Massachusetts Institute of Technology Department of Physics

8.276 Nuclear and Particle Physics April 5, 2007

Reading Assignment for 4/10 and 4/12

Particles and Nuclei, Chapter 15 (omit Sect. 15.5) Optional Reading: Coughlan and Dodd, Chapters 8-10 Cahn and Goldhaber, Chapter 5

Problem Set #7 (due 4/12)

1. The dominant decays of the η meson are

 $\begin{aligned} \eta &\to 2\gamma \quad (39\%) \\ \eta &\to 3\pi \quad (56\%) \\ \eta &\to \pi\pi\gamma \quad (5\%) \end{aligned}$

and it is classified as a "stable" particle, so evidently none of these is a purely strong interaction. Offhand, this seems odd, since at 549 MeV/c² the η has plenty of mass to decay strongly into 2π or 3π .

a) Explain why the 2π mode is forbidden, for both strong and electromagnetic interactions.

b) Explain why the 3π mode is forbidden as a *strong* interaction, but allowed as an *electromagnetic* decay.

2. a) Explain how a comparison of the decays $\pi^+ \to \mu^+ v_\mu$ and $K^+ \to \mu^+ v_\mu$, could be used to determine the Cabibbo angle θ_C . The K^+ meson has strangeness S = +1.

b) Use the data in Table 14.3 to determine a value for θ_c . You will need to include a phase space factor F = 18, due to the different masses of the K^+ and π^+ and thus the different amounts of energy available in the decays.

3. With s_1 and s_2 being the spins of the constituent quarks having masses m_1 and m_2 , meson masses in the quark model are predicted to be the sum of m_1 and m_2 , plus a hyperfine interaction term:

$$m(q_1,q_2)=m_1+m_2+a\frac{\mathbf{s}_1\cdot\mathbf{s}_2}{m_1m_2},$$

Assuming $m_u = m_d = 0.310 \text{ GeV/c}^2$, $m_s = 0.483 \text{ GeV/c}^2$ and $a/m_u^2 = 0.64 \text{ GeV/c}^2$,

obtain the masses of the pseudoscalar and vector mesons and compare them with the measured values.

4. a) How can one produce experimentally a beam of pure, monoenergetic K^0 particles?

b) When this beam interacts with matter, Λ and Σ particles, which have S = -1, can be produced, even though the K^0 has S = +1. Explain how this can happen.

5. a) Assume that K^0 and \overline{K}^0 beams of equal energy pass through a slab of matter. Will the beams be attenuated equally? Why or why not?

b) A pure K_2^0 beam passes through a slab of matter. Will the emerging beam still be a pure K_2^0 beam? Why or why not?

c) How could it be decided experimentally whether or not the K_2^0 beam is still pure after passage through the slab?

6. *P*&*N*, 13-4.