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Abstract Jinet al. [5] poses this problem within a variational frame-
work and seeks to estimate a shape model of the scene.
We address the problem of accurate depth estimation us-Of these methods, only [2] has endeavored to recover true
ing multibaseline stereo in the presence of specular reflec-depth information for specular points, but it involves extra
tions. Specular reflections can cause the intensity and colorefforts to determine a suitable trinocular configuration.
of corresponding points to change dramatically according  In this paper, we propose a stereo approach that treats
to different viewpoints, thus producing severe matching er- detected specular image regions as occlusions, since high-
rors for various stereo algorithms. In this paper, we pro- lights effectively hide underlying Lambertian reflection.
pose a new method to deal with this problem by treating While methods have been presented to deal with occlusion
specular reflections as occlusions. Our idea is to first de- due to scene geometry [7], they do not address the visibility
tect specular pixels by computing the uncertainty of depth problem posed by specular reflections. Geometric occlu-
estimates. Then we combine the use of flexible windowssions can occur when the view changes, but specular re-
and an adaptively selected subset of images to avoid thesdlections typically appear in reference image itself. More-
specular areas in all the multibaseline stereo images. Evenover, shape and positioning of specular reflections in image
though specularities may exist in the reference image, ac-sequences can differ greatly from those for geometric oc-
curate depth is nevertheless estimated for all pixels. Exper-clusions. To reduce the degradation in area-based correla-
iments show that our consideration of specular reflections tion caused by specular highlights, we first detect them in
leads to improved stereo results. stereo images using a correspondence uncertainty measure,
and then disregard these specular points in computation of
matching costs. We implicitly impose a depth continuity
1. Introduction cc_)nstrain_t between th_e specule_lr pixgl and its neighboring
diffuse pixels by forming adaptive windows that ensure a
_ _ certain number of diffuse pixels are included. Since spec-
Stereo in the presence of specular reflection has been, . hoints are rejected, matching windows are adaptive in
a challgngmg pro_blem. Cprrespondence Of_ points amongg;, ¢ and have flexible shapes. They are used in a shiftable
§tereo images relies heavily on the as;umptlon of I“"‘mber'windows strategy which is effective in dealing with pixels
tian reflectance, where each scene point has the same colq{e o ohiect boundaries and specular/diffuse boundaries. We
or mtensﬂy in different views. Specular h|g_h||ght5 in §tere_30 also employ temporal selection, which has been proven ef-
images differ substantially from Lambertian reflection in  ¢o e in handling semi-occluded regions [7]. Because of
that they change in position and color from view t0 VIew. (546 differences in intensity and color, a correspondence
This dlff_erence_ in behavior is disruptive to stereo matching, .onnot directly be computed between a specular pixel and
so we aim to circumvent these specularity effects. its diffuse counterpart, so we instead correspond diffuse
A small amount of previous work addressed the problem ;o5 of other images under the constraint of their disparity

of specular reflections in stereo. Bhat and Nayar [1] €ON- 1o |ationship to the specular pixel in the reference image.
sider the likelihood of correct matching by analyzing rela- We show in our experiments that the use of adaptive

tionship between stereo vergence and surface roughness. 19, ghjftable windows, combined with temporal selection,
[2] they further propose a trinocular system where two Im- greatly improves the matching of pixels that are specular in
ages are used at a time in computation of depth at a pointye reference image, pixels that are non-specular in the ref-

*This work was performed while the first author was visiting Microsoft €r€nce image but specular in others, a.nd pixels.that are near
Research, Asia. the boundary between specular and diffuse regions.




2. Specularity detection by depth uncertainty In the formation of these adaptive windows, we use the
specular detectiof;, from (2) for respective imagds. For
By forming specular masks for each image in a multi- each pixel(z, y), the window sizen is first set to an initial
baseline sequence, we can selectively aggregate suppoialuen;, thenn is extended until
for depth estimation only from those pixels with high-
confidgnce color, i.e. theydiffuse pixels.pVarious detegtion Cla,y) = > [1 = Sk(uv)] 2 n* xa. (3)
algorithms have been developed that are based on physical (u,0)EWnxn(2y)
models. They utilize physics-based cues such as structuregvhere o is a ratio which we set to 0.5. For correspon-
light, color and polarization [4, 13, 10, 14, 8, 9]. For multi- dence between image pafisandl;, we modify then x n
baseline stereo, we propose an effective method of specushiftable windowW,, ,.,,(z, ) into the windowW (z, y)
larity detection based on uncertainty of depth estimates.  whose support is flexibly shaped to exclude specularity:
For a forward-facing multibaseline stereo configuration

[11], disparity varies linearly with horizontal pixel displace- Wi(z,y) = { (w0)] (u,0) € Waxn(z,y) &

ment. In order to estimate the disparity for a pigely), we So(u,v) =0 & Sy(u,v) = 0}.

first aggregate the matching costs over a window as the sUm  \ye also implement this window as shiftable, using a sep-
of sum of squared differences (SSSD), namely arable sliding min-filter [12]. Basic idea of shiftable win-

R dows is to examine several windows that include the pixel
Esssp(z,y,d) = Z Z p(Io(u,v)=Ix(u, v, d)), o interest, not just the window centered at that pixel. This
k#0 (uv)EW (2.y) @) strategy has been shown to effectively handle geometric oc-

here is per-ixel sauared Euclidean distance in RGB clusions [3]. We show that integrated use of adaptive and
w ple)isp PIxel squ J=ucll d ! shiftable windows improves the matching of pixels that are
between reference imadg and i, (warped image of;; at

. . . : specular in some images and non-specular in others. This is
disparityc). W.(x’ y)is asguare wmd_ow centered(@t .y)' furthermore effective in dealing with pixels near boundaries
For each pixelz,y) in reference image, the minimum

. . . . . between specular and diffuse regions.
Esssp for different disparity values determines the esti- Over this adaptive and shiftable window. we agdregate
mated disparity! and the uncertainty of the estimation: b ’ ggreg

the raw matching cost to compute the SSD:

d(x,y) = arg .mind EsssD(x,y,d) > w(u, V) Eraw (u, v, d, k)
u(z,y) = ming Egssp(z,y,d)- Essp (. d, k) = (u0)EWy (2,y)

> w(w,v) ’

The value of uncertainty, is high when match quality is (us)eW s (2.y)

poor, as for a specular pixel. We use this quantity as a signal

for specular reflection when its value exceeds a threshold Wherew(u, v) is support weight of each pixel iy (z,y)
set to the mean value af z, y) plus one standard deviation. for (z,y), which we set to the constant 1 to get the mean.
With this, the specular pixels can be represented as a binary

imagesS determined byu: 4. Temporal selection

S(z,y) = { (1) :I zg:z; E i @) We further extend our windowing procedure by dynami-

cally selecting a subset of views where the support window

. . ) is believed to be mostly diffuse and unoccluded. From the

3. Adaptive and shiftable windows specular detection results, we can formulate a temporally
selective aggregated matching error:

With the detected specular pixels, we can perform more

accurate stereo correspondence that excludes them from ket c% y)>th(k)ESSD(x’y’d’ k)
processing by using adaptive windows. Adaptive windows, Esssp(z,y,d) = ——— wi(k) ;
proposed by Kanade and Okutomi [6], are square windows k20 , Cloy)>T

that extend by different amounts in each of four directions,

to make sure that the window size is large enough to includeWhere

enough intensity variation, but small enough to avoid the Clz,y) = Z [ — Sk (u,)]. @)
effects of projective distortion. We extend this idea of adap-
tive windows to exclude pixels detected as specular, and to
also be sure it contains enough diffuse points for reliable The constraintC(z,y) > T ensures that in the selected

matching. This results in windows not only adaptive in size, views the correlation window includes an appropriate num-
but also adaptive in shape. ber of diffuse points, wher&' is a percentage of pixels in

(u,0) €Wy (2,y)



the originaln x n shiftable window. The factorsut(k) 6. Discussion and conclusion

are weights foZssp (z, y, d, k) which could normalize for

the number of temporally selected views. We instead use We presented an approach for reliable stereo in the pres-
these weights to deal with occlusions in the selected views.ence of specular reflections by avoiding their detrimental

Views with a lower local SSD erroEssp(z,y,d, k) are effects. Stereo matching requires reflection to be Lamber-
more likely to have visible corresponding pixels, so we set tian, and we treat specularities as occlusions of this diffuse
wt(k) = 1 for the best 50% of images satisfying constraint reflection. Specular reflections are first detected by high

(4), andwt(k) = 0 for the remaining 50%. This temporal uncertainty in their depth estimation. Then to handle their

selection rule is similar to that described in [7]. presence in a reference image, we perform among other

Finally, we utilize a winner-take-all strategy to compute views a diffuse point correspondence that is constrained by
the final disparity: their disparity relationship to the highlight pixel. To account

for specular reflections and occlusions among the stereo

d(z,y) = arg mc}n Esssp(z,y,d). views, we presented extensions to adaptive and shiftable

windows with temporal selection. These ideas were verified
by experiments on synthetic and real scenes, which clearly
exhibit the benefit of specularity processing.

A potentially attractive extension to our work would be
to explicitly label specular pixels within a global energy

E : ¢ thetic i | minimization framework, and to reason about reflection
Or our experiments on Syntnetic Images, We USe €1eVengaia yithin this framework so that only truly diffuse pix-
320 x 240 images of a 57-image sequence generated USING, |5 are matched

Phong shading. The baseline distance between consecutive
views is 3.125mm. Our results are shown in Figure 1. (a) f
shows the reference image taken from our sequence. (b)Re erences

shows the ground truth depth. (c) shows the specular mask . .

we get from depth uncertainty, with white points represent- [1] D. Bhat and S._Nayar. Binocular sFereo in the presence of
. . . specular reflection. IARPA pages 11:1305-1315, 1994.

ing specular and black ones representing diffuse. For com- [2] D. Bhat and S. Nayar. Stereo in the presence of specular

5. Experimental Results

In this section, we present results on synthetic and real
seguences to validate our approach.

parison, we present the ground truth specular mask in (d). reflection. INICCV, pages 1086-1092, 1995.
As can be seen, very few specular pixels are missed. There [3] A. Bobick and S. Intille. Large occlusion steremt. J. of
are some diffuse pixels falsely labelled as specular. One ma- Computer Vision33(3):1-20, Sept. 1999.

G. Brelstaff and A. Blake. Detecting specular reflection us-

jor reason is geometric occlusion. Another reason is color (4] ) ) !
ing lambertian constraints. ICCV, pages 297-302, 1988.

b_Iendlng from more than one scene CO!Or imaged within a [5] H.Jin, A.Yezzi,and S. Soatto. Variational multiframe stereo
s!ngle pixel. Howevgr, the false Iabellmgs due to occlu- in the presence of specular reflections. TR01-0017, UCLA,
sions and color blending do not compromise the accuracy of 2001.

our depth estimation, because these 'pseudo’ specular pix- [6] T. Kanade and M. Okutomi. A stereo matching algorithm
els themselves are often origins of mismatches. By discard- with an adaptive window: Theory and experimefAMI,

ing them in the matching stage, we preserve the efficacy of 16(9):920-932, Sept. 1994. _ ) o
our algorithm in handling specular reflections. Figures 1.(e- [71 S- Kang, R. Szeliski, and J. Chai. Handling occlusions in
h) show the comparison of results of depth estimation using dense muli-view stereo. Technical Report MSR-TR-2001-

. . . . 80, Microsoft Research, Redmond, Sept. 2001.
SSSD over fixed square windows with and without temporal [8] S. Lee and R. Bajcsy. Detection of specularity using color

selection, shiftable windows and our approach. and multiple views.Image and Vision Computing 0:643—
We present experimental results on two real sequences, 653, 1992.

shown in Figure 2 and Figure 3. Sequence A consists of 11 [9] S. Linand S. W. Lee. A representation of specular appear-
248 x 184 images and sequence B consists 0ft32 x 204 ance. Inin ICCV'99, Sep. 1999. .
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ing perpendmularly to the direction of m(_)tlon. In Figure |EEE TPAM| 15, 1993.

2 and Figure 3, (a) shows the reference image. (b) shows[12] D. Scharstein and R. Szeliski. A taxonomy and evaluation of
the specular mask we get using uncertainty of initial depth dense two-frame stereo correspondence algorithms. Techni-
estimation. (c-d) show the comparison of stereo results us- cal Report MSR-TR-2001-81, MSR, Nov. 2001.

ing SSSD over fixed windows and our approach. (13] i |ShaRfer- Uski]“g gol\or tlf) stgpaégtelgggection components.
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(9) (h)

Figure 1. Experimental results for synthetic
scene: (a) original image; (b) ground truth
depth; (c) specular mask by depth uncer-
tainty; (d) ground truth specular mask; (e-h)
depth estimation results: (e) 3 x 3 centered
square windows; (f) 33 centered square win-
dows, with temporal selection; (g) 3 x 3 adap-
tive but non-shiftable windows, with temporal
selection; (h) adaptive and shiftable windows,
with temporal selection.

(d)

Figure 2. Experimental results for real scene

A: (a) original image; (b) specular mask by
depth uncertainty; (c-d) depth estimation re-

sults: (c) 5 x 5 centered square windows; (d)
adaptive and shiftable windows, with tempo-

ral selection.

(c) (d)

Figure 3. Experimental results for real scene

B: (a) original image; (b) specular mask by
depth uncertainty; (c) depth estimation re-

sults: (c) 7 x 7 centered square windows; (d)
adaptive and shiftable windows, with tempo-

ral selection.



