normal manner. For turns,
commands were presented 40 meters before an intersection (¼ 3 seconds,
a headway used in some commercially available navigation aids), for pass-
ing the headway was 30 meters (¼ 2 seconds, which is the mean headway
observed on real highways), and for stopping the headway was 70 meters
(¼ 5 seconds). The variables of command location, road type, surround-
ing buildings, and traf�c conditions were varied randomly thoughout the
experiment. The dynamic models used were speci�c to a Nissan 240SX.

Using the steering and acceleration data recorded while subjects car-
ried out these commands, we built three-state models of each type of driver
action (stopping, turn left, turn right, lane change, car passing, and do noth-
ing) using expectation-maximization (EM) for the parameters of both the
Markov chain and the state variables (heading, acceleration) of the dynamic
models (Baum, 1972; Juang, 1985; Rabiner & Juang, 1986). Three states were
used because preliminary investigation on informally collected data showed
that the three state models performed slightly better than four or �ve state
models. The form of the dynamic models employed is described in the ap-
pendix.

To assess the classi�cation accuracy of these models, we combined them
with the Viterbi recognition algorithm and examined the stream of drivers’
steering and acceleration innovations in order to detect and classify each
driver’s actions. All of the data were labeled, with the “do nothing” la-
bel serving as a “garbage class” for any movement pattern other than the
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�ve actions of interest. We then examined the computer’s classi�cations of
the data immediately following each command and recorded whether the
computer had correctly labeled the action. To obtain unbiased estimates of
recognition performance, we employed the “leaving one out” method, and
so can report both the mean and variance of the recognition rate.

Recognition results were tabulated at 2 seconds after the beginning of
the presentation of a command to the subject, thus allowing the driver up
to 2 seconds to read the command and begin responding. As will be seen
in the next section, the 2 second time point is before there is any large,
easily recognizable change in car position, heading, or velocity. Because the
driving situation allows visual preview of possible locations for turning,
passing, and so forth, we may presume that the driver was primed to react
swiftly. As the minimum response time to a command is approximately
0:5 second, the 2-second point is at most 1:5 seconds after the beginning of
the driver’s action, which is on average 20% of the way through the action.

5.2 Results. Because the MDM framework is fairly complex, we must
�rst try simpler methods to classify the data. For comparison, therefore,
we used Bayesian classi�cation, where the data were modeled using multi-
variate gaussian, nearest-neighbor, or three-state HMMs. The modeled data
were the measured accelerator, brake, and steering wheel positions over the
previous 1 second.

5.2.1 Results Using Classical Methods. At 2 seconds after the onset of the
command text (approximately 1:5 seconds after the beginning of action, or
roughly 20% of the way through the action) mean recognition accuracy (as
evaluated using the leaving-one-out method) was not statistically different
from chance performance for any of these three methods. Many different
parameter settings and similar variations on these techniques were also
tried, with no success.

Examination of the data makes the reasons for these failures fairly clear.
First, each action can occur over a substantial range of time scales, so a suc-
cessful recognition method must incorporate some form of time warping.
Second, even for similar actions, the pattern of brake taps, steering correc-
tions, and accelerator motions varies almost randomly, as the exact pattern
depends on microevents in the environment, variations in the driver’s at-
tention, and so forth.

It is only when we integrate these inputs via the Kalman �lter’s physical
model, to obtain the car’s motion state variables (e.g., velocity, acceleration,
heading), that we see similar patterns for similar actions. This is similar
to many human behaviors, where the exact sequence of joint angles and
muscle activations is unimportant; it is the trajectory of the end effectors or
center of mass that matters.

These data characteristics cause methods such as multivariate gaussian
and nearest-neighbor to fail because of time scale variations; HMM and time
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Figure 3: Recognition accuracy versus time. Very good recognition accuracy is
obtained well before the main or functional part of the behavior.

warping methods fail because they operate on the control inputs rather than
the intrinsic motion variables. By inserting an integrating dynamic model
between the control inputs and the HMM, we bring out the underlying
control intended by the human.

5.2.2 Results Using MDMs. At 2 seconds after the onset of the com-
mand text (approximately 1:5 seconds after the beginning of action, or
roughly 20% of the way through the action), mean recognition accuracy
was 95:24% § 3:1%. These results, plus accuracies at longer lag times, are
illustrated in Figure 3. As can be seen, the system is able to classify these
behaviors accurately very early in the sequence of driver motions.

It could be argued that the drivers are already beginning themainor func-
tional portion of the various behaviors at the 2 second point, and that it is
these large motions that are being recognized. However, the failure of stan-
dard statistical techniques to classify the behaviors demonstrates that there
are no changes in mean position, heading, or velocity at the 2 second point
that are statistically different from normal driving. Thus, the behaviors are
being recognized from observation of the driver’s preparatory movements.
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To illustrate this point, we observe that 2 seconds after the onset of a
lane change command, the MDM system was able to recognize the driver’s
action with 93:3% accuracy (N D 47), even though the vehicle’s lateral offset
averaged only 0:8 § 1:38 meters (lateral offset while going straight has a
standard deviation of ¾ D 0:51 meters). Since this lateral displacement is
subtantially before the vehicle exits the lane (lane width is 4 meters), it
is clear that the MDM system is detecting the maneuver well before the
main or functional part of the behavior. For comparison, to achieve a 93%
accuracy by thresholding lateral position, one would need to tolerate a 99%
false alarm rate while going straight.

To test whether our sample is suf�ciently large to encompass the range
of between-driver variation adequately, we compared these results to the
case in which we train on all subjects and then test on the training data. In
the test-on-training case the recognition accuracy was 98:8%, indicating that
we have a suf�ciently large sample of driving behavior in this experiment.

5.2.3 Discussion. We believe that these results support the view that
human actions are best described as a sequence of control steps rather than
as a sequence of raw positions and velocities. In the case of driving, this
means that it is the pattern of acceleration and heading that de�nes the
action. There are lots of ways to manipulate the car’s controls to achieve a
particular acceleration or heading, and consequently no simple pattern of
hand-foot movement that de�nes a driving action.

Although these results are promising, caution must be taken in trans-
ferring them to other human actions or even to real-world driving. It is
possible, for instance, that there are driving styles not seen in any of our
subjects. Similarly, the driving conditions found in our simulator do not
span the entire range of real driving situations. We believe, however, that
our simulator is suf�ciently realistic that comparable accuracies can be ob-
tained in real driving. Moreover, there is no strong need for models that
suit all drivers; most cars are driven by a relatively small number of drivers,
and this fact can be used to increase classi�cation accuracy. We are exploring
these questions, and the initial results support our optimism.

6 Conclusion

We have demonstrated that we can accurately categorize human driving
actions very soon after the beginning of the action using our behavior mod-
eling methodology. Because of the generic nature of the driving task, there
is reason to believe that this approach to modeling human behavior will
generalize to other dynamic human-machine systems. This would allow us
to recognize automatically people’s intended action, and thus build control
systems that dynamically adapt to suit the human’s purpose better.
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Appendix: Dynamic Car Models

The kinematic model is a three-wheeled model with two front wheels and
one rear wheel. Given access to a system clock, we can �gure out the amount
of time elapsed since the last frame, 1t. To calculate the distance traveled
since the last frame, we calculate

dlin D v1t;

where the function dlin is the linear distance traveled since the last frame and
v is the speed of the car. To calculate the new position of the car, we must
consider whether the car is turning or moving straight ahead. If moving
ahead, then

EPnew D EP C .dlin EH/:

If the car is making a turn, then

EPnew D EP C .rcircle sin.µd/ EH/;

where the angular travel of the car µd is given by

µd D dlin=rcircle;

and the turning circle of the car, rcircle, is given by

rcircle D
dWB

tan µFW

;

where dWB is the wheelbase of the car.
The new heading of the car is �gured from the following equation,

EHnew D 0:5. EVLFW C EVRFW/ ¡ EPnew;

where EVLFW is the vector position of the front left wheel and EVRFW is the vector
position of the front right wheel. Finally, we normalize the new heading
vector,

EHnew D
EHnew

k EHnewk
:

The dynamical equations are equally simple for the vehicle. The new
velocity of the car is computed based on the energy produced by the engine
balanced by the drag from air and rolling resistance and braking.

To calculate the new velocity, we �rst compute the kinetic energy based
on the present velocity using

KEold D
1
2

Mv2;

where M is the mass of the car. Then we calculate the work done by the
engine to propel the car forward, which is simply given by

Wengine D aPmaxeng1t;
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where Pmaxeng is the maximum power output of the engine and a is the
position of the accelerator (0 ! 1). The limitation of this model is that the
work is independent of the rpm. The work done by the brakes to slow the
car is given by

Wbrake D Fmaxbrakedlin.b C 0:6 bpark/;

where Fmaxbrake is the maximum braking force of the brakes, b is the postion
of the brake pedal (0 ! 1), and bpark is the parking brake, which is either 0
or 1.

The contribution of potential energy, if the world is not �at, can be ex-
pressed as:

1PE D .Py
new ¡ Py/Mg;

where Py is the current y-coordinate and Py
new is the newly computed y-

coordinate. The acceleration of gravity, g, is given in m/s2.
To calculate the effect of drag, we �rst �nd the total force resulting from

the air drag and road friction,

Fdrag D ¹airv2 C ¹roadMg;

where ¹road is the coef�cient of friction of the road and ¹air is the drag
coef�cient of the car. The total deceleration energy is the sum of the drag
energy and the brake energy,

Edrag D dlinFdrag C Wbrake:

Our �nal energy balance equation is:

KEnew D KEold C Wengine ¡ 1PE ¡ Edrag

vnew D

r
2KEnew

M
:

The skid state of the car depends on the speed and steering wheel angle
and road surface coef�cient of friction. In our experiments, we used con-
stants that apply to a Nissan 240SX and a speci�ed road-tire con�guration.
In this model, if the speed is below 11:2 mph, then the car always regains
traction. Basically, if the following condition is satis�ed,

µSW

e¡0:0699v < 24:51;

then the tires are within their adhesion limits and the car will not skid.
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