| 1+0 | = | 1 |
| 1+1 | = | 1100 |
| 10+1 | = | 11 |
| 1+10 | = | 11 |
| 10+10 | = | 11000 |
| 10+11 | = | 11001 |
| 11+111 | = | 0 |
|
| 011−11 | = | 11 |
| 0011−11 | = | 011 |
| 0011−011 | = | 11 |
| 1011−11 | = | 0011 |
| 10011−011 | = | 1011 |
| 01011−11 | = | 10011 |
| 01011−011 | = | 00011 |
|
| 1×0 | = | 0 |
| 1×1 | = | 1 |
| 10×1 | = | 10 |
| 10×10 | = | 100 |
| 11×10 | = | 110 |
| 11×11 | = | 1 |
| 111×111 | = | 11001 |
|
| 0÷1 | = | 0 |
| 1÷1 | = | 1 |
| 1÷10 | = | 10 |
| 100÷10 | = | 1001 |
| 1010÷1001 | = | 100 |
| 10010÷100 | = | 100 |
| 10010÷1001 | = | 1001 |
|
| 0^1 | = | 0 |
| 1^0 | = | 1 |
| 1^1 | = | 1 |
| 10^1 | = | 10 |
| 1^10 | = | 1 |
| 10^10 | = | 100 |
| 11^10 | = | 1001 |
|
((((11111×111) + (110^(1010÷10010)))×((1101×(1011 + 1010)) + (11101×10))) − (((1011 − 0011)^101) + (((11011×1110) + 1)×(10^101)))) + (((11110 + 1100)^1011)÷1010)
(((((1010×10100×(1010 + 1011))÷(11×110)) + ((((11101×1111×1111) + 100)×10001)÷(11100 + 1110)))×1111) − (11101×(10111 + (10^101)))) + (1111 + 110)
((((((11^100) + 1010)×1001) + (10^110)) − ((11111×((1010^10) + 1001)) + 1000))×(100^100)) + ((((101^11) + 10)×11111×11111×11110×101)÷(11111×10110×(1000 + 1001 + 1000)))
(11101×10110) + (((1001 + (10101×1000) + ((((1100 + 100)×(101 + 100 + 100)) + 1010)×11101))×1001) − (((((1001 + 1000 + 1000)×(1011 + 1010))÷10001) + (01011 − 10011))×101))