
Eurographics Symposium on Rendering 2008
Steve Marschner and Michael Wimmer
(Guest Editors)

Volume 27 (2008), Number 4

ScribbleBoost: Adding Classification to Edge-Aware
Interpolation of Local Image and Video Adjustments

Y. Li1, E.Adelson1, and A. Agarwala2

1Department of Brain and Cognitive Sciences, and Computer Science and Artificial Intelligence Laboratory, MIT
2Adobe Systems, Inc.

Abstract

One of the most common tasks in image and video editing is the local adjustment of various properties (e.g.,
saturation or brightness) of regions within an image or video. Edge-aware interpolation of user-drawn scribbles
offers a less effort-intensive approach to this problem than traditional region selection and matting. However,
the technique suffers a number of limitations, such as reduced performance in the presence of texture contrast,
and the inability to handle fragmented appearances. We significantly improve the performance of edge-aware
interpolation for this problem by adding a boosting-based classification step that learns to discriminate between
the appearance of scribbled pixels. We show that this novel data term in combination with an existing edge-aware
optimization technique achieves substantially better results for the local image and video adjustment problem
than edge-aware interpolation techniques without classification, or related methods such as matting techniques or
graph cut segmentation.

Categories and Subject Descriptors (according to ACM CCS): I.4.3 [Image Processing and Computer Vision]: En-
hancement

1. Introduction

Local manipulation of color and tone is one of the most com-
mon operations in the digital imaging workflow. For exam-
ple, to improve a photograph or video sequence an artist may
increase the saturation of grass regions, make the sky bluer,
and brighten the people. Traditionally, localized image edit-
ing is performed by carefully isolating the desired regions
using selection tools to create mattes. While effective, this
approach can be much more time-consuming than is nec-
essary for color and tone adjustments, especially for video.
Matting techniques are primarily designed for the challenge
of cutting an object from one image and pasting it into an-
other, in which case it is important to solve the matting equa-
tions and recover foreground colors de-contaminated of the
background. In contrast, in the case of color and tonal ad-
justment everything is performed in place, within the origi-
nal image. Thus, local edits can be interpolated directly and
more easily without the need to solve the matting equations.

Recent experiments in edge-aware interpolation

(EAI) [LLW04, LFUS06, YS06, CPD07] take this approach
and offer the user a different interface to localized manipu-
lation that does not require any explicit selection or masking
from the user. Instead, a user simply draws rough scribbles
on the image (e.g., one on the grass, one one the sky, and
one on the people), and attaches adjustment parameters
to each scribble. These adjustments parameters are then
interpolated to the rest of the image or video in a fashion that
respects image edges, i.e., the interpolation is smooth where
the image is smooth. While EAI promises to be a powerful
technique for localized image and video manipulation, there
are a number of problems that currently limit its success
in this context. At a high-level, EAI works by propagating
the influence of each scribble along paths of pixels of
similar luminance; image edges slow this propagation. One
problem with this approach is that texture edges within
an object also slow propagation. Texture edges may not
be a problem if they are weak relative to object boundary
edges, but this is often not the case. Another problem is

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

Y. Li, E. Adelson, & A. Agarwala / ScribbleBoost: Adding Classification to Edge-Aware Interpolation of Local Image and Video Adjustments

the manipulation of fragmented appearances (such as blue
sky peeking through the leaves of a tree, or a multitude of
flowers) since the influence of scribbles will be stopped
by the edges in-between; the user must therefore scribble
each fragment. Finally, manipulating video is a challenge
for EAI, since the time-axis tends to be much more aliased
than the spatial axes, leading to strong temporal edges that
slow propagation. Estimating video motion can sometimes
address this limitation, but optical flow algorithms tend to
be brittle and computationally-intensive.

In this paper, we significantly improve the performance
of EAI for local image and video adjustment by taking ad-
vantage of an additional cue that is overlooked in existing
EAI systems. Typically, the regions that a user wishes to ad-
just differently are not only separated by image edges, but
they also appear different; that is, they have different distri-
butions of color and texture. For this reason, many selection
tools in commercial software (such as “select color range” in
Adobe Photoshop) operate in color space, independent of a
pixel’s coordinates. Advanced users can often create a set of
selections and rules in color space alone that accurately dif-
ferentiate desired and un-desired regions [Eis05]. This op-
tion can be faster to specify than a spatial selection, and per-
form better in the presence of fragmented appearances and
video motion. In this paper, we attempt to learn a good color
space selection by training a discriminative classifier (gen-
tleboost [FHT00]) to differentiate between the appearance of
the pixels within different scribbles, and combine this per-
pixel data term with the spatial regularization provided by
the original smoothness term of EAI systems. Thus, in our
interactive system, which we call ScribbleBoost, a scribble
indicates that pixels similar in appearance to the scribbled
pixels should be adjusted similarly, rather than only a con-
tinuous region containing the original scribble.

Of course, the combination of a per-pixel data term and
a neighboring-pixel smoothness term is commonplace in
algorithms for image segmentation [RKB04, Gra05] and
matting [WC07]. In that light, our main contribution is to
extend traditional edge-aware interpolation with a novel,
discriminatively-learned and weighted data term that uses
a boosting-based classifier. A key feature of our data term
is a weighting scheme that considers the accuracy of the
classifier over its continuous output range. As a result, the
weighted data term creates “crisper” transitions between re-
gions when the classifier is confident, while the smoothness
term takes over when classification is more ambiguous. Our
data term also significantly improves performance in the
presence of texture edges and fragmented appearances. As
we show with an extensive comparison to previous work,
our approach yields substantially better results with just a
few user-drawn scribbles.

2. Related work
Edge-aware interpolation was first introduced by Levin et
al. [LLW04] for the purpose of colorizing a grayscale im-
age from a set of user-defined scribbles. They demonstrated

that a colorized image appears natural if the color parame-
ters specified at scribbled pixels are interpolated in a fash-
ion that respects luminance edges. Colorization from user-
drawn scribbles continues to be an active topic of research
for both natural images [YS06, LWCO∗07] and hand-drawn
illustrations [QWH06]; one significant difference from our
problem is that these algorithms are not designed to take
advantage of color input. Grayscale pixels are much harder
to discriminate between than color pixels, and thus require
the use of texture features in a neighborhood around each
pixel [QWH06,LWCO∗07]. In our experience (Section 4.2),
color at a single pixel discriminates more reliably than tex-
ture in a pixel’s neighborhood.

Edge-aware interpolation was first generalized beyond
colorization by Lischinski et al. [LFUS06] for the purpose
of interactive tone mapping. From the perspective of a user,
our system is very similar to theirs; the primary difference
for the user is that, in our system, adjustments can propagate
not only to pixels that are spatially close, but also to pixels
that are close in appearance. Their system also included a
brush that allowed the user to select and scribble any pixel
similar to the color or luminance of a specified pixel (simi-
lar to “select color range” in Photoshop). This brush is, in a
sense, a simple appearance-based data term that can some-
times handle fragmented appearances. However, the appear-
ance of many objects is not confined to a narrow enough
color range for this approach to be effective; in our supple-
mental materials, we show that such a brush is not effective
for any of our examples.

Edge-aware interpolation of color and tone parameters
can be seen as scattered data interpolation; given a set of
constraints specified at scribbles, interpolate those parame-
ters to the entire image or video. For image manipulation the
best results are achieved if the interpolation respects image
edges. To that end, a number of EAI techniques have been
developed, including smooth interpolation across a bilateral
grid [CPD07], edge-weighted geodesics [YS06], and linear
least squares optimization [LLW04, LFUS06]; our system
utilizes the latter since the framework naturally accepts our
novel data term. The bilateral grid approach is qualitatively
different than the others, since strong edges do not neces-
sarily stop propagation; we show better results on an ex-
ample from their paper. The edge-weighted geodesics and
least squares approaches both suffer in the presence of tex-
ture contrast and fragmented appearances. The colorization
system of Luan et al. [LWCO∗07] also addresses these same
concerns. However, since they assume grayscale input, they
first create a color labeling by executing a hard graph-cut
segmentation of the image based on texture segmentation
cues; as a result, they are not able to achieve the long-range,
soft transitions that we believe are necessary for smoothly
interpolating color and tone adjustments.

Several matting and segmentation systems create masks
from user-drawn scribbles [LSTS04, Gra06, LLW06, WC07,
BS07], and these masks can certainly be used for color and
tone manipulation. However, it is not clear how to blend

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Y. Li, E. Adelson, & A. Agarwala / ScribbleBoost: Adding Classification to Edge-Aware Interpolation of Local Image and Video Adjustments

(a) (b) (c) (d) (e)
Figure 1: One example of localized editing using our system. Column (a) shows the inputs and output of our system: the input images, the
user-drawn scribbles to separate the image into three classes (umbrellas, chair upholstery, and everything else), and a manipulated result that
changes the hue of the umbrellas and chairs differently and saturates the rest. The other columns show intermediate outputs with one row per

class. (b) The binary output of the three classifiers, and (c) the continuous output of each classifier with zero mapped to gray. (d) The output of
edge-aware interpolation of the scribble constraints and classifier outputs, and (e) the final blending weights after post-processing.

more than two adjustment parameter constraints using mat-
tes. Also, even for only two constraints, we find that our
approach can better interpolate adjustment parameters with
less user-effort than both matting and segmentation tech-
niques, as we show in Section 7 with several comparisons.
Algorithmically, the least squares problem solved in our
system is similar to those used in both binary segmenta-
tion [Gra06] and matting [LLW06, WC07]. However, the
smoothness term used by EAI systems is typically simpler
and more efficient to compute than those used in matting
algorithms, which involve a larger neighborhood that better
captures the precise mix of foreground and background at
each pixel. Also, if a data term is used for matting, it usually
involves a foreground and background model local to each
pixel [WC07], rather than our global data term. Finally, the
combination of data and smoothness terms that we describe
could be solved using graph cuts, which are used by several
interactive segmentation systems [RKB04, LSTS04]. How-
ever, the long-range, soft transitions created by edge-aware
interpolation are better suited to our problem than the dis-
crete result of graph cuts, and our results compare favorably
(Section 7).

Finally, both Protiere and Sapiro [PS07] and
Wang [Wan07] have explored the use of texture cues
and automatic feature selection in the context of interactive
matting and segmentation. Also, a boosting classifier was
used for binary image segmentation by Avidan [Avi06],
though their focus was the incorporation of spatial priors
into the Adaboost algorithm.

3. System overview
Our approach to local color and tone manipulation is imple-
mented as a simple interactive prototype that allows the user
to draw scribbles indicating the different classes of content
that the user wishes to manipulate differently, as shown in
Figure 1(a). In this example, yellow scribbles are drawn to
indicate the umbrellas, blue scribbles indicate the chair up-
holstery, and green scribbles indicate everything else. The
user chooses to adjust the hue of the umbrellas, adjust the
hue of the chairs by a different amount, and increase the sat-
uration of everything else (the edits might be more extreme
than typical, but help to demonstrate the system). The result
is shown at the bottom of Figure 1(a).

Our algorithm could have interpolated these hue and satu-
ration parameters directly; instead, after the user clicks a but-
ton our system computes the blending weight masks shown
in the right-most column (Figure 1e). As shown by Lischin-
ski et al. [LFUS06], computing a set of per-pixel blending
weights that linearly blend adjustments made to the differ-
ent scribble classes is equivalent to directly interpolating the
adjustment parameters themselves. So, our system computes
these blending weights, which sum to one (pure white) at
each pixel, and loads them as layer masks into Adobe Pho-
toshop so that the user can adjust the different layers in real-
time. (Ideally, these blending weights would never be ex-
posed to the user, and scribbles and adjustments could be
performed in a single interface.) If there are only two scrib-
ble classes, blending weight compositing is identical to al-
pha compositing (this equivalence is also true for the blend-

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Y. Li, E. Adelson, & A. Agarwala / ScribbleBoost: Adding Classification to Edge-Aware Interpolation of Local Image and Video Adjustments

ing weights of Lischinski et al.; for more than two scribble
classes, the compositing equations are different (they require
“add” rather than “over” compositing [PD84]).

Our approach to calculating per-pixel blending weights
consists of three simple steps (the intermediate results of
each step are shown in Figure 1).

1.Per-pixel classification. In the first step, our system
builds a boosting-based classifier to discriminate between
the appearance of the different classes. In this example, the
classifier attempts to learn whether a pixel more resembles
the appearance of the umbrellas, the chairs, or everything
else, given the training data of the scribbled pixels. The re-
sult of the classifier is a per-pixel, per-class scalar that is
positive if the classifier believes the pixel belongs to the
class, and negative if not (Figure 1(b,c)); the magnitude of
the scalar represents the confidence of the classification.

2.Edge-aware interpolation. The second step computes
an initial set of blending weights by performing edge-aware
interpolation of both the scribbles and the per-pixel classifi-
cation (Figure 1d). The interpolation is performed as a least-
squares minimization of the sum of a per-pixel data term
and a smoothness term per pair of neighboring pixels. Scrib-
bled pixels are used as hard constraints, and the data term is
weighted by the confidence of the classifier.

3.Post-processing. The third step improves the above-
calculated weights in two ways. First, our system enforces a
simple constraint; fractional weight values should only ex-
ist in a transition from a region of pixels of one class to
a region of pixels in another class. Second, as in previous
work [LLW06, CPD07], we apply a sigmoid to the weight
values to bias the weights towards one or zero. An example
of the final blending weights can be seen in Figure 1e.

4. Per-pixel classification
A user-drawn scribble in our system not only signifies a re-
gion that should be affected by the scribble, but also an ap-
pearance; regions of similar appearance to the scribbled re-
gion should also be affected. This appearance prior bene-
fits our approach in two ways. For one, the user does not
need to scribble every disconnected region of a fragmented
class. For example, in Figure 1 all the chair covers are se-
lected even though only a few are scribbled. The second
benefit of the appearance prior, as we show in Section 7
with comparisons to results generated without it, is that it
causes our masks to be much crisper than those generated
solely through spatial interpolation. When a pixel is caught
between the influence of two different scribbles, the classi-
fier can use its appearance to disambiguate its class member-
ship, whereas spatial interpolation alone might resort to an
overly soft transition.

To accomplish this appearance selection, our system sup-
plements edge-aware interpolation with a classifier that
learns how to discriminate between the appearances of the
different classes. We use the gentleboost classifier [FHT00],
which is a member of the larger family of classifiers based on

Example GMM loss (%) Gentleboost loss (%)
Deer (Figure 2) 8.14 7.70
Deer, extra features * 1.63
Chocolates (Figure 3) 0.11 0.00
Birds (Figure 4) 4.70 3.23
Buddha (supp.) 1.80 0.56
Girl (Figure 5) 3.55 2.64

Table 1: A comparison of the classification loss on the training

data as a sum of the percentage of positive pixels and the percentage
of negative pixels misclassified by the GMM-based classifier and
gentleboost. The classifiers use RGB values as features, except for

the second row, where additional features were also used.

boosting [Sch90,HTF01]. (We expect most boosting variants
would perform similarly; we choose gentleboost because it
is simple and efficient). Boosting operates on the principle
that a good classifier can be built as the weighted combi-
nation of many simple classifiers, each of which might per-
form just better than chance on the training data. One ad-
vantage of boosting-based classifiers is that they are dis-
criminative rather than generative. That is, the classifier
does not attempt to build a model that would generate
the observed examples, but instead simply seeks to sepa-
rate the data. Matting and interactive segmentation systems
more commonly use the generative Gaussian Mixture Model
(GMM) [CCSS01, RKB04, WC07] to describe appearance;
when color distributions are not well approximated by a
small number of Gaussians, our classifier performs better.
In Section 7 we compare our results to ones generated by
replacing gentleboost with GMMs; we also compare against
the results of state-of-the-art matting and interactive segmen-
tation algorithms. In Table 1 we compare the classification
losses of a GMM-based classifier (with five Gaussians) and
gentleboost.

If there are more than two scribble classes, we are faced
with a multi-class classification problem [HTF01]. We there-
fore train one classifier per class in a one-versus-all frame-
work. That is, we form the training data for the i’th class by
simply aggregating the N scribbled pixels and setting label
z j = +1 if the j’th pixel belongs to the class, and z j = −1
if not. Gentleboost then creates an ensemble classifier Hi for
the i’th class as a sum of many simple weak classifiers. That
is, it fits an additive model

Hi(v) = ∑
r

hr(v)

where v is the feature vector for the pixel being classified,
hr(v) is a weak classifier, and r indexes over the weak classi-
fiers. In our case, each weak classifier is modeled as a simple
decision boundary in feature space. Such a decision bound-
ary is often called a Perceptron [HTF01], and is represented
by a hyperplane θ, where θr ·v splits the feature space; if the
result is positive, the weak classifier believes that v belongs
to the class, and vice-versa. Each training example v j is asso-
ciated with a weight w j and label z j . We fit each hyperplane
as perpendicular to the axis of maximum separability of the
weighted training data, which is computed using weighted
Fisher’s Linear Discriminant (FLD) [Fis36]. The offset of

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Y. Li, E. Adelson, & A. Agarwala / ScribbleBoost: Adding Classification to Edge-Aware Interpolation of Local Image and Video Adjustments

(a) (b) (c) (d) (e) (f) (g)
Figure 2: (a) A challenging image with strong texture contrast and similar color distributions between foreground and background. (b) Image
with scribbles, results of (c) Lischinski et al. [LFUS06], (d) RobustMatting [WC07], (e) using GMMs in the data term, (f) our result using RGB

only, and (g) Our result using additional classification features as described in Section 4.2.

the hyperplane along this axis is computed to minimize the
weighted classification loss by a simple 1D search.

4.1. Gentleboost

Like most boosting algorithms, gentleboost (which we de-
scribe for completeness) adjusts the weights of the train-
ing data as each weak classifier is added to the ensemble
so that new weak classifiers focus on the training data that
is misclassified by the current combination of simple classi-
fiers. The weak classifiers themselves also have weights that
are proportional to their performance on the training data.
The algorithm begins by first initializing the training data
weights w j = 1 and then normalizing so that the weights of
the positive examples sum to 0.5, and the weights of the neg-
ative examples sum to 0.5. Let δ(·) be the indicator function
that is 1 if its argument is true, and 0 otherwise. Then, for
each r = 1,2, . . . ,M, where M is the number of weak classi-
fiers,
1. Fit hyperplane θr to weighted training data using FLD.
2. Fit weak classifier

hr(v j) = arδ(θr · v j > 0)+brδ(θr · v j ≤ 0)

by calculating weak classifier weights ar,br as

ar =
∑ j w jz jδ(θr · v j > 0)

∑ j w jδ(θr · v j > 0)
br =

∑ j w jz jδ(θr · v j ≤ 0)

∑ j w jδ(θr · v j ≤ 0)

3. Update weights by w j = w je
−z jhr(v j), and then re-

normalize.

The final classifier Hi(v) classifies a pixel by a weighted
sum of the beliefs of its weak classifiers; the more the weak
classifiers agree with each other, the larger the magnitude of
Hi(v), and the higher the confidence of the classifier in its be-
lief. We use 100 weak classifiers. Fewer classifiers yields a
less continuous confidence measure, while more requires ad-
ditional computation time; we found 100 to be a good com-
promise. To communicate this information to the next stage
of our algorithm, we evaluate each classifier on each image
pixel; that is, we compute each mi,p = Hi(vp), where mi,p is
the output of the i’th classifier on pixel p. The magnitude of
mi,p can be considered the confidence of the i’th combined
classifier for pixel p.

4.2. Features
All the results other than Figure 2(g) in this paper were gen-
erated simply using the RGB color as the feature vector v
at each pixel. However, one of the benefits of boosting is
feature selection, i.e., it can choose the best-performing fea-
tures to train the next weak classifier hr(v) given the current
weighting. We therefore experimented with using a wider set
of features to measure appearance and texture at a pixel, in-
cluding alternative color models such as LAB and HSV, tex-
ture features such as local derivatives and Laplacians, and
even the spatial coordinates of the pixel. Figure 2 shows an
example where these extra features did indeed help (see Ta-
ble 1 for a numerical comparison). In this example, the color
distributions of foreground and background are heavily over-
lapping, but the shallow depth of field allows the Laplacian
to be highly discriminative. Overall, though, we found that
extra features hurt as often as they helped, since the extra
dimensionality allowed a greater possibility of over-fitting,
and texture features often fail near object boundaries.

5. Edge-aware interpolation
The previous step of our approach calculates a measure of
the belief that each pixel belongs to each stroke class, ex-
pressed as mi,p. In this step, our system calculates per-class,
per-pixel blending weights by performing spatial regulariza-
tion, so that neighboring pixels of similar appearance are ma-
nipulated similarly.

Though the output of this step is a set of blending weights,
the equations are easier to understand if we first present them
as directly interpolating an adjustment parameter. That is, we
assume that the user has already defined the desired values
of some adjustment parameter (e.g., saturation or brightness)
for each stroke class; we represent this scalar value as ci for
the i’th class. We then compute the value of this adjustment
parameter fp for each pixel p. To do so, we compute fp that
minimizes the sum of a per-pixel data term and smoothness
term per pair of neighboring pixels,

∑
p /∈Ω

Dp +λ∑
p,q

Sp,q (1)

subject to the constraint that fp = ci for all pixels p ∈ Ωi,
where Ω is the set of stroked pixels, Dp is the data term on

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Y. Li, E. Adelson, & A. Agarwala / ScribbleBoost: Adding Classification to Edge-Aware Interpolation of Local Image and Video Adjustments

(a) (b) (c) (d) (e)
Figure 3: (a) An example from the bilateral grid paper [CPD07] (top) and a similar set of scribbles separating the image into two classes

(bottom). The mask and local image adjustment result of (b) bilateral grid, (c) Lischinski et al., (d) RobustMatting, and (e) ScribbleBoost.

pixel p, Sp,q is the smoothness term on neighboring pixels
p and q, and λ weights the smoothness term relative to the
data term (we use λ = 1 in all examples). Our formulation is
similar to that of Lischinski et al. [LFUS06], except for the
data term. Our smoothness term is nearly identical, i.e.,

Sp,q =
(fp − fq)2

∇Ip,q + ε

where ∇Ip,q is the magnitude of the color gradient between
pixels p and q, and ε = .001 prevents division by zero. The
smoothness term encourages neighboring pixels to have sim-
ilar values of parameter f , but the strength of the term is
weakened across image edges.

The data term, which is novel to our formulation, is de-
signed to encourage the value fp to be ci if we believe pixel
p belongs to the i’th class.

Dp = ∑
i

wi,p(fp − ci)
2

The most interesting aspect of this data term is the design
of the weight wi,p, which depends on the classifier output
mi,p computed in Section 4.1. Obviously, if mi,p is less than
or equal to zero, the classifier does not believe pixel p be-
longs to the i’th class, so wi,p should be zero. Otherwise, the
weight should be proportional to the confidence of the classi-
fication. This confidence can be measured in two ways. The
first is simply the absolute value of mi,p, which measures
the confidence of the i’th classifier specifically for pixel p.
However, there is an additional and valuable cue for mea-
suring confidence: the overall accuracy of the i’th classifier
on its training data. In cases where the color distributions
of the different classes are well-separated, the classifier may
achieve no or almost no loss, in which case the data term
weight should be higher. Otherwise, the color distributions
may overlap significantly, and thus the classifier may per-
form poorly and offer almost no discriminative insight – in
this case, the weight should be close to zero, and the over-
all optimization should revert to the original formulation of
Lischinski et al. [LFUS06] that does not use classification.

One simple measure of overall accuracy is the classifier
loss; however, this measure does not express how the classi-
fier’s performance varies over the range of classifier outputs.

That is, the classifier might be quite inaccurate for low val-
ues of mi,p, but very accurate for higher values. So, we in-
stead ask a simple question: above what value of mi does the
i’th classifier perform perfectly on the training data? That is,
what is the maximum value of mi,p for the negative training
examples? For classifier outputs above this threshold (which
we call m∗

i), we can be more confident of the classifier.
For outputs below this threshold, we know that that clas-
sifier sometimes misclassifies, so confidence should be very
low. We thus define a weighting function that decreases very
rapidly below the threshold m∗

i , and increases less rapidly
above it (as overly-strong weights can render the linear sys-
tem that computes the minimum ill-conditioned).

wi,p =

⎧⎪⎪⎨
⎪⎪⎩

0 mi,p ≤ 0(
mi,p

m∗
i

)4
0 < mi,p ≤ m∗

i(
mi,p
m∗

i

)2
m∗

i < mi,p

We add one additional caveat to the computation of m∗
i . If

the classifier performs very well, m∗
i may be zero or even

negative. Even positive values of m∗
i that are very small can

be problematic, as the data term becomes too strong and the
resultant masks almost binary. We thus do not allow m∗

i to be
any smaller than 1

10 of the overall range of positive classifier
outputs.

The result of this weighting scheme is that the blending
weights are softer in areas where the classifier has low confi-
dence, and vice-versa. This effect can be seen by comparing
Figures 2(f) and (g); the latter uses a better-performing clas-
sifier than the former, and so its transitions are much crisper.
In effect, our scheme can minimize the negative effects of
uncertainty by resorting to soft transitions that do not intro-
duce new edges that attract the eye.

The minimization problem in equation (1) is quadratic,
and its global minimum can be found by computing a linear
system A f = b with respect to the per-pixel adjustment pa-
rameter f . How can we, instead, compute a set of blending
weights so that the linear system does not need to be re-
solved each time the parameters are changed? We again take
inspiration from the approach of Lischinski et al., and sepa-
rate the linear system into a set of per-class linear systems.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Y. Li, E. Adelson, & A. Agarwala / ScribbleBoost: Adding Classification to Edge-Aware Interpolation of Local Image and Video Adjustments

To do so, we assume the adjustment parameters are linear.
Then, with a variable substitution f ′i = 1

ci
fi and b′i = 1

ci
bi, the

linear system A f = b can be expressed as ∑i Ai ∑i f ′i = ∑i b′i .
We can compute each f ′i as (∑i Ai) f ′i = b′i and the final pa-
rameter vector f can be expressed as f = ∑i ci f ′i . We can
therefore use each f ′i as a blending weight mask, and simply
use “add” compositing to compute a final image. Note that
this approach treats adjustment parameters as linear even
though certain adjustments, such as hue, are not; none the
less, treating these parameters as linear typically generates
results that match our mental model of what we would ex-
pect to see.

There are a number of approaches to efficiently solving
large, sparse linear systems of this form, including multigrid
algorithms on the GPU [BFGS03]. For ease of implementa-
tion we use locally-adapted hierarchical basis precondition-
ing [Sze06]. Notice that each linear system (one per f ′i) can
be computed in parallel.

6. Post-processing

In the third and final step of blending weights calculation,
the masks are improved in two ways. The first step is mo-
tivated by one of the artifacts that can be seen in the re-
sults of the previous step in Figure 1(d); there are occasional
patches of soft, fractional values that are disconnected from
any fully opaque pixels that definitely belong to the class
represented by the mask. For example, in the second row of
Figure 1(d) there are soft patches of pixels well above the
covered chairs that this class represents. We make the obser-
vation that fractional values should only exist at the transi-
tion from one class to another,† and modify the masks to en-
force this constraint. First, we assume that blending weights
more than 95% opaque are definitely in the corresponding
class, weights less than 5% opaque are definitely not in the
class, and weights values in-between are transitional. Then,
we compute a flood fill from in-class pixels to transitional
pixels to identify those transitional pixels that are, in fact,
connected. Any transitional pixel that are not connected to
in-class pixels are set to zero. This operation is performed
for each class, and then the weights are re-normalized to sum
to unity. As can be see in Figure 1(e), this operation removes
these errant regions.

The final post-processing step (which is also performed
in other EAI systems [LLW06, CPD07]) simply biases the
masks slightly towards zero and one; we scale the weights
from the center of their range by a factor of 1.1, and clamp
and re-normalize so that the weights sum to unity. The output
is the set of final blending weights.

† This observation is not always true; counter-examples include
partially transparent regions such as smoke, or structures thinner
than one pixel for their entire extent. We ignore these cases.

7. Results
In Figures 2-7 we show a number of results created using our
system as well as comparisons to results created using pre-
vious work with the same set of scribbles (we recommend
zooming in on the image in the electronic version of this pa-
per to better see the differences). In most examples we use
only two scribble classes so that comparisons can be made to
the output of matting and segmentation algorithms. In these
cases we show blending weights from our technique and
that of Lischinski et al., as well as mattes from matting and
segmentation algorithms. Comparing blending weights and
mattes directly can be misleading, as mattes are computed to
model the matting equations and produce precise foreground
colors de-contaminated from the background, while blend-
ing weights are designed for in-place editing. If our blending
weights were used for compositing onto novel backgrounds,
the result would likely not be successful. However, these
masks can be useful to bring attention to problematic areas
in the final edited results, which were created in Adobe Pho-
toshop by adjusting hue, saturation, contrast, and/or bright-
ness of the differently masked layers. We often chose more
drastic edits than might be typical since they better reveal
the differences in the outputs of different systems. Finally,
we show examples of multi-class edits for which matting
algorithms cannot directly be compared in Figure 6, and a
video result in Figure 7. Finally, several additional results
and comparisons are shown in the supplemental materials.

Our comparison results of Lischinski et al. [LFUS06]
were created using our system with the classification-based
data term disabled; without this term, our systems are largely
identical. In fairness, it should be noted that we are apply-
ing their method to a different problem than the one they
were trying to solve; very soft masks that work well for
HDR tone mapping might not work for color adjustments.
For our application, we can see that their technique does not
handle fragmented appearances where each fragment is not
scribbled (e.g., several of the birds in Figure 4), and suf-
fers in the presence of texture edges (e.g., the textured dress
in Figure 5). An extreme example of a fragmented appear-
ance can be seen in the lilypads in Figure 6; stroking each
lilypad would be very time-consuming. The matting results
of RobustMatting [WC07] and Bai and Sapiro [BS07] were
created using the authors’ systems (we manually drew sim-
ilar strokes in their interfaces). Matting algorithms are chal-
lenged by the rather sparse set of scribbles used in these ex-
amples. Figure 3 shows a comparison using an image and re-
sult from the bilateral grid paper [CPD07]. Their result show
significantly more color spilling than ours, which benefits
from the rather easy separability of the colors in the sepa-
rate classes of this example (Table 1). In Figures 4 and 5
we compare against the results of a publicly available imple-
mentation‡ of Lazy Snapping [LSTS04], which uses graph
cuts to create binary masks.

‡ http://www.cs.cmu.edu/∼mohitg/segmentation.htm

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Y. Li, E. Adelson, & A. Agarwala / ScribbleBoost: Adding Classification to Edge-Aware Interpolation of Local Image and Video Adjustments

(a) (b) (c) (d) (e) (f) (g)

Figure 4: (a) An example image (top) and a set of scribbles isolating the birds from the background (bottom). The mask and local image
adjustment result of (b) Lischinski et al., (c) RobustMatting, (d) Lazy Snapping, (e) Bai and Sapiro, (f) our technique using GMMs in the data
term, and (g) ScribbleBoost.

We also show comparisons to results created using a
GMM classifier instead of gentleboost. These results are still
quite good, in part due to the other components of our tech-
nique which remain the same, such as edge-aware interpo-
lation, the weighting scheme described in Section 5, and the
post-processing stage. The classification loss comparison be-
tween GMMs and boosting in Table 1 varies from little dif-
ference up to a factor of 3.2 (gentleboost always performs
better). In our experience, boosting also exhibits better accu-
racy in classification confidence; the effect of this difference
can be seen in the generally softer masks from GMMs. Dif-
ferences can also be seen in the editing results, most notably
near the edges of the dress in Figure 5.

Most of our examples show blending weight masks that
resemble alpha mattes and crisply separate different objects;
however, users do not always apply different adjustments
strictly to different objects. In Figure 8 we show an example
from the paper of Lischinski et al.that has different scribbles
on the same object (a tablecloth) to interpolate a depth-of-
field effect. This example requires a longer-range, smooth
transition, which our system can still produce.

Finally, our technique works well for video sequences,
and we show an example in Figure 7 where scribbles are
drawn on only 1 out of 123 frames (several more examples
are shown in the accompanying video; for each, scribbles
were drawn on just one frame). The spatial regularization
and post-processing steps are performed independently for
each frame. While we have not noticed any temporal co-
herence artifacts, more challenging video sequences might
benefit from adding temporal smoothness terms to our EAI
formulation. Our reliance on per-pixel classification benefits
our video results, whereas pure EAI systems must depend
solely on propagating information across time.

Failure cases. Our system does not always yield the de-
sired result. One source of failure is when the color distribu-
tions of the layers that the user wishes to separate are very
similar; an example can be seen in Figure 2. In this case, ex-
tra features can help. Also, we assume that the user wishes
to manipulate pixels of similar appearance in the same fash-
ion, which isn’t always true. For example, if the user wished
to edit only one umbrella in Figure 1, our system would hin-
der the user more than help. Perhaps the ideal system would

involve two types of strokes; ours, and the scribbles of tradi-
tional EAI which only indicate a region and not an appear-
ance.

Performance. Our system involves substantial computa-
tion. The bottlenecks, in decreasing order, are the solution
of the sparse linear systems, the evaluation of the classi-
fier (which involves 100 weak classifiers) on each pixel,
and the training of the classifiers. However, our algorithms
can easily benefit from recent GPU and multi-core process-
ing models. For example, Szeliski [Sze06] points out that
his solver easily maps to the GPU (our implementation is
software-only), and the classification of each pixel can be
performed in parallel. Each classifier can also be trained in
parallel. While we have not experimented with GPU exe-
cution, we did achieve some parallelization with just a few
lines of OpenMP (www.openmp.org) code. As a result, the
one megapixel, three scribble-class example in Figure 1 took
about 10 seconds on a multi-core machine to compute all
weights. The 0.7 megapixel, two scribble-class example in
Figure 5 took only 3 seconds. These execution times lead us
to believe that a GPU-based implementation could respond
in real-time to a new scribble at a preview resolution.

Sensitivity to user scribbles. Our comparisons show that
our technique achieves significantly better performance than
previous work. However, did we simply choose scribbles
that favor our technique? To address this question, we per-
formed an informal user study comparing the robustness of
various methods to a variety of scribble styles. We asked five
users to draw scribbles that separate a target object from the
rest of the image; the resultant scribbles varied widely in
terms of positioning and density, as shown in the supple-
mental materials. In spite of this variation, our method con-
sistently performs better than the compared techniques.

8. Conclusion
Local color and tone manipulation is a very frequent task
for image and video editors, and we believe that our tech-
nique has the potential to significantly reduce their burden.
There are many ways that our approach could be further
improved. One direction is improvements to our classifier,
which is currently very simple. Classification is an actively
researched topic and recent advances could be applied to our

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Y. Li, E. Adelson, & A. Agarwala / ScribbleBoost: Adding Classification to Edge-Aware Interpolation of Local Image and Video Adjustments

(a) (b) (c) (d)

Figure 8: An example from the paper of Lischinski et al.that re-
quires long-range, smooth transitions that do not resemble object
mattes. (a) Original image (top) and scribbles (bottom) indicating

areas for spatially-varying blur. (b-d) Blending weights (top) com-
puted using ScribbleBoost and the depth-of-field effects (bottom)
achieved using these masks.

problem. For example, our classification problem is semi-
supervised, since the unlabeled pixel data is also available;
applying semi-supervised methods could significantly im-
prove results. Also, better classifiers may allow the use of
extra features, if they can avoid the over-fitting that we some-
times observed.

Edge-aware interpolation offers an attractive and less
effort-intensive alternative for local image and video adjust-
ment. By augmenting existing methods with classification
we are able to achieve significantly better results than pre-
vious work. Our algorithm is quite simple, consisting of a
standard and easy-to-implement classifier, the setup and so-
lution of a weighted linear system, and a few flood-fills. We
hope to test our system with real users in the near future.

References
[Avi06] AVIDAN S.: Spatialboost: Adding spatial reasoning to

adaboost. In ECCV (4) (2006), pp. 386–396.

[BFGS03] BOLZ J., FARMER I., GRINSPUN E., SCHRÖDER P.:
Sparse matrix solvers on the GPU: Conjugate gradients and
multigrid. ACM Transactions on Graphics 22, 3 (July 2003),
917–924.

[BS07] BAI X., SAPIRO G.: A geodesic framework for fast in-
teractive image and video segmentation and matting. In IEEE
International Conference on Computer Vision (ICCV) (2007).

[CCSS01] CHUANG Y.-Y., CURLESS B., SALESIN D. H.,
SZELISKI R.: A bayesian approach to digital matting. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR)
(2001), pp. 264–271.

[CPD07] CHEN J., PARIS S., DURAND F.: Real-time edge-aware
image processing with the bilateral grid. ACM Transactions on
Graphics 26, 3 (2007), 103.

[Eis05] EISMANN K.: Photoshop Masking & Compositing.
Peachpit Press, 2005.

[FHT00] FRIEDMAN J., HASTIE T., TIBSHIRANI R.: Additive
logistic regression: a statistical view of boosting. Annals of
Statistics 2, 28 (2000), 337–374.

[Fis36] FISHER R.: The use of multiple measurements in taxo-
nomic problems. Annals of Eugenics 7 (1936), 179–188.

[Gra05] GRADY L.: Multilabel random walker image segmen-
tation using prior models. In 2005 Conference on Computer Vi-
sion and Pattern Recognition (CVPR 2005) (June 2005), pp. 763–
770.

[Gra06] GRADY L.: Random walks for image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence
28, 11 (2006), 1768–1783.

[HTF01] HASTIE T., TIBSHIRANI R., FRIEDMAN J.: The Ele-
ments of Statistical Learning. Springer, 2001.

[LFUS06] LISCHINSKI D., FARBMAN Z., UYTTENDAELE M.,
SZELISKI R.: Interactive local adjustment of tonal values. ACM
Transactions on Graphics 25, 3 (July 2006), 646–653.

[LLW04] LEVIN A., LISCHINSKI D., WEISS Y.: Colorization
using optimization. ACM Transactions on Graphics 23, 3 (Aug.
2004), 689–694.

[LLW06] LEVIN A., LISCHINSKI D., WEISS Y.: A closed form
solution to natural image matting. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2006), pp. 61–68.

[LSTS04] LI Y., SUN J., TANG C.-K., SHUM H.-Y.: Lazy snap-
ping. ACM Transactions on Graphics 23, 3 (Aug. 2004), 303–
308.

[LWCO∗07] LUAN Q., WEN F., COHEN-OR D., LIANG L., XU

Y.-Q., SHUM H.-Y.: Natural image colorization. In Render-
ing Techniques 2007 (Proceedings Eurographics Symposium on
Rendering) (June 2007).

[PD84] PORTER T., DUFF T.: Compositing digital images.
In Computer Graphics (Proceedings of SIGGRAPH 84) (July
1984), pp. 253–259.

[PS07] PROTIERE A., SAPIRO G.: Interactive image segmenta-
tion via adaptive weighted distances. IEEE Transactions on Im-
age Processing 16, 4 (2007), 1046–1057.

[QWH06] QU Y., WONG T.-T., HENG P.-A.: Manga coloriza-
tion. ACM Transactions on Graphics 25, 3 (July 2006), 1214–
1220.

[RKB04] ROTHER C., KOLMOGOROV V., BLAKE A.: Grabcut:
interactive foreground extraction using iterated graph cuts. ACM
Transactions on Graphics 23, 3 (Aug. 2004), 309–314.

[Sch90] SCHAPIRE R.: The strength of weak learnability. Ma-
chine learning 5, 2 (1990).

[Sze06] SZELISKI R.: Locally adapted hierarchical basis precon-
ditioning. ACM Transactions on Graphics 25, 3 (July 2006),
1135–1143.

[Wan07] WANG J.: Discriminative Gaussian mixtures for inter-
active image segmentation. In IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP) (2007),
pp. 386–396.

[WC07] WANG J., COHEN M. F.: Optimized color sampling for
robust matting. In In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2007).

[YS06] YATZIV L., SAPIRO G.: Fast image and video coloriza-
tion using chrominance blending. IEEE Transactions on Image
Processing 15, 5 (2006), 1120–1129.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Y. Li, E. Adelson, & A. Agarwala / ScribbleBoost: Adding Classification to Edge-Aware Interpolation of Local Image and Video Adjustments

(a) (b) (c) (d) (e) (f) (g)

Figure 5: (a) Example image (top) and scribbles isolating the dress (bottom). The mask and local image adjustment result of (b) Lischinski
et al., (c) RobustMatting, (d) Lazy Snapping, (e) Bai and Sapiro, (f) our technique using GMMs in the data term, and (g) ScribbleBoost.

Figure 6: Results from our system that involve more than two scribble classes. Left to right: original image, scribbles, and editing result.

Figure 7: A video example, where the water color is adjusted but the windsurfer is unchanged. One out of 123 frames was stroked. Row 1:
frames; row 2: scribbles, masks; row 3: adjusted frames.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

