MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF PHYSICS

8.276 Spring 2007 Solution to Problem set #7

April 12, 2007

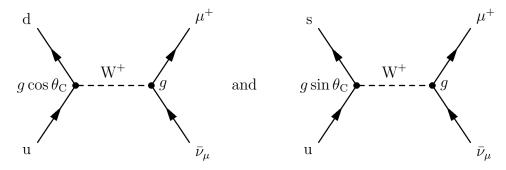
1. (5 points)

- a) $\eta \to 2\pi$ does not conserve parity. (π and η have odd intrinsic parity; (2π) system has even parity.)
- b) $\eta \to 3\pi$ does not conserve isospin $(I(\eta) = 0, I(\pi) = 1)$, so forbidden as a strong interaction but allowed as electromagnetic decay.

2. (10 points)

$$\pi^+ \to \mu^+ \nu_\mu \qquad [\mathrm{ud} \to \mu^+ \nu_\mu] \\ \mathrm{K}^+ \to \mu^+ \nu_\mu \qquad [\mathrm{us} \to \mu^+ \nu_\mu]$$

The Feynman diagrams are



So the ratio of the decay ratios is

$$\frac{\Gamma(\mathbf{K}^+ \to \mu^+ \nu_{\mu})}{\Gamma(\pi^+ \to \mu^+ \nu_{\mu})} = \frac{f\tau_{\pi}}{\tau_{\mathbf{K}\mu\nu}} = \frac{Fg^4 \sin^2 \theta_{\mathbf{C}}}{g^4 \cos^2 \theta_{\mathbf{C}}} = F \tan^2 \theta_{\mathbf{C}}$$

where f = 0.64 is the branching fraction for the $K^+ \to \mu^+ \nu_\mu$ decay $(f \approx 1 \text{ for } \pi^+ \to \mu^+ \nu_\mu)$, and F is the phase space factor due to the different masses of the K and π (and thus the different amounts of energy available).

With F = 18, we have

$$\tan^2 \theta_{\rm C} = \frac{(0.64)(2.6 \times 10^{-8})}{18(1.2 \times 10^{-8})} = 0.077$$
$$\implies \qquad \theta_{\rm C} = 0.27 \approx \sin \theta_{\rm C} \qquad (\text{compare (10.18)})$$

3. (15 points)

"Hyperfine splitting" in meson mass spectrum:

$$m(\mathbf{q}_{1}\bar{\mathbf{q}}_{2}) = m_{1} + m_{2} + a \frac{\mathbf{s}_{1} \cdot \mathbf{s}_{2}}{m_{1}m_{2}}$$

$$\mathbf{S} = \mathbf{s}_{1} + \mathbf{s}_{2} \longrightarrow \mathbf{S}^{2} = \mathbf{s}_{1}^{2} + \mathbf{s}_{2}^{2} + 2\mathbf{s}_{1} \cdot \mathbf{s}_{2} \longrightarrow \mathbf{s}_{1} \cdot \mathbf{s}_{2} = \frac{1}{2} \left(\mathbf{S}^{2} - \mathbf{s}_{1}^{2} - \mathbf{s}_{2}^{2} \right)$$
Eigenvalues: $\mathbf{s}_{1} \cdot \mathbf{s}_{2} = \frac{1}{2} \left(S(S+1) - s_{1}(s_{1}+1) - s_{2}(s_{2}+1) \right)$

$$= \frac{1}{2} \left\{ S(S+1) - \frac{3}{2} \right\} \quad \text{for } s_{1} = s_{2} = \frac{1}{2}$$

 So

for
$$S = 0$$
 $\mathbf{s}_1 \cdot \mathbf{s}_2 = -\frac{3}{4}$
for $S = 1$ $\mathbf{s}_1 \cdot \mathbf{s}_2 = +\frac{1}{4}$

Using these values, $m_{\rm u} = m_{\rm d} = 0.310 \text{GeV}/c^2$, $m_{\rm s} = 0.483 \text{GeV}/c^2$, and $a/m_{\rm u}^2 = 0.64 \text{GeV}/c^2$, we get $a/m_{\rm u}m_{\rm s} = 0.411 \text{GeV}/c^2$, $a/m_{\rm s}^2 = 0.264 \text{GeV}/c^2$, and the following masses:

	Meson	Calculated mass (GeV/c^2)	Observed mass (GeV/c^2)
0-	π	0.140	$0.135(\pi^0), 0.140(\pi^{\pm})$
	Κ	0.485	$0.494(K^{\pm}), 0.498(K^{0}, \bar{K}^{0})$
	$\eta^{(*)}$	0.559	0.549
	$\eta^{\prime(*)}$	0.349	(0.958) (Whoops!)
1-	ρ	0.780	0.770
	ω	0.780	0.782
	K^*	0.896	$0.892(K^{*\pm}), 0.896(K^{*0}, \bar{K}^{*0})$
	ϕ	1.032	1.019

Agreement is good except for the η' so perhaps this mass formula should be applied only to the octet states. However it appears to work for the singlet 1⁻ state (ϕ).

^(*) The $|\eta\rangle$ and $|\eta'\rangle$ contain $u\bar{u}$, $d\bar{d}$, and $s\bar{s}$ quarks:

$$|\eta\rangle = \frac{1}{\sqrt{6}} \left(|u\bar{u}\rangle + |d\bar{d}\rangle - 2 |s\bar{s}\rangle \right).$$

So $m_{\eta} = \frac{1}{6}m_{u\bar{u}} + \frac{1}{6}m_{d\bar{d}} + \frac{2}{3}m_{s\bar{s}} = \frac{1}{3}m_{\pi} + \frac{2}{3}m_{s\bar{s}}$
$$|\eta'\rangle = \frac{1}{\sqrt{3}} \left(|u\bar{u}\rangle + |d\bar{d}\rangle + |s\bar{s}\rangle \right).$$

So $m_{\eta'} = \frac{1}{3}m_{u\bar{u}} + \frac{1}{3}m_{d\bar{d}} + \frac{1}{3}m_{s\bar{s}} = \frac{2}{3}m_{\pi} + \frac{1}{3}m_{s\bar{s}}$

The " η' mass problem" is discussed in the book "Gauge Theories of the Strong, Weak, and Electromagnetic Interactions", C. Quigg (Benjamin, 1983, p.252).

4. (10 points)

a) Use the reactions $\pi^- + p \to \underset{S=+1}{K^0} + \underset{S=-1}{\Lambda}$ or $\pi^- + p \to K^0 + \Sigma^0$. Let a monoenergetic π^- beam strike a hydrogen target (stationary proton). Two body kinematics ensures that at a given angle to the beam direction, a unique K^0 energy occurs. (Actually, there will be two groups of monoenergetic K^0 's, owing to the different masses of the Λ and Σ^0).

How do we know this beam is pure K^0 (no \bar{K}^0)? Conservation of Strangeness. [One must make sure the π^- beam energy is below the threshold for $\pi^- + p \rightarrow \frac{K^0}{S=+1} + \frac{\bar{K}^0}{S=-1} + n$.]

b) "Strangeness oscillations" can occur in the neutral kaon system: We start out with a pure $S = \pm 1$ state, which is a superposition of $CP = \pm 1$ states. Since the $CP = \pm 1$ eigenstate decays much more rapidly than the CP = -1 state, after some time we will have predominantly CP = -1, which is a mixture of $S = \pm 1$. As a result, \bar{K}^0 s will appear (S = -1), which can interact to produce hyperons:

$$\bar{\mathbf{K}}^{0} + \mathbf{p} \rightarrow \Sigma^{+} + \pi^{0}$$

 $\rightarrow \Lambda + \pi^{+} \quad \text{etc}$

5. (10 points) a) $\underset{S=+1}{\overset{K^{0}}{\underset{S=-1}{\overset{K^{0}}{\underset{K^{0}}}{\underset{K^{0}}{\underset{K^{0}}{\underset{K^{0}}{\underset{K^{0}}}{\underset{K^{0}}{\underset{K^{0}}{\underset{K^{0}}{\underset{K^{0}}{\underset{K^{0}}{\underset{K^{0}}{\underset{K^{0}}{\underset{K^{0}}{\underset{K^{0}}}{\underset{K^{0}}{\underset{K^{0}}}{\underset{K^{0}}{\underset{K^{0}}}{\underset{K^{0}}{\underset{K^{0}}{\underset{K^{0}}{\underset{K^{0}}{\underset{K^{0}}{\underset{K^{0}}{\underset{K^{0}}}{\underset{K^{0}}{\underset{K^{0}}}{\underset{K^{0}}{\underset{K^{0}}}{\underset{K^{0}}{\underset{K^{0}}{\underset{K^{0}}{\underset{K^{0}}{\underset{K^{0}}{\underset{K^{0}}{\underset{K^{0}}{\underset{K^{0}}{\underset{K^{0}}}{\underset{K^{0}}{\underset{K^{0}}{\underset{K^{0}}{\underset{K^{0}}}{\underset{K^{0}}{\underset{K^{0}}{\underset{$

$$\begin{split} \mathbf{K}^{0} + \mathbf{p} &\rightarrow \mathbf{K}^{0} + \mathbf{p}, \mathbf{K}^{0} + \mathbf{n} \\ \bar{\mathbf{K}}^{0} + \mathbf{p} &\rightarrow \bar{\mathbf{K}}^{0} + \mathbf{p}, \end{split}$$
 but also $\rightarrow \Sigma^{+} + \pi^{0}, \Sigma^{0} + \pi^{+}, \Lambda^{0} + \pi^{+}$

(Similarly for reactions on neutrons) So \bar{K}^0 , with more reaction channels available, will be attenuated more strongly.

b) $|\mathbf{K}_2\rangle = \frac{1}{\sqrt{2}}(|\mathbf{K}^0\rangle + |\bar{\mathbf{K}}^0\rangle)$ (equal components of $|\mathbf{K}^0\rangle$ and $|\bar{\mathbf{K}}^0\rangle$). After passing through matter, we have

$$|\mathbf{K}_{2}^{'}\rangle = \frac{1}{\sqrt{2}}(f|\mathbf{K}^{0}\rangle + \bar{f}|\bar{\mathbf{K}}^{0}\rangle) \text{ with } f \neq \bar{f},$$

since $|{\rm K}^0\rangle$ and $|\bar{\rm K}^0\rangle$ interact differently. Write

$$\begin{aligned} |\mathbf{K}_{2}'\rangle &= \frac{f + \bar{f}}{2\sqrt{2}} (f|\mathbf{K}^{0}\rangle + \bar{f}|\bar{\mathbf{K}}^{0}\rangle) + \frac{f - \bar{f}}{2\sqrt{2}} (f|\mathbf{K}^{0}\rangle - \bar{f}|\bar{\mathbf{K}}^{0}\rangle) \\ &= \frac{1}{2} (f + \bar{f})|\mathbf{K}_{2}\rangle + \frac{1}{2} (f - \bar{f})|\mathbf{K}_{1}\rangle \end{aligned}$$

Since $f - \bar{f} \neq 0$, K₁s are "regenerated." (see diagram below)

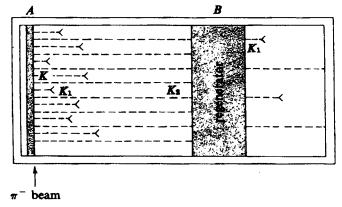


Figure 19-6 Schematic diagram showing the regeneration of K_1 events in a multiplate cloud chamber. The symbol \langle indicates the decay

$$K_1 \rightarrow \pi^+ + \pi^-$$

In target A, pions generate K^0 . The K_1 component decays fast and only K_2 reach the regenerator B. In crossing it some of them undergo strong interactions and emerge as K^0 having a regenerated K_1 component. [From A. Pais and O. Piccioni, *Phys. Rev.*, 100, 1487 (1955).]

c) $K_1 \rightarrow 2\pi$, $K_2 \rightarrow 3\pi$, (except for small amount of *CP* violation). If see any 2π decays, know that beam has K_1 admixture.

6. (10 points) see text

Note that the text is several years out of date. The "B-factory" at SLAC referred to in part b) has been built and has been operating for five years, with beam energies $E_{e^-} = 9.0 \text{GeV}$ and $E_{e^+} = 3.1 \text{GeV}$.