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Abstract

Existing models of divisible double auctions typically require three or more traders—when there are two 
traders, the usual linear equilibria imply market breakdowns unless the traders’ values are negatively cor-
related. This paper characterizes a family of nonlinear ex post equilibria in a divisible double auction with 
only two traders, who have interdependent values and submit demand schedules. The equilibrium trading 
volume is positive but less than the first best. Closed-form solutions are obtained in special cases. Moreover, 
no nonlinear ex post equilibria exist if: (i) there are n ≥ 4 symmetric traders or (ii) there are 3 symmetric 
traders with pure private values. Overall, our nonlinear equilibria fill the “n = 2” gap in the divisible-auction 
literature and could be a building block for analyzing strategic bilateral trading in decentralized markets.
© 2016 Elsevier Inc. All rights reserved.

JEL classification: D44; D82; G14

Keywords: Divisible double auctions; Bilateral trading; Bargaining; Ex post equilibrium

1. Introduction

Trading with demand schedules, in the form of double auctions, is common in many financial 
and commodity markets. In a typical model of divisible double auctions, traders simultaneously 
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submit linear demand schedules (i.e., a set of limit orders, or price-quantity pairs), and trading 
occurs at the market-clearing price. A large literature is devoted to characterizing the trading 
behavior in this mechanism as well as the associated price discovery and allocative efficiency 
(see, for example, Kyle, 1989; Vayanos, 1999; Vives, 2011; Rostek and Weretka, 2012, and Du 
and Zhu, 2016, among others). These models of double auctions typically require at least three 
traders for the existence of linear equilibria.

When there are exactly two traders, the existing theory predicts a market breakdown (no trade) 
unless traders’ values are negatively correlated. While the n ≥ 3 assumption is relatively innocu-
ous for centralized markets, it is restrictive for decentralized, over-the-counter (OTC) markets, 
where trades are conducted bilaterally. Active OTC markets for divisible assets include those for 
corporate bonds, municipal bonds, structured products, interbank loans, repurchase agreements, 
and security lending arrangements, as well as spot and forward transactions in commodities and 
foreign currencies.

In this paper, we fill this gap by studying bilateral trading in divisible double auctions, 
which is largely unexplored in the previous literature. In our model, each trader receives a one-
dimensional private signal about the asset and values the asset at a weighted average of his and 
the other trader’s signals. That is, values are interdependent. In addition, the trader’s marginal 
value for owning the asset declines linearly in quantity. Moreover, the traders can be asymmet-
ric, in the sense that their values can have different weights on each other’s signal, and that their 
marginal values can decline at different rates.

We characterize a family of nonlinear equilibria in this model. These equilibria can be ranked 
by their realized allocative efficiency, suggesting that efficiency is a natural equilibrium selection 
criterion. In an equilibrium, each trader’s demand schedule is implicitly given by a solution to a 
nonlinear algebraic equation. We show that each equilibrium leads to a trading quantity that is 
positive and strictly lower (in absolute values) than the first best (efficient quantity). This behavior 
is consistent with the “demand reduction” property commonly seen in multi-unit auctions (see, 
for example, Ausubel et al., 2014). Moreover, the equilibria that we characterize are ex post 
equilibria; that is, the equilibrium strategies remain optimal even if each trader would observe 
the private information of the other trader. In the special case of constant marginal values, we 
obtain a trader’s equilibrium demand schedule in closed form: it is simply a constant multiple of 
a power function of the difference between the trader’s signal and the price, where the exponent 
is decreasing in the weight a trader assigns on his own signal.

Do these nonlinear ex post equilibria also exist in markets with at least three traders? We 
show that no nonlinear ex post equilibria exist if: (i) there are at least four symmetric traders or 
(ii) there are three symmetric traders who have pure private values. Thus, under fairly general 
conditions the only ex post equilibrium is the linear one identified in previous models. Not only 
does this result provide a justification for the widespread use of the linear equilibrium in the 
existing literature, it also suggests that bilateral double auctions behave qualitatively differently 
from multilateral ones, and hence merit further investigation.

An interesting and useful direction of further exploration is to use our bilateral double auction 
result as a strategic building block for analyzing dynamic trading in large OTC markets. So far, 
in the most widely used class of OTC market models that start from Duffie et al. (2005), the 
two agents in a pairwise meeting observe, by assumption, each other’s valuation of the asset 
or continuation value, and trading happens by Nash bargaining (a split of total surplus by fixed 
portions). In contrast, the bilateral double auction in our model endogenously reveals asymmetric 
information to both counterparties through their fully strategic interactions. Thus, our model 
provides a strategic microfoundation for bilateral information transmission.
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More recently, Duffie et al. (DMM, 2014) use indivisible bilateral double auctions, adapted 
from the literature pioneered by Chatterjee and Samuelson (1983) and Satterthwaite and Williams
(1989), to model bilateral trading in large OTC markets. Our model of divisible double auctions 
allows arbitrary quantities and is hence better suited for modeling trade size and trading volume 
in OTC markets. Moreover, relative to DMM, our model allows more general information struc-
tures such as interdependent values. Finally, our model of bilateral trade is more tractable than 
that of DMM, partly because the divisible double auction allows optimization price by price, 
greatly simplifying the problem. Of course, our model has only two agents and is static. Extend-
ing it to a fully dynamic market with many (perhaps a continuum of) agents is an intriguing and 
important challenge that we leave for future research.

Our paper is also broadly related to the mechanism-design approach to bilateral trading. For 
example, in a bilateral trading setting with interdependent values, finite signals, and constant 
marginal values, Shimer and Werning (2015) show that mechanisms satisfying ex post partici-
pation constraints also present a tension between achieving efficiency and having fully revealing 
prices. Applying a similar mechanism design approach to our setting seems an interesting exer-
cise and is left for future research.

2. Model

There are n = 2 players, whom we call “traders,” trading a divisible asset. The total supply 
of the asset is normalized to zero. Each trader i observes a private signal, si ∈ [s, s] ⊂ R, about 
the value of the asset. The distribution of (s1, s2) is arbitrary. We use j to denote the trader other 
than i. Trader i’s value for owning the asset is:

vi = αisi + (1 − αi)sj , (1)

where α1 ∈ (0, 1] and α2 ∈ (0, 1] are commonly known constants that capture the level of inter-
dependence in traders’ valuations. We assume that α1 + α2 > 1. We do not need the assumption 
of αi > 1/2 (placing more weight on one’s own signal).

Remark. Du and Zhu (2016) derive the symmetric case (α1 = α2 ∈ (0, 1]) of valuation (1) in a 
setting where traders have common and private values and observe private, noisy signals about 
the common value. We emphasize that the contribution of this paper is to analyze the case of 
αi ∈ (0, 1], so each trader i places a nonnegative weight 1 − αi on the other’s information. In all 
previous models of divisible double auctions, as long as values have a nonnegative correlation, 
the existence of linear equilibrium requires n ≥ 3. If, however, αi > 1 for each i ∈ {1, 2}, the 
two traders’ values become negatively correlated. In and only in this case of negative value 
correlation, the linear equilibrium in Vives (2011, p. 1941–2) and Rostek and Weretka (2012)
generates a positive trading volume with two traders.

We further assume that trader i’s marginal value for owning the asset decreases linearly in 
quantity at a commonly known rate λi ≥ 0. Thus, if trader i acquires quantity qi at the price p, 
trader i has the ex post utility:

Ui(qi,p;vi) = viqi − λi

2
(qi)

2 − pqi. (2)

By construction, if qi = 0, then Ui = 0. This linear-quadratic utility function is also used in Vives
(2011), Rostek and Weretka (2012), Du and Zhu (2016), among others.

The trading mechanism is a one-shot divisible double auction. We use xi( · ; si), where 
xi( · ; si) : [s, s] → R, to denote the demand schedule that trader i submits conditional on his 
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signal si . The demand schedule xi( · ; si) specifies that trader i wishes to buy a quantity xi(p; si)
of the asset at the price p when xi(p; si) is positive, and that trader i wishes to sell a quantity 
−xi(p; si) of the asset at the price p when xi(p; si) is negative.

Given the submitted demand schedules (x1( · ; s1), x2( · ; s2)), the auctioneer (a human or a 
computer algorithm) determines the transaction price p∗ ≡ p∗(s1, s2) from the market-clearing 
condition

x1(p
∗; s1) + x2(p

∗; s2) = 0. (3)

After p∗ is determined, trader i is allocated the quantity xi(p
∗; si) of the asset and pays 

xi(p
∗; si)p∗. If no market-clearing price exists, there is no trade, and each trader gets a utility of 

zero. If multiple market-clearing prices exist, we can pick one arbitrarily.
We make no assumption about the distribution of (s1, s2). Therefore, the solution concept that 

we use is ex post equilibrium. In an ex post equilibrium, each trader has no regret—he would not 
deviate from his strategy even if he would learn the signal of the other trader.

Definition 1. An ex post equilibrium is a profile of strategies (x1, x2) such that for every profile 
of signals (s1, s2) ∈ [s, s]2, every trader i has no incentive to deviate from xi , given the strategy 
xj , j �= i. That is, for any alternative strategy x̃i of trader i,

Ui(xi(p
∗; si),p∗;vi) ≥ Ui(x̃i(p̃; si), p̃;vi),

where vi is given by Equation (1), p∗ is the market-clearing price given xi and xj , and p̃ is the 
market-clearing price given x̃i and xj .

In an ex post equilibrium, a trader can guarantee a non-negative ex post utility, since he can 
earn zero utility by submitting a demand schedule that does not clear the market (and hence 
trading zero quantity).

The ex post nature of the equilibrium implies that the equilibrium outcome is also robust 
to the way it is implemented. For instance, traders do not have to submit their demands at all 
prices simultaneously: they may go back and forth proposing prices and quantities that are sub-
set of their demand schedules, until a market-clearing price emerges. Even if one trader learns 
something about the other’s signal and demand schedule, the trader has no incentive to deviate 
from his ex post equilibrium demand schedule, as required by the ex post optimality condition. 
This robustness-to-implementation property is particularly desirable in bilateral trading in prac-
tice, where the bargaining protocol is usually not specified in rule books and is subject to high 
degrees of discretion and variation.

3. Characterize a family of ex post equilibria

We first define the sign function:

sign(w) =

⎧⎪⎨
⎪⎩

1 w > 0

0 w = 0

−1 w < 0

. (4)

Proposition 1. Suppose that 1 < α1 + α2 < 2. Let C be any positive constant such that
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C ≥ (s − s)2−α1−α2

α2

(
λ2

(
1 − α1

2

) + λ1
α2
2

α1 + α2 − 1

)α1+α2−1

, and (5)

C ≥ (s − s)2−α1−α2

α1

(
λ1

(
1 − α2

2

) + λ2
α1
2

α1 + α2 − 1

)α1+α2−1

. (6)

Then, there exists a family (parameterized by C) of ex post equilibria in which:

xi(p; si) = yi(|si − p|) · sign(si − p), i ∈ {1,2}, (7)

where, for w1, w2 ∈ [0, s − s], y1(w1) and y2(w2) are the smaller solutions to

(2 − α1 − α2)w1 = Cα2y1(w1)
α1+α2−1 −

(
λ2

(
1 − α1

2

)
+ λ1

α2

2

)
y1(w1), (8)

(2 − α1 − α2)w2 = Cα1y2(w2)
α1+α2−1 −

(
λ1

(
1 − α2

2

)
+ λ2

α1

2

)
y2(w2). (9)

There is a unique equilibrium price p∗ = p∗(s1, s2), which is in between s1 and s2 and is 
given implicitly by1

p∗ = α1s1 + α2s2

α1 + α2
+ α1λ2 − α2λ1

2(α1 + α2)
x1(p

∗; s1). (10)

Moreover, among the family of equilibria, the one corresponding to the smallest C, subject to 
Conditions (5)–(6), maximizes trading volume and is the most efficient.

Fig. 1 demonstrates two equilibria of Proposition 1. The primitive parameters are α1 = 0.7, 
α2 = 0.8, λ1 = 0.1, λ2 = 0.2, s = 0, and s = 1. The realized signals are s1 = 0.3 and s2 = 0.7. 
On the left-hand plot, we show the equilibrium with C = 0.729, which is the equilibrium that 
maximizes trading volume. The equilibrium price is p∗ = 0.5126, trader 1 gets x1(p

∗; s1) =
−0.037, and trader 2 gets x2(p

∗; s2) = 0.037. On the right-hand plot, we show the equilibrium 
with C = 1.458. The equilibrium price is p∗ = 0.513, trader 1 gets x1(p

∗; s1) = −0.009, and 
trader 2 gets x2(p

∗; s2) = 0.009.
While the full proof of Proposition 1 is provided in Section A.1, we briefly discuss its intuition 

here. The conditions (5)–(6) guarantee that the algebraic equations (8)–(9) have solutions. For 
example, the right-hand side of Equation (8), rewritten as

f1(y1) ≡ Cα2y
α1+α2−1
1 −

(
λ2

(
1 − α1

2

)
+ λ1

α2

2

)
y1, (11)

is clearly a concave function of y1. Condition (5) ensures that the maximum of f1(y1) is above 
(2 − α1 − α2)(s − s). Hence, by the Intermediate Value Theorem, a solution exists.

Moreover, whenever the inequality (5) is strict, there always exist two solutions y1(w1), one of 
which is smaller than y∗

1 and one larger than y∗
1 , where y∗

1 maximizes f1(y1). Between the two, 
we select the former, for the following reason. It is easy to see that the smaller solution y1(w1)

1 The uniqueness of solution p∗ to Equation (10) can be seen as follows: suppose α1λ2 > α2λ1, then the left-hand side 
of Equation (10) is increasing in p∗ , while the right-hand side is decreasing in p∗ .

If α1λ2 < α2λ1, rewrite Equation (10) as:

p∗ = α1s1 + α2s2

α1 + α2
+ α2λ1 − α1λ2

2(α1 + α2)
x2(p∗; s2),

and then we can apply the above argument.
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Fig. 1. Equilibria from Proposition 1.

is increasing in w1 because f1(y1) is increasing in y1 before it obtains its maximum. This means 
that trader 1’s demand x1(p; s1) is decreasing in price p and is increasing in signal s1, by (7). The 
other solution implies an upward-sloping demand schedule and should be discarded. Likewise 
for Condition (6) and Equation (9).

In these equilibria, each trader i buys yi(si − p) units of asset if the price p is below his 
signal si ; he sells yi(p−si) units if p is above si . The constant C represents the aggressiveness of 
the bidding strategy; the smaller is C, the larger is yi(|si −p|), and hence the more aggressive the 
traders bid at each price.2 The most aggressive equilibrium is also the most efficient one, because 
it maximizes the trading volume. In Section 3.2 we show that in all equilibria of Proposition 1
and for every realization of signals, the trading volume is less than that in the ex post efficient 
allocation, so a higher volume is closer to the ex post efficient allocation. On the other hand, as 
C tends to infinity, yi(wi) tends to zero, and hence the amount of trading in equilibrium tends 
to zero. Among this family of ex post equilibria, the most efficient one is a natural candidate 
for equilibrium selection. It is also worth mentioning that we have not ruled out the existence of 
equilibria with other functional forms for demand.

As illustrated in Fig. 1, the equilibrium demand xi(p; si) is a concave function of p for p ≤ si
and a convex function of p for p ≥ si . This is a consequence of yi(wi) being convex in wi (see 
Lemma 1). Put differently, each trader’s price impact of buying or selling an additional marginal 

2 See Equations (8) and (9): as C gets larger, yi (wi) must become smaller since the left-hand sides of (8) and (9) are 
not changing.
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unit is decreasing in the overall (unsigned) traded quantity. To see this, note that the price impact 
of trader j �= i in the bilateral double auction can be measured by 1/| ∂xi

∂p
| = 1/y′

i (wi), where 
wi = |si − p|. So the price impact is infinite if si = p (since y′(0) = 0 from Lemma 1) and 
is smaller if si is further away from p (since y′

i (wi) is increasing in wi ). In general, the price 
impact is larger if |si − p|/(s − s) is smaller. If s → −∞ or s → ∞, for any fixed si − p, 
|si − p|/(s − s) → 0, and the price impact at such p becomes infinitely large, so its trading 
volume vanishes. That is, if the support of signals and prices is literally infinite, then the price 
impact faced by each trader is infinite almost everywhere, and the only equilibrium is the no trade 
equilibrium. However, as long as s and s are finite, trading volume is positive unless si = sj , and 
the trading volume at a price far away from si and sj is still large.

An economic interpretation of the nonlinear demand schedule and the decreasing price im-
pact in quantity is the following. Without loss of generality, consider the buyer. In the nonlinear 
equilibrium, the equilibrium price is increasing and concave in the buyer’s purchase quantity (see 
Fig. 1 for illustration). The strategic buyer wishes to engage in demand reduction to lower the 
price, but for each unit of demand reduction, the corresponding price reduction will be propor-
tionally smaller than what it would be if the seller’s demand schedule were linear. This nonlinear 
effect discourages demand reduction, especially if the traded quantity is already large. That the 
price impact is smaller for larger quantities resembles the familiar idea in mechanism design that 
“low types” are penalized so that high types would not imitate them (the incentive compatibility 
condition). From the perspective of the seller who posts the schedule, a “high type” is a buyer 
whose signal is far above the seller’s signal, and a “low type” is a buyer whose signal is just above 
the seller’s signal. Again, it is as if the seller sets a highly punitive price impact at a price close to 
her signal so as to prevent a high type buyer from “imitating” a low type one. Now suppose that 
we push the support of signals to the entire real line. Then, any finite signal of the buyer, say s1, 
appears very low relative to the best possible realization, +∞. The seller then sets a punitive, in 
fact infinite, price impact at the price p that is generated by s1 and the seller’s signal s2. As s1

varies, this price p spans the entire real line, and no trade takes place.3

Our nonlinear equilibria are broadly related to those of Glebkin (2015), who analyzes strategic 
trading among at least three strategic traders with symmetric information, CARA utility, and a 
general asset payoff distribution (in particular, without assuming normality). His equilibria and 
ours both demonstrate nonlinear price impact in traded quantity, but the shapes of the reactions 
are sometimes different. In our model, the equilibrium price is a concave function of the quantity 
demanded and is symmetric for buys and sells. But in his model, depending on the asset payoff 
distribution, the equilibrium price may be concave or convex in quantity, and the magnitudes may 
differ between buys and sells. This difference is likely due to the difference between the CARA 
utility in his model and the linear-quadratic utility in ours. Glebkin’s model offers richer shapes 
of price impact in a centralized market with at least three traders, whereas our model is applicable 
to bilateral trading with interdependent values.4 The two papers are hence complementary.

3 Of course, this mechanism design analogy is informal and meant to illustrate the intuition. Formally applying the 
mechanism design approach to our setting (for example, by following Shimer and Werning, 2015) is beyond the scope 
of the paper.

4 Glebkin (2015) does not consider the case of exactly two traders. In his setting, if there are only two traders and if 
the asset payoff is normal, an equilibrium does not exist. It remains an open question of under what payoff distributions 
an equilibrium would exist in Glebkin’s setting if there are only two traders.
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3.1. Special cases of Proposition 1

3.1.1. Constant marginal values
In the special case that the marginal values do not decline with quantity (λ1 = λ2 = 0), we 

obtain explicit closed-form solutions.

Corollary 1. Suppose that α1 + α2 > 1 and λ1 = λ2 = 0. There exists a family of ex post equi-
libria in which:

xi(p; si) = C|αi(si − p)| 1
α1+α2−1 · sign(si − p), i ∈ {1,2}, (12)

where C is any positive constant, and the equilibrium price is independent of C and is given by

p∗(s1, s2) = α1

α1 + α2
s1 + α2

α1 + α2
s2. (13)

Corollary 1 shows that if λ1 = λ2 = 0, the equilibrium price p∗(s1, s2) tilts toward the signal 
of the trader who assigns a larger weight on his private signal.

Corollary 1 imposes no restriction on the positive constant C since the marginal value does 
not decline with quantity. While trading volume can be unbounded in theory, in practice it is often 
bounded by institutional constraints. For instance, a bank may have an internal risk management 
policy that mandates an explicit maximal loan amount, say Q > 0, to each firm it lends to. 
In this case, the marginal value of the bank or the borrower is constant if the quantity qi ∈
[−Q, Q] and is zero if qi /∈ [−Q, Q]. The equilibria in Corollary 1 apply to this situation if 
the constant C satisfies |xi(p; si)| ≤ Q for every (p, si) ∈ [s, s]2 and i = 1, 2, and the most 
aggressive equilibrium is one such that max(x1(s; s), x2(s; s)) = Q.

We now construct the equilibria for Corollary 1 to illustrate the general construction in Propo-
sition 1.

Given a signal profile (s1, s2), trader i’s ex post optimization problem is essentially selecting 
a market-clearing price p and getting the residual supply −xj (p; sj ), j �= i. Thus, his ex post 
first order condition is that of a monopsonist facing a market supply of −xj(p; sj ):

∂Ui

∂p

∣∣∣∣
p=p∗

= xj (p
∗; sj ) + (αisi + (1 − αi)sj − p∗)

(
−∂xj

∂p
(p∗; sj )

)
= 0. (14)

Let us conjecture that the market-clearing price p∗ satisfies Equation (13). Consequently 
trader i can infer sj from p∗. Substituting (13) into Equation (14), we get:

xj (p
∗; sj ) + (1 − αi − αj )(sj − p∗)

(
−∂xj

∂p
(p∗; sj )

)
= 0, (15)

i.e., trader i’s ex post first order condition becomes a differential equation on trader j ’s strategy. 
It is easy to solve the above differential equation:

xj (p
∗; sj ) = Kj(sj − p∗)1/(αi+αj −1), (16)

for any constant Kj . We can choose a constant Kj for sj > p∗, and another one for sj < p∗. 
Thus we let

xj (p
∗; sj ) = Cj |sj − p∗|1/(αi+αj −1) sign(sj − p∗) (17)

for a positive constant Cj , to make xj (p
∗; sj ) a decreasing function of p∗ and thus a legitimate 

demand schedule. To satisfy our conjecture in Equation (13), we let Cj = C · (αj )
1/(αi+αj −1) for 
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a positive constant C, j = 1, 2, which gives the equilibrium strategy in Corollary 1. Finally, we 
explicitly verify that our construction satisfies the ex post optimality condition in Section A.1.3.

3.1.2. Pure private values
Pure private values correspond to α1 = α2 = 1. Strictly speaking, private values are not 

covered by Proposition 1, but one can easily obtain ex post equilibria using the same line of 
arguments as in Proposition 1.

Corollary 2. Suppose that α1 = α2 = 1. Let C1 and C2 be positive constants satisfying

C1 − C2 = λ1 − λ2

2
, (18)

and

Ci ≥ λ1 + λ2

2

(
log

2(s − s)

λ1 + λ2
+ 1

)
, i ∈ {1,2}. (19)

There exists a family (parameterized by C1 and C2) of ex post equilibria in which:

xi(p; si) = yi(|si − p|) · sign(si − p), i ∈ {1,2}, (20)

where, for wi ∈ [0, s − s], yi(wi) is the smaller solution to

wi = Ciyi(wi) − λ1 + λ2

2
yi(wi) log(yi(wi)). (21)

There is a unique equilibrium price p∗ = p∗(s1, s2), which is in between s1 and s2 and is 
given implicitly by

p∗ = s1 + s2

2
+ λ2 − λ1

4
x1(p

∗; s1). (22)

Moreover, among the family of equilibria, the one corresponding to the smallest C1 and C2, 
subject to Conditions (18)–(19), maximizes trading volume and is the most efficient.

As in Proposition 1, the right-hand side of Equation (21) is a concave function of yi(wi). 
Condition (19) ensures that Equation (21) has two solutions in yi(wi), and the smaller of the 
two solutions increases with wi . Moreover, the smaller is the constant Ci , the more aggressive 
is trader i’s equilibrium strategy in Equation (21). Hence, the most efficient equilibrium of this 
family corresponds to the smallest possible C1 and C2.

3.1.3. Pure common value
Pure common value corresponds to the case of α1 + α2 = 1. While pure common value is not 

covered by our model, we cover cases arbitrarily close to pure common value, i.e., α1 + α2 > 1
can be arbitrarily close to 1. We show here that as we approach a common value setting the 
equilibrium trade disappears, which is consistent with the intuitions from the no trade theorem 
of Milgrom and Stokey (1982).

Corollary 3. Suppose that λ1 + λ2 > 0. As α1 + α2 tends to 1, trading vanishes in every equilib-
rium (x1, x2) from Proposition 1:

lim
α1+α2→1

sup
(p,si )∈[s,s]2

|xi(p; si)| = 0, (23)

for every i ∈ {1, 2}.
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We do not require a trader placing more weight on his own signal. We allow, for example, 
that α1 = 1 and α2 = ε > 0, where ε is small. When the signals s1 and s2 are independent, this 
information structure corresponds to a “lemon” setting in which player 1 is perfectly informed 
about the almost-common value, while player 2 is very uninformed. The above result implies 
that the equilibrium trade must vanish as ε → 0.

3.2. Demand reduction and efficiency

Now, we turn to the efficiency properties of the bilateral ex post equilibria of Proposition 1. 
To guarantee the existence of the efficient allocation, we will assume that λ1 +λ2 > 0. Otherwise 
(i.e., if λ1 = λ2 = 0), the allocative efficiency can always be improved by moving a marginal unit 
of asset from the trader with a lower value to the trader with a higher value.

For welfare comparison, let us first sketch the competitive equilibrium. A competitive equilib-
rium demand schedule xc

i (p
c; si) takes the price as given (each trader has no effect on the price) 

and solves:

xc
i (p

c; si) ∈ argmax
qi∈R

vi(si ,p
c)qi − λi(qi)

2

2
− pcqi, (24)

where vi(si , pc) is trader i’s value given signal si and competitive equilibrium price pc. With 
only two traders, the competitive equilibrium is meant to be a theoretical benchmark and not a 
realistic description of market reality.

Let us conjecture that the competitive equilibrium price satisfies:

pc = a1s1 + a2s2. (25)

Trader i infers from the competitive equilibrium price pc:

vi(si ,p
c) = αisi + (1 − αi)sj = αisi + (1 − αi)

pc − aisi

aj

, (26)

and as a result,

xc
i (p

c; si) = 1

λi

(
αisi + (1 − αi)

pc − aisi

aj

− pc

)
. (27)

The competitive equilibrium price satisfies xc
1(p

c; s1) + xc
2(p

c; s2) = 0, thus

pc =
(

α1
λ1

− a1(1−α1)
a2λ1

)
s1 +

(
α2
λ2

− a2(1−α2)
a1λ2

)
s2

1
λ1

− 1−α1
a2λ1

+ 1
λ2

− 1−α2
a1λ2

. (28)

Matching the above coefficients with those in (25) gives the following unique non-trivial solu-
tion:

a1 = (1 − α2)λ1 + α1λ2

λ1 + λ2
, a2 = (1 − α1)λ2 + α2λ1

λ1 + λ2
. (29)

Substitute the above solution into Equations (25) and (27) gives the competitive equilibrium:

xc
i (p; si) = α1 + α2 − 1

αjλi + (1 − αi)λj

(si − p), j �= i, (30)

pc = (1 − α2)λ1 + α1λ2

λ1 + λ2
s1 + (1 − α1)λ2 + α2λ1

λ1 + λ2
s2. (31)
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It is easy to see that the competitive equilibrium always obtains the ex post efficient allocation: 
for every (s1, s2) ∈ [s, s]2,

x1(p
c; s1) ∈ argmax

q1∈R
v1q1 − λ1

2
(q1)

2 + v2(−q1) − λ2

2
(−q1)

2. (32)

Proposition 2. Suppose that λ1 + λ2 > 0.

1. For every ex post equilibrium (x1, x2) of Proposition 1 and for every signal profile (s1, s2) ∈
[s, s]2, the ex post equilibrium trades strictly less than the ex post efficient allocation: 
|x1(p

∗; s1)| < |xc
1(p

c; s1)|.
2. The ex post equilibrium prices from Proposition 1 and the competitive equilibrium price are 

the same if and only if λ1α2 = λ2α1.

Thus, when traders are asymmetric, the price in a strategic equilibrium is generally different 
from that in the competitive equilibrium. The prices are equal if and only if λ1α2 = λ2α1, which 
is not an obvious result ex ante. Intuitively, if λ1/λ2 is larger, trader 1 is less aggressive than 
trader 2 due to a higher inventory cost; but if α1/α2 is larger, trader 1 is more aggressive than 
trader 2 because a larger fraction of trader 1’s value comes from his private signal. It turns out 
that in a strategic equilibrium the effects of these two incentives on the price offset each other 
when the two ratios are equal, i.e., λ1α2 = λ2α1, restoring the competitive equilibrium price.

4. Non-existence of nonlinear ex post equilibria if n > 2

So far, we have characterized a class of nonlinear ex post equilibria for n = 2. A natural 
question is whether the equilibrium construction generalizes to a market with n ≥ 3 traders. We 
answer this question in the negative by showing that, when all traders’ preferences are sym-
metric,5 a nonlinear ex post equilibrium does not exist for n ≥ 4. This non-existence result also 
holds if n = 3 and the three symmetric traders have pure private values. For these non-existence 
results we restrict attention to demand schedules that are twice continuously differentiable, glob-
ally downward sloping in price, and globally upward sloping in signals, which are plausible 
assumptions for practical applications.

In this section, there are n ≥ 3 symmetric traders, with αi = α ∈ (0, 1] and λi = λ > 0, 
1 ≤ i ≤ n, where

vi = αsi + 1 − α

n − 1

∑
j �=i

sj , (33)

and the utility Ui(qi, p; vi) is still given by Equation (2). As before, the total supply of the asset 
is normalized to zero. As in Definition 1, in an ex post equilibrium every trader i would not 
deviate from his equilibrium strategy even if he would observe the realization of others’ signals 
s−i = (s1, . . . si−1, si+1, . . . , sn), if others are following their equilibrium strategies.

5 We focus on symmetric traders for the following reason. Rostek and Weretka (2012) show that when traders are 
asymmetric, the linear equilibrium is not an ex post equilibrium because the market-clearing price does not reveal all 
payoff-relevant information. For this reason, it would be too difficult a task to look for ex post equilibria with asymmetric 
traders. But with symmetric traders, ex post equilibrium is a suitable solution concept as it exactly selects the canonical 
linear equilibrium in the literature mentioned before (see Equation (34)).
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It is known from the divisible double auction literature (see Vives, 2011; Rostek and Weretka, 
2012, and Du and Zhu, 2016, among others) that if (and only if) nα > 2, the following strategy 
constitutes an ex post equilibrium:

xi(p; si) = nα − 2

λ(n − 1)
(si − p) . (34)

And the equilibrium price is

p∗(s) = 1

n

n∑
i=1

si . (35)

Proposition 3. Suppose that either (i) n ≥ 4 or (ii) n = 3 and α = 1. Let (x1, . . . , xn) be an ex 
post equilibrium such that a market-clearing price p∗(s) exists at every s ∈ [s, s]n, and xi is 
twice continuously differentiable, ∂xi

∂p
(p; si) < 0, and ∂xi

∂si
(p; si) > 0 for every si , p and i. Then, 

for every s ∈ [s, s]n and every i, at the market-clearing price p = p∗(s), xi(p; si) is equal to the 
demand in Equation (34).6

Proposition 3 states a strong and novel uniqueness result: the linear equilibrium in Equation 
(34) is the only ex post equilibrium, without a priori restricting to linear or symmetric strate-
gies. (As usual, for any fixed si , the uniqueness of xi(p; si) in Proposition 3 applies only to 
market-clearing prices, i.e., p = p∗(si , s−i ) for some s−i ∈ [s, s]n−1, since the demands at non-
market-clearing prices need not satisfy any optimality condition.) Proposition 3 thus provides a 
justification for the widespread use of the linear equilibrium in the literature. The parameter con-
ditions (i) and (ii) in Proposition 3 cover almost the entire case of n > 2, with the only exception 
of {n = 3, α < 1}. Our proof technique does not work for this rather specific case, and it remains 
an open question whether nonlinear equilibria exist for {n = 3, α < 1}.

To convey the intuition of Proposition 3 and a flavor of the formal argument, let us sketch 
here a key step in the proof. For simplicity, let us assume private values (α = 1) and n ≥ 3. 
Fix an ex post equilibrium (x1, . . . , xn) that satisfies the regularity conditions in Proposition 3. 
We work with the inverse function of xi(p; · ), to which we refer as s̃i (p; · ). That is, for any 
realized allocation yi ∈ R, we have xi(p; ̃si(p; yi)) = yi . Because xi(p; si) is strictly increasing 
in si , s̃i (p; yi) is strictly increasing in yi . With an abuse of notation, we denote ∂xi

∂p
(p; yi) ≡

∂xi

∂p
(p; ̃si(p; yi)).
For a signal profile s ∈ (s, s)n, the market-clearing price must be interior (see footnote 10), 

so the ex post first order condition is satisfied by (x1, . . . , xn); we write it in terms of the inverse 
functions (cf. Equation (14)):∑

j �=i

∂xj

∂p
(p;yj ) = −yi

s̃i (p;yi) − p − λyi

, where yi = −
∑
j �=i

yj . (36)

The above equation holds for all (p, yj )j �=i ∈ (p̄ − ε, p̄ + ε) × ∏
j �=i (ȳj − ε, ȳj + ε), where 

(p̄, ȳj )j �=i is the realized price and allocations of the signal profile s and ε is sufficiently small.7

6 The assumption of a compact signal support [s, s]n is not necessary for Proposition 3, since if the ex post equilibrium 
condition holds over the signal space [0, ∞)n , it also holds over any compact subset [s, s]n , and Proposition 3 for 
compact signal support then applies.

7 If s̃i (p; yi ) − p − λyi = 0, then yi = 0 by the ex post first order condition; but yi = − 
∑

j �=i yj �= 0 for a generic 
(yj )j �=i .
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We pick any j1 �= i and j2 �= i. In the neighborhood (yj1, yj2) ∈ (ȳj1 − ε, ȳj1 + ε) × (ȳj2 − ε,

ȳj2 + ε), we differentiate Equation (36) by yj1 (the first equality below) and by yj2 (the last 
equality below) to get:

∂

∂yj1

(
∂xj1

∂p
(p;yj1)

)
= ∂

∂yj1

( −yi

s̃i (p;yi) − p − λyi

)
= ∂

∂yj2

( −yi

s̃i (p;yi) − p − λyi

)

= ∂

∂yj2

(
∂xj2

∂p
(p;yj2)

)
, (37)

where the second equality follows because yi has a coefficient of −1 on both yj1 and yj2 . Thus, 
∂

∂yj1

(
∂xj1
∂p

(p;yj1)
)

and ∂
∂yj2

(
∂xj2
∂p

(p;yj2)
)

can depend only on p. Therefore, we have

∂xj

∂p
(p;yj ) = G(p)yj + Hj(p) (38)

for every j �= i. We then substitute Equation (38) back to the ex post first order condition (36), 
and this imposes a strong restriction on the functional form of s̃i(p; yi), which can be satisfied 
only by a linear function of yi and p. The details can be found in the appendix.

To obtain the functional form in Equation (38), which is an important step in the proof, it 
is crucial that there are two independent variables yj1 and yj2 . Hence, Equation (38) does not 
apply if n = 2. Intuitively, in Equation (37) we are varying sj1 and sj2 in a way that holds the 
market-clearing price fixed, and ex post optimality subject to such variation imposes so strong a 
restriction on the shape of the equilibrium that only linear strategies satisfy it.

The above argument does not work when α < 1, since then the right-hand side of Equation 
(36) would contain s̃j (p; yj ). In the appendix we uses an alternative argument for α < 1 which 
relies on n ≥ 4.

5. Conclusion

Existing models of divisible double auctions prove to be important tools for analyzing trading 
in centralized markets. The existence of their linear equilibria, however, typically require three or 
more traders. This requirement limits the applicability of those models in decentralized markets, 
where each transaction occurs between exactly two traders.

This paper fills this “n = 2” gap. We construct a family of non-linear, ex post equilibria in 
divisible double auction with two traders, who have interdependent values and submit demand 
schedules. The equilibria are characterized by solutions to algebraic equations. The equilibrium 
trading volume is positive but less than the first best. Our results open the possibility of using 
bilateral double auctions as a building block for analyzing strategic trading in decentralized mar-
kets of divisible assets.

Appendix A. Proofs for Section 3

A.1. Proof of Proposition 1

A.1.1. Step 1: writing the first order conditions as differential equations
Given a signal profile (s1, s2), trader i’s ex post optimization problem is essentially selecting 

a market-clearing price p and getting the residual supply −xj (p; sj ) of trader j �= i, since what-
ever the demand schedule trader i uses, his final allocation must clear the market, i.e., equal to 
−xj (p; sj ) at some price p. Let
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�i(p) = (vi − p)(−xj (p; sj )) − λi

2
(−xj (p; sj ))2, (39)

which is trader i’s payoff given residual supply −xj (p; sj ). We construct (x1, x2) such that the 
following ex post first order conditions are always satisfied: for every (s1, s2) ∈ [s, s]2, i ∈ {1, 2}
and j �= i,

�′
i (p

∗) = xj (p
∗; sj ) + (

αisi + (1 − αi)sj − p∗ + λixj (p
∗; sj )

)(
−∂xj

∂p
(p∗; sj )

)
= 0,

x1(p
∗; s1) + x2(p

∗; s2) = 0, (40)

where p∗ ≡ p∗(s1, s2) is the market-clearing price. Note that trader i’s demand xi cannot de-
pend on sj ; this distinguishes an ex post equilibrium from a full-sharing equilibrium in which 
traders truthfully share their signals s1 and s2 before trading. Trader i must infer sj from the 
market-clearing price p∗. The price inference is accomplished by the following conjecture on 
the market-clearing price:

p∗ = as1 + (1 − a)s2 + �x1(p
∗; s1) (41)

where a and � are constants to be uniquely determined in Step 2. We also verify Conjecture (41)
in Step 2. Intuitively, the equilibrium price should be a linear function of the signals and the 
equilibrium demand, since each trader’s marginal value depends on a weighted average of signals 
and decreases linearly with quantity, as can be seen in Equation (40). Thus Conjecture (41) is a 
natural starting point.

Given Conjecture (41), we have

v1 − p∗ + λ1x2(p
∗; s2)

= α1(s1 − p∗) + (1 − α1)(s2 − p∗) + λ1x2(p
∗; s2)

= −α1

a
((1 − a)(s2 − p∗) + �x1(p

∗; s1)) + (1 − α1)(s2 − p∗) + λ1x2(p
∗; s2)

=
(

α1
1 − a

a
− (1 − α1)

)
(p∗ − s2) +

(α1

a
� + λ1

)
x2(p

∗; s2), (42)

and

v2 − p∗ + λ2x1(p
∗; s1) =

(
α2

a

1 − a
− (1 − α2)

)
(p∗ − s1)

+
(

− α2

1 − a
� + λ2

)
x1(p

∗; s2). (43)

Intuitively, in Equations (42) and (43) the value vi is inferred from the market-clearing price 
using Conjecture (41). A subtlety here is that the inference on vi is made with the variables of 
trader j . This is because we want to rewrite the first order condition of trader i in (40) as a 
differential equation that involves only trader j , j �= i:

x1(p
∗; s1) =

((
α2

a

1 − a
− (1 − α2)

)
(p∗ − s1)

+
(

λ2 − α2

1 − a
�

)
x1(p

∗; s1)

)
∂x1

∂p
(p∗; s1), (44)

x2(p
∗; s2) =

((
α1

1 − a

a
− (1 − α1)

)
(p∗ − s2) +

(
λ1 + α1

a
�

)
x2(p

∗; s2)

)
∂x2

∂p
(p∗; s2).

(45)



S. Du, H. Zhu / Journal of Economic Theory 167 (2017) 285–311 299
Thus, we have two differential equations that can be solved separately. If Equation (44) holds for 
every (s1, p∗) ∈ [s, s]2 and Equation (45) for every (s2, p∗) ∈ [s, s]2, and if the market-clearing 
price satisfies Conjecture (41), then the first order conditions in Equation (40) must also hold for 
every (s1, s2) ∈ [s, s]2.

To solve Equations (44) and (45), we first solve a simpler equation:

y(w) = (ηw − λy(w))y′(w), y(0) = 0, y′(w) > 0 for w ∈ (0, s − s], (46)

where η and λ are constants. Then, set

η = α2
a

1 − a
− (1 − α2), λ = λ2 − α2

1 − a
�, (47)

w = |s1 − p∗|, x1(p
∗; s1) = y(|s1 − p∗|) · sign(s1 − p),

we see that for every (s1, p∗) Equations (44) is satisfied since ∂x1
∂p

(p∗; s1) = −y′(|s1 − p∗|). 
Likewise for Equations (45).

Lemma 1. Suppose that 0 < η < 1 and λ > 0. The differential equation

y(w) = (ηw − λy(w))y′(w) (48)

is solved by the implicit solution to:

(1 − η)w = Cy(w)η − λy(w), (49)

where C is a positive constant. If

C ≥
(

λ

η

)η

(s − s)1−η, (50)

we can select y(w) that solves (49) such that y(0) = y′(0) = 0, y(w) > 0, y′(w) > 0 and 
y′′(w) > 0 for every w ∈ (0, s − s].

Proof of Lemma 1. We first show the solution of the differential equation (48) is implicitly 
defined by (49). For notional simplicity let us suppress the dependence of y on w and rewrite 
(48) as:

y dw + (λy − ηw)dy = 0. (51)

We use the standard integrating factor technique to convert (51) into an exact differential equa-
tion; that is, multiplying both sides of (51) by the integrating factor e

∫
(−η−1)/y dy = y−1−η, we 

get:

y−η dw + y−1−η(λy − ηw)dy = 0, (52)

which is an exact differential equation since ∂
∂y

(y−η) = ∂
∂w

(y−1−η(λy −ηw)). Thus, there exists 

a function F(y, w) such that ∂F
∂y

= y−1−η(λy − ηw) and ∂F
∂w

= y−η; it is easy to see that

F(y,w) = y−ηw + λ
y1−η

1 − η
. (53)

Thus, the solution is implicitly defined by

y−ηw + λ
y1−η

1 − η
= K (54)

for a constant K . Letting C ≡ K(1 − η), it is easy to see that (54) is equivalent to (49).
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For the second part, let

f (y) = Cyη − λy. (55)

The function f is clearly strictly concave and obtains its maximum at

y∗ =
(

Cη

λ

) 1
1−η

. (56)

We choose C > 0 so that

f (y∗) = C

(
Cη

λ

) η
1−η − λ

(
Cη

λ

) 1
1−η = C

1
1−η

(η

λ

) η
1−η

(1 − η) ≥ (1 − η)(s − s) (57)

which is equivalent to (50). Given this choice of C, for every w ∈ [0, s − s], by the Interme-
diate Value Theorem there is a unique y(w) ∈ [0, y∗] that solves f (y(w)) = (1 − η)w. Since 
f ′(y(w)) > 0 for y(w) ∈ (0, y∗), we have y′(w) = 1−η

f ′(y(w))
> 0 for w ∈ (0, s − s]. And clearly, 

y′(0) = 0 if η < 1.
Finally, we differentiate both sides of (48) to obtain:

y′(w) = (ηw − λy(w))y′′(w) + (η − λy′(w))y′(w), (58)

i.e.,

(ηw − λy(w))y′′(w) = (1 − η)y′(w) + λy′(w)2. (59)

Since y′(w) > 0 and ηw − λy(w) = y(w)
y′(w)

> 0, we conclude that y′′(w) > 0 for w > 0. �
A.1.2. Step 2: deriving the equilibrium strategy

For w1, w2 ∈ [0, s − s], let y1(w1) and y2(w2), be implicitly defined by (via Lemma 1):(
1 − α2

a

1 − a
+ (1 − α2)

)
w1 = C1y1(w1)

α2
a

1−a
−(1−α2) −

(
λ2 − α2

1 − a
�

)
y1(w1), (60)(

1 − α1
1 − a

a
+ (1 − α1)

)
w2 = C2y2(w2)

α1
1−a
a

−(1−α1) −
(
λ1 + α1

a
�

)
y2(w2), (61)

and suppose the conditions in the second part of Lemma 1 are satisfied. Define the following 
strategies:

x1(p; s1) = y1(|s1 − p|) · sign(s1 − p), (62)

x2(p; s2) = y2(|s2 − p|) · sign(s2 − p). (63)

Let w1 = |s1 − p∗| and w2 = |s2 − p∗|, we rewrite Conjecture (41) as

aw1 − (1 − a)w2 + �y(w1) = 0. (64)

Clearly, Equation (60) is equivalent to(
1 − α2

a

1 − a
+ (1 − α2)

)(
w1 + �

a
y1(w1)

)
(65)

=C1y1(w1)
α2

a
1−a

−(1−α2) −
(

λ2 − α2

1 − a
� −

(
1 − α2

a

1 − a
+ (1 − α2)

)
�

a

)
y1(w1).
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By the definition of the market-clearing price p∗, we have y(w1) = y(w2). Thus, to satisfy both 
Equations (61) and (65), Conjecture (64), and y(w1) = y(w2), we must have the same exponent 
in Equations (61) and (65):

α2
a

1 − a
− (1 − α2) = α1

1 − a

a
− (1 − α1), (66)

i.e.,

a = α1

α1 + α2
. (67)

To satisfy Conjecture (64), we make Equation (61) equal to a
1−a

= α1
α2

times Equation (65):

C1 = α2C, C2 = α1C, (68)

for a constant C > 0, and

λ1 + α1

a
� = α1

α2

(
λ2 − α2

1 − a
� −

(
1 − α2

a

1 − a
+ (1 − α2)

)
�

a

)
, (69)

i.e.,

� = α1λ2 − α2λ1

2(α1 + α2)
. (70)

Substituting (67), (68) and (70) into (60) and (61) gives:

(2 − α1 − α2)w1 = Cα2y1(w1)
α1+α2−1 −

(
λ2

(
1 − α1

2

)
+ λ1

α2

2

)
y1(w1), (71)

(2 − α1 − α2)w2 = Cα1y2(w2)
α1+α2−1 −

(
λ1

(
1 − α2

2

)
+ λ2

α1

2

)
y2(w2). (72)

The following lemma gives conditions that guarantee the existence of market-clearing price.

Lemma 2. Suppose that

C ≥ (s − s)2−α1−α2

α2

(
λ2

(
1 − α1

2

) + λ1
α2
2

α1 + α2 − 1

)α1+α2−1

, and (73)

C ≥ (s − s)2−α1−α2

α1

(
λ1

(
1 − α2

2

) + λ2
α1
2

α1 + α2 − 1

)α1+α2−1

. (74)

Then for every profile (s1, s2) ∈ [s, s]2, there exists a unique p∗ ∈ [s, s] that satisfies x1(p
∗; s1) +

x2(p
∗; s2) = 0; that is, there exist unique w1 ≥ 0 and w2 ≥ 0 such that w1 + w2 = |s1 − s2| and 

y1(w1) = y2(w2).

Proof. By Lemma 1, conditions (73) and (74) give y1 : [0, s − s] → [0, ∞) and y2 : [0, s − s] →
[0, ∞), respectively, that are strictly increasing and convex.

Without loss of generality, suppose that s2 < s1. There exists a minimum ȳ > 0 that solves8:

8 By construction, we have

(2 − α1 − α2)(s1 − s2) = Cα2yα1+α2−1 −
(
λ2

(
1 − α1

)
+ λ1

α2
)

y

2 2
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(2 − α1 − α2)(s1 − s2) = C(α1 + α2)ȳ
α1+α2−1 − (λ1 + λ2) ȳ. (75)

Let w1 satisfies

(2 − α1 − α2)w1 = Cα2ȳ
α1+α2−1 −

(
λ2

(
1 − α1

2

)
+ λ1

α2

2

)
ȳ, (76)

and let w2 satisfies

(2 − α1 − α2)w2 = Cα1ȳ
α1+α2−1 −

(
λ1

(
1 − α2

2

)
+ λ2

α1

2

)
ȳ. (77)

Clearly, we have w1 > 0, w2 > 0 and w1 + w2 = s1 − s2. Let p∗ = s2 + w1. Then we have 
w1 = p∗ − s2, w2 = s1 − p∗, and y1(w1) = y2(w2) = ȳ, i.e., x1(p

∗; s1) = −x2(p
∗; s2).

Finally, the uniqueness of p∗ follows from the fact that both x1(p; s1) and x2(p; s2) are strictly 
decreasing in p. �
A.1.3. Step 3: verifying ex post optimality

Finally, we directly verify the ex post optimality of the profile (x1, x2) constructed in Step 2. 
We will show that

�i(p
∗) ≥ �i(p), (78)

for every p ∈ [s, s] and every (s1, s2) ∈ [s, s]2, where �i is defined in Equation (39).
Without loss of generality, fix i = 1 and s2 < s1. By construction, we have s2 < p∗ < s1, 

x1(p
∗; s1) = −x2(p

∗; s2) > 0. Since x1(p
∗; s1) > 0, the first order condition (40) implies that

v1 − p∗ − λ1x1(p
∗; s1) = v1 − p∗ + λ1x2(p

∗; s2) > 0. (79)

For later reference let p̄ ∈ (p∗, s) be such that

v1 − p̄ + λ1x2(p̄; s2) = 0. (80)

We note that

�′
1(p) = (v1 − p + λ1x2(p; s2))

(
−∂x2

∂p
(p; s2)

)
+ x2(p; s2) < 0 (81)

for p ≥ p̄. Thus, �1(p) cannot be maximized by p ∈ [p̄, s].
We have

�1(p
∗) =

x1(p
∗;s1)∫

0

(v1 − p∗ − λ1q)dq > 0. (82)

On the other hand, when p ≤ s2, we have x2(p; s2) ≥ 0, hence �1(p) ≤ 0. Thus, �1(p) cannot 
be maximized by p ∈ [s, s2].

when y = y1(s1 − s2), and

(2 − α1 − α2)(s1 − s2) = Cα1yα1+α2−1 −
(
λ1

(
1 − α2

2

)
+ λ2

α1

2

)
y

when y = y2(s1 − s2). Hence, by the Intermediate Value Theorem, there exists a ȳ ≤ min(y1(s1 − s2), y2(s1 − s2)) that 
satisfies Equation (75).
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For p ∈ (s2, s], we have x2(p; s2) = −y2(p − s2), and hence:

�′
1(p) =(v1 − p − λ1y2(p − s2))y

′
2(p − s2) − y2(p − s2) (83)

=(v1 − p − λ1y2(p − s2))y
′
2(p − s2)

− ((α1 + α2 − 1)(p − s2) − (λ1 + (α1 + α2)�)y2(p − s2))y
′
2(p − s2)

=(v1 − p − (α1 + α2 − 1)(p − s2) + (α1 + α2)�y2(p − s2))y
′
2(p − s2)

where the second line follows by the differential equation in (46). Since y′(p − s2) > 0 for 
p > s2, �′

1(p) = 0 for p > s2 if and only if

v1 − p − (α1 + α2 − 1)(p − s2) + (α1 + α2)�y2(p − s2) = 0 (84)

for p > s2.
We distinguish between two cases:

1. When � ≤ 0, the left-hand side of (84) is strictly decreasing in p, since by Lemma 1
y(p − s2) is strictly increasing in p. Thus, Equation (84) has only one solution: p = p∗
(by the construction in Step 1 and 2, we have �′

1(p
∗) = 0).

2. When � > 0, the left-hand side of (84) is strictly convex in p, since by Lemma 1 y(p − s2)

is strictly convex in p. Thus, Equation (84) has at most two solutions (one of the solutions 
is p = p∗). However, we know that for any p ≥ p̄, the left-hand side of the (84) is negative, 
since �′

1(p) < 0 (see Equation (81)). Therefore, p = p∗ is the only solution to (84).

Therefore, Equation (84) has only one solution on (s2, s]: p = p∗. This implies that 
�′

1(p) = 0 has only one solution on (s2, s]: p = p∗. Since the maximum point of �i(p) over 
[s, s] cannot be in [s, s2] or in [p̄, s], it must be in (s2, p̄) and satisfies �′

i (p) = 0. We thus 
conclude that p = p∗ maximizes �i(p) over all p ∈ [s, s].

A.2. Proof of Corollary 2

The proof of Corollary 2 follows the same steps as that of Proposition 1, with the following 
modifications:

• In Step 1, Lemma 1, we solve the differential equation:

y(w) = (w − λy(w))y′(w), (85)

whose solution is given by the implicit equation

w = Cy(w) − λy(w) log(y(w)), (86)

where C is a constant. If

C ≥ λ

(
log

s − s

λ
+ 1

)
, (87)

the implicit solution y(w) can be selected to satisfy the second part of Lemma 1.
• In Step 2, we have a = 1/2, and we let y1(w1) and y2(w2), where w1, w2 ≥ 0, be implicitly 

defined by

w1 = C1y1(w1) − (λ2 − 2�)y1(w1) log(y1(w1)), (88)

w2 = C2y2(w2) − (λ1 + 2�)y2(w2) log(y2(w2)), (89)
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where Equation (88) is equivalent to

w1 + 2�y1(w1) = (C1 + 2�)y1(w1) − (λ2 − 2�)y1(w1) log(y1(w1)). (90)

To satisfy Condition (64), we let

C1 + 2� = C2, λ2 − 2� = λ1 + 2�, (91)

i.e.,

� = λ2 − λ1

4
. (92)

A.3. Proof of Corollary 3

Without loss let (x1, x2) be the most aggressive equilibrium in Proposition 1. By definition, 
sup(p,si )∈[s,s]2 |xi(p; si)| = yi(s − s). Suppose i = 1. Let f1(y1) be defined by Equation (11), 
i.e., the right-hand side of Equation (8). The maximum of f1(y1) is at

y∗
1 =

(
Cα2(α1 + α2 − 1)

λ2
(
1 − α1

2

) + λ1
α2
2

)1/(2−α1−α2)

. (93)

By definition, y1(s−s) ≤ y∗
1 . As α1 +α2 → 1, the constant C for the most aggressive equilibrium 

is bounded above, so the corollary follows.

A.4. Proof of Proposition 2

The second part of the proposition follows by an easy comparison of prices and is omitted.
Let us denote

qc ≡ |xc
1(p

c; s1)| = (α1 + α2 − 1)|s1 − s2|
λ1 + λ2

, (94)

which is the amount of trading (in absolute value) in the ex post efficient allocation.
Let q∗(C) ≡ |x1(p

∗; s1)| be the amount of trading (in absolute value) in an ex post equilibrium 
(x1, x2) from Proposition 1, where the constant C satisfies Conditions (5) and (6). Let us also 
define

f (y) ≡ C(α1 + α2)y
α1+α2−1 − (λ1 + λ2)y. (95)

In Lemma 2 (Section A.1.2) we show that y = q∗(C) is the smaller solution to

(2 − α1 − α2)|s1 − s2| = f (y), (96)

before f (y) reaches its maximum.9

We show that f (qc) > (2 − α1 − α2)|s1 − s2|, where f is defined in Equation (95). Since 
y = q∗(C) is the smaller solution to f (y) = (2 − α1 − α2)|s1 − s2|, we must have q∗(C) < qc, 
which proves the first part of the proposition.

9 It is straightforward to show that given Conditions (5) and (6), there always exist two solutions to (96), one before 
and one after f (y) reaches the maximum.
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Clearly, f (qc) > (2 − α1 − α2)|s1 − s2| is equivalent to:

C >
|s1 − s2|2−α1−α2

α1 + α2

(
λ1 + λ2

α1 + α2 − 1

)α1+α2−1

. (97)

Let us define:

C1 ≡ (s − s)2−α1−α2

α2

(
λ2

(
1 − α1

2

) + λ1
α2
2

α1 + α2 − 1

)α1+α2−1

, (98)

C2 ≡ (s − s)2−α1−α2

α1

(
λ1

(
1 − α2

2

) + λ2
α1
2

α1 + α2 − 1

)α1+α2−1

, (99)

C ≡ (s − s)2−α1−α2

α1 + α2

(
λ1 + λ2

α1 + α2 − 1

)α1+α2−1

. (100)

We claim that max(C1, C2) > C. For the sake of contradiction, suppose max(C1, C2) ≤ C; this 
implies:(

λ2
(
1 − α1

2

) + λ1
α2
2

λ1 + λ2

)α1+α2−1

≤ α2

α1 + α2(
λ1

(
1 − α2

2

) + λ2
α1
2

λ1 + λ2

)α1+α2−1

≤ α1

α1 + α2
,

which implies(
λ2

(
1 − α1

2

) + λ1
α2
2

λ1 + λ2

)α1+α2−1

+
(

λ1
(
1 − α2

2

) + λ2
α1
2

λ1 + λ2

)α1+α2−1

≤ 1,

which is clearly false given 0 < α1 + α2 − 1 < 1.
Hence Conditions (5) and (6), which state that C ≥ max(C1, C2), imply that C > C, which 

implies (97).

Appendix B. Proof of Proposition 3

B.1. Existence of Linear Equilibrium

We conjecture a strategy profile (x1, . . . , xn). For notational convenience, we define

β ≡ 1 − α

n − 1
. (101)

Given that all other bidders use this strategy profile and for a fixed profile of signals (s1, . . . , sn), 
the profit of bidder i at the price of p is

�i(p) =
⎛
⎝αsi + β

∑
j �=i

sj − p

⎞
⎠

⎛
⎝−

∑
j �=i

xj (p; sj )
⎞
⎠ − 1

2
λ

⎛
⎝−

∑
j �=i

xj (p; sj )
⎞
⎠2

.

We can see that bidder i is effectively selecting an optimal price p. Taking the first-order condi-
tion of �i(p) at p = p∗, we have, for all i,



306 S. Du, H. Zhu / Journal of Economic Theory 167 (2017) 285–311
0 = �′
i (p

∗) = −xi(p
∗; si) +

⎛
⎝αsi + β

∑
j �=i

sj − p∗ − λxi(p
∗; si)

⎞
⎠

⎛
⎝−

∑
j �=i

∂xj

∂p
(p∗; sj )

⎞
⎠ .

(102)

Therefore, an ex post equilibrium corresponds to a solution {xi} to the first-order condition (102), 
such that for each i, xi depends only on si and p.

We conjecture a symmetric linear demand schedule:

xj (p; sj ) = asj − bp + c, (103)

where a �= 0, b, and c are constants. In this conjectured equilibrium, all bidders j �= i use the 
strategy (103). Thus, we can rewrite the each bidder j ’s signal sj in terms of his demand xj :

∑
j �=i

sj =
∑
j �=i

xj (p
∗; sj ) + bp∗ − c

a
= 1

a

(−xi(p
∗; si) + (n − 1)(bp∗ − c)

)
,

where we have also used the market clearing condition. Substituting the above equation into 
bidder i’s first order condition (102) and rearranging, we have

xi(p
∗; si) = α(n − 1)bsi − (n − 1)b

[
1 − β(n − 1)b/a

]
p∗ − (n − 1)cβ(n − 1)b/a

1 + λ(n − 1)b + β(n − 1)b/a

≡ asi − bp∗ + c.

Matching the coefficients and using the normalization that α + (n − 1)β = 1, we solve

a = b = 1

λ
· nα − 2

n − 1
, c = 0.

It is easy to verify that under this linear strategy, �′′
i ( · ) = −n(n − 1)αb < 0 if nα > 2. We thus 

have a linear ex post equilibrium.

B.2. Uniqueness of Equilibrium

We fix an ex post equilibrium strategy (x1, . . . , xn) such that for every i, xi is twice continu-
ously differentiable, ∂xi

∂p
(p; si) < 0 and ∂xi

∂si
(p; si) > 0 for every (p, s1, . . . , sn) ∈ (s, s)n+1.

Fix an arbitrary s = (s1, . . . , sn) ∈ (s, s)n. It is easy to see that p∗(s) ∈ (s, s).10 We will prove 
that there exist a δ′ > 0 sufficiently small and constants a, b, and c such that

xi(p; s′
i ) = as′

i − bp + c (104)

holds for every p ∈ (p∗(s) − δ′, p∗(s) + δ′), s′
i ∈ (si − δ′, si + δ′), and i ∈ {1, . . . , n}.

Once (104) is established, the values of a, b and c are pinned down by the construction of 
linear equilibrium in Section B.1; in particular, the values of a, b and c are independent of 
(s1, . . . , sn) and of δ′. Since s = (s1, . . . , sn) is arbitrary, the same constants a, b, and c in (104)
apply to any s = (s1, . . . , sn) ∈ (s, s)n and p = p∗(s). Finally for s on the boundary of [s, s]n, 
we take an approximating sequence of signal profiles from the interior and uses the continuity of 
xi(p; si). This proves the uniqueness in Proposition 3.

10 For the sake of contradiction suppose p∗ = s. Then the trader i with xi (p
∗; si ) ≤ 0 would strictly prefer a higher 

price, which contradicts the ex post optimality. Likewise for p∗ = s.
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To prove (104), we work with the inverse function of xi(p; · ), to which we refer as s̃i (p; · ). 
That is, for any realized allocation yi ∈ R, we have xi(p; ̃si(p; yi)) = yi . Because xi(p; si) is 
strictly increasing in si , s̃i (p; yi) is strictly increasing in yi . Throughout the proof, we will de-
note trader i’s realized allocation by yi and his demand schedule by xi( · ; · ). With an abuse of 
notation, we denote ∂xi

∂p
(p; yi) ≡ ∂xi

∂p
(p; ̃si(p; yi)).

Fix s = (s1, . . . , sn) ∈ (s, s)n. Let p̄ = p∗(s) and ȳi = xi(p
∗(s); si). By continuity, there exists 

some δ > 0 such that, for any i and any (p, yi) ∈ (p̄ − δ, p̄ + δ) × (ȳi − δ, ȳi + δ), there exists 
some s′

i ∈ (s, s) such that xi(p; s′
i ) = yi . In other words, every price and allocation pair in (p̄ −

δ, p̄ + δ) × (ȳi − δ, ȳi + δ) is “realizable” given some signal.
We will prove that there exist constants A �= 0, B �= 0, and C such that

s̃i (p;yi) = Ayi + Bp + C (105)

for every (p, yi) ∈ (p̄−δ, p̄+δ) ×(ȳi −δ/n, ȳi +δ/n), i ∈ {1, . . . , n}. Clearly, this implies (104). 
We now proceed to prove (105). There are two cases. In Case 1, α < 1 and n ≥ 4. In Case 2, α = 1
and n ≥ 3.

B.2.1. Case 1: α < 1 and n ≥ 4
The proof for Case 1 consists of two steps.

Step 1 of Case 1: Lemma 3 and Lemma 4 below imply equation (105).
We now restrict yj to (ȳj − δ/n, ȳj + δ/n), j ∈ {1, . . . , n − 1}, so that yn = − 

∑n−1
j=1 yj ∈

(ȳn − δ, ȳn + δ), and as a result s̃(p; yn) and ∂xn

∂p
(p; yn) are well-defined.

Lemma 3. There exist functions A(p), {Bi(p)} such that

s̃i (p;yi) = A(p)yi + Bi(p), (106)

holds for every p ∈ (p̄ − δ, p̄ + δ) and every yi ∈ (ȳi − δ/n, ȳi + δ/n), 1 ≤ i ≤ n.

Proof. This lemma is proved in Step 2 of Case 1. For this lemma we need the condition that 
n ≥ 4; in the rest of the proof n ≥ 3 suffices. �
Lemma 4. Suppose that l ≥ 2 and for every i ∈ {1, . . . , l}, Yi is an open subset of R, P is an 
arbitrary set, and fi(p; yi) is a differentiable function of yi ∈ Yi for every p ∈ P . Moreover, 
suppose that

l∑
i=1

fi(p;yi) = fl+1

(
p;

l∑
i=1

yi

)
, (107)

for every p ∈ P and (y1, . . . , yl) ∈ ∏l
i=1 Yi . Then there exist functions G(p) and {Hi(p)} such 

that

fi(p;yi) = G(p)yi + Hi(p)

holds for every i ∈ {1, . . . , l}, p ∈ P and yi ∈ Yi .

Proof. We differentiate (107) with respect to yi and to yj , where i, j ∈ {1, 2, . . . , l}, and obtain

∂fi

∂yi

(p;yi) = ∂fl+1

∂yi

⎛
⎝p;

l∑
yj

⎞
⎠ = ∂fj

∂yj

(p;yj )
j=1
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for any yi ∈ Yi and yj ∈ Yj . Because (y1, . . . , yl) are arbitrary, the partial derivatives above 
cannot depend on any particular yi . Thus, there exists some function G(p) such that ∂fi

∂yi
(p; yi) =

G(p) for all yi . Lemma 4 then follows. �
In Step 1 of the proof of Case 1 of Proposition 3, we show that Lemma 3 and Lemma 4 imply 

equation (105). Define

β ≡ (1 − α)

n − 1
, (108)

and rewrite trader i’s ex post first-order condition as:

−yi +
⎛
⎝αs̃i(p;yi) + β

∑
j �=i

s̃j (p;yj ) − p − λyi

⎞
⎠

⎛
⎝−

∑
j �=i

∂xj

∂p
(p;yj )

⎞
⎠ = 0, (109)

where yn = − 
∑n−1

j=1 yj , p ∈ (p̄ − δ, p̄ + δ) and yj ∈ (ȳj − δ/n, ȳj + δ/n).
Our strategy is to repeatedly apply Lemma 3 and Lemma 4 to (109) in order to arrive at (105).
First, we plug the functional form of Lemma 3 into (109). Without loss of generality, we let 

i = n and rewrite (109) as

n−1∑
j=1

∂xj

∂p
(p;yj )

︸ ︷︷ ︸
left-hand side of (107)

= − yn

α(A(p)yn + Bn(p)) + β
∑n−1

j=1(A(p)yj + Bj (p)) − p − λyn︸ ︷︷ ︸
right-hand side of (107)

.

Applying Lemma 4 to the above equation, we see that there exist functions G(p) and {Hj(p)}
such that

∂xj

∂p
(p;yj ) = G(p)yj + Hj(p), (110)

for j ∈ {1, . . . , n − 1}. Note that we have used the condition n ≥ 3 when applying Lemma 3.
By the same argument, we apply Lemma 4 to (109) for i = 1, and conclude that (110) holds 

for j = n as well.
Using (106) and (110), we rewrite trader i’s ex post first-order condition as:⎛

⎝(α − β)s̃i(p;yi) + β

⎛
⎝ n∑

j=1

Bj (p)

⎞
⎠ − p − λyi

⎞
⎠

⎛
⎝−G(p)(−yi) −

∑
j �=i

Hj (p)

⎞
⎠−yi = 0.

(111)

Solving for s̃i (p; yi) in terms of p and yi from equation (111), we see that for the solution to 
be consistent with (106), we must have G(p) = 0. Otherwise, i.e. if G(p) �= 0, then (111) implies 

that s̃i (p; yi) contains the term yi/ 
(
−G(p)(−yi) − ∑

j �=i Hj (p)
)

, contradicting the linear form 
of Lemma 3.

Inverting (106), we see that xi(p; si) = (si − Bi(p))/A(p). Therefore, for ∂xi

∂p
(p; si) to be 

independent of si (i.e., G(p) = 0), A(p) must be a constant function, i.e. A(p) = A for some 
constant A ∈R. This implies that
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Hi(p) = −B ′
i (p)

A
, (112)

by the definition of Hi(p) in (110).
Given G(p) = 0 and A(p) = A, (111) can be rewritten as

(α − β)s̃i(p;yi) + β

⎛
⎝ n∑

j=1

Bj (p)

⎞
⎠ − p − λyi − yi

−∑
j �=i Hj (p)

= 0. (113)

For (113) to be consistent with s̃i(p; yi) = Ayi +Bi(p), we must have that Hj(p) = Hj for some 
constants Hj , j ∈ {1, . . . , n}, and that

1∑
j �=i Hj

= 1∑
j �=i′ Hj

, for all i �= i′,

which implies that for all i, Hi = H for the same constant H .
By (112), this means that Bi(p) = Bp + Ci , where B = −HA, and {Ci} are some constants. 

Finally, (113) implies that for all i, Ci = C for the same constant C.
Hence, we have shown that Lemma 3 implies (105). This completes Step 1 of the proof of 

Case 1 of Proposition 3. In Step 2 below, we prove Lemma 3.

Step 2 of Case 1: Proof of Lemma 3. Trader n’s ex post first order condition can be written as:

n−1∑
j=1

∂xj

∂p
(p;yj ) = − yn

αs̃n(p;yn) + β
∑n−1

j=1 s̃j (p;yj ) − p − λyn

, (114)

where yn = − 
∑n−1

j=1 yj . Differentiating (114) with respect to yi , i ∈ {1, . . . , n − 1}, gives:

∂

∂yi

(
∂xi

∂p
(p;yi)

)
=

�(y1, . . . , yn−1) + yn

(
−α ∂s̃n

∂yn
(p;yn) + β

∂s̃i
∂yi

(p;yi) + λ
)

�(y1, . . . , yn−1)2
, (115)

where

�(y1, . . . , yn−1) = αs̃n(p;yn) + β

n−1∑
j=1

s̃j (p;yj ) − p − λyn. (116)

Solving for �(y1, . . . , yn−1) in (115), we get

�(y1, . . . , yn−1) = ρi

⎛
⎝yi,

n−1∑
j=1

yj

⎞
⎠ (117)

for some function ρi , i ∈ {1, . . . , n − 1}.
We let ρi,1 be the partial derivative of ρi with respect to its first argument, and let ρi,2

be the partial derivative of ρi with respect to its second argument. For each pair of distinct 

i, k ∈ {1, . . . , n − 1}, differentiating �(y1, . . . , yn−1) = ρi

(
yi,

∑n−1
j=1 yj

)
= ρk

(
yk,

∑n−1
j=1 yj

)
with respect to yi and to yk , we have

d�(y1, . . . , yn−1)

dyi

= ρi,1 + ρi,2 = ρk,2,

d�(y1, . . . , yn−1)

dyk

= ρk,1 + ρk,2 = ρi,2,



310 S. Du, H. Zhu / Journal of Economic Theory 167 (2017) 285–311
which imply that for all i �= k ∈ {1, . . . , n − 1},
ρi,1 + ρk,1 = 0. (118)

Choose any three distinct i, j and k from {1, . . . , n −1}, we have ρi,1 = −ρj,1 = ρk,1 = −ρi,1; 
here we have used n ≥ 4. Thus we have ρi,1 = 0 for all i ∈ {1, . . . , n − 1}. That is, each ρi is only 
a function of its second argument:

ρi

⎛
⎝yi,

n−1∑
j=1

yj

⎞
⎠ = ρi

⎛
⎝n−1∑

j=1

yj

⎞
⎠ . (119)

Then, using (116), (117) and (119) for i = 1, we have

β

n−1∑
j=1

s̃j (p;yj ) = ρ1

⎛
⎝n−1∑

j=1

yj

⎞
⎠ + p + λyn − αs̃n(p;yn). (120)

Applying Lemma 4 to (120) (recall that yn = − 
∑n−1

j=1 yj ), we conclude that, for all j ∈
{1, . . . , n − 1},

s̃j (p;yj ) = A(p)yj + Bj (p). (121)

Finally, we repeat this argument to trader 1’s ex post first-order condition and conclude that (121)
holds for j = n as well. This concludes the proof of Lemma 3.

B.2.2. Case 2: α = 1 and n ≥ 3
We now prove Case 2 of Proposition 3. Trader n’s ex post first order condition in this case is:

n−1∑
j=1

∂xj

∂p
(p;yj ) = −yn

s̃n(p;yn) − p − λyn

, (122)

for every p ∈ (p̄ − δ, p̄ + δ) and (y1, . . . , yn−1) ∈ ∏n−1
j=1(ȳj − δ/n, ȳj + δ/n), and where 

yn = −∑n−1
j=1 yj .

Applying Lemma 4 to (122) gives:

∂xj

∂p
(p;yj ) = G(p)yj + Hj(p), (123)

for j ∈ {1, . . . , n − 1}. Applying Lemma 4 to the ex post first-order condition of trader 1 shows 
that (123) holds for j = n as well.

Substituting (123) back into the first-order condition (122), we obtain:

(s̃i (p;yi) − p − λyi)

⎛
⎝−G(p)(−yi) −

∑
j �=i

Hj (p)

⎞
⎠ − yi = 0,

which can be rewritten as:

∂xi

∂p
(p;yi) = G(p)yi + Hi(p) = yi

s̃i (p;yi) − p − λyi

+
n∑

j=1

Hj(p). (124)

We claim that G(p) = 0. Suppose for contradiction that G(p) �= 0. Then matching the co-
efficient of yi in (124), we must have s̃i (p; yi) = λyi + Bi(p) for some function Bi(p). But 
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this implies that ∂xi

∂p
(p; yi) = −B ′

i (p)/λ, which is independent of yi . This implies G(p) = 0, 
a contradiction. Thus, G(p) = 0.

Then, (124) implies that s̃i (p; yi) − p = Ai(p)yi for some function Ai(p). And since 
∂xi

∂p
(p; yi) is independent of yi , Ai(p) must be a constant function, i.e., s̃i (p; yi) − p = Aiyi

for some Ai ∈R. Substitute this back to (124) gives:

∂xi

∂p
(p;yi) = − 1

Ai

= 1

Ai − λ
−

n∑
j=1

1

Aj

,

which implies

1

Ai − λ
− 1

Aj − λ
= 1

Aj

− 1

Ai

, for all i �= j,

which is only possible if Ai = Aj ≡ A ∈ R for all i �= j . Thus, s̃i (p; yi) − p = Ayi , which 
concludes the proof of this case.
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