Massachusetts Institute of Technology Department of Physics

8.276 Nuclear and Particle Physics [February 6, 2007]

Topics (2/6, 2/8):	Introduction to particles and nuclei Terminology, scattering, cross sections
Topics (2/13, 2/15):	Size and shape of nuclei, electron scattering

Reading Assignment for 2/8, 2/13, 2/15:

Particles and Nuclei,	Chapter 1
	Chapter 2, Sections 2.1 and 2.2
	Chapter 4
	Chapter 5, Sections 5.1-5.4

Optional Reading: Appendices A.1 and A.2

Problem Set #1 (due 2/15):

- 1. P&N, 4-1
- 2. P&N, 4-2
- 3. A copper target of thickness 0.1 cm intercepts a particle beam of 4 cm² area. Nuclear scattering is observed.
 - (a) Compute the number of scattering centers intercepted by the beam.
 - (b) Assuming the total scattering cross section to be 10 mb, what fraction of the incident beam is scattered? ($1 b = 10^{-24} cm^2$.)
- 4. Calculate the counting rate that would be observed in the Rutherford scattering of 10 MeV α -particles from the Pb nucleus at an angle $\theta = \pi/2$. Assume an incident flux of 10⁶ α -particles per second on a Pb foil of thickness 0.1 cm and a detector of transverse dimensions 1 cm x 1 cm placed 100 cm from the interaction point. The density of lead is 11.3 g/cm³.
- 5. Consider the collision of an α -particle with an electron. Using one-dimensional, nonrelativistic kinematics, show that the maximum energy loss and the maximum momentum transfer are small. Compute the maximum energy loss that a 10 MeV α -particle can suffer by striking an electron at rest.