Massachusetts Institute of Technology Department of Physics

8.276 Nuclear and Particle Physics March 15, 2007

Exam 1 will be given in class on Tuesday, 3/20.

IT WILL COVER THE MATERIAL IN PROBLEM SETS 1-4 (ASSIGNED READING THROUGH CHAPTER 8, SECTION 3). IT WILL BE AN OPEN-BOOK EXAM: YOU MAY REFER TO PARTICLES AND NUCLEI, BUT TO NO OTHER BOOKS, NOTES, HANDOUTS, PROBLEM SETS, OR SOLUTIONS.

Reading Assignment for 3/22

Particles and Nuclei, Chapter 11
Optional Reading: Coughlan and Dodd, Chapters 23-25
Cahn and Goldhaber, Chapter 12

Problem Set #5 (due 3/22)

- 1. *P&N*, 9-1
- 2. Explain why observation of the processes $v_{\mu} + e^{-} \rightarrow v_{\mu} + e^{-}$ or $\overline{v}_{\mu} + e^{-} \rightarrow \overline{v}_{\mu} + e^{-}$

constitutes unique evidence for neutral currents, whereas observation of $v_e + e^- \rightarrow v_e + e^-$ and $\overline{v}_e + e^- \rightarrow \overline{v}_e + e^-$ does not.

- 3. Use four-momentum conservation to show that the maximum angle of emission of the recoil electron in neutrino-electron scattering is $\sqrt{2m/E}$, where m and E are the electron's mass and energy, respectively.
 - 4. The three leptons e, μ and τ may be assumed to have the same weak

interaction coupling constant. The τ -lepton (mass 1784 MeV/c²) and the muon (mass 105 MeV/c²) have decay modes and branching ratios as follows:

$$\mu \rightarrow e + v + \overline{v} \ (100\%)$$
 $\tau \rightarrow e + v + \overline{v} \ (17\%)$

- a) Given that the mean lifetime of the muon is 2.2 x 10^{-6} s, make an estimate of the mean lifetime of the τ -lepton.
- b) If τ -leptons with momentum 5 GeV/c are produced in an e^+e^- collider, calculate the mean flight path before decay in the laboratory system. (Hint: consider time

dilation.)