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Abstract

We address the problem of accurate depth estimation us-
ing multibaseline stereo in the presence of specular reflec-
tions. Specular reflections can cause the intensity and color
of corresponding points to change dramatically according
to different viewpoints, thus producing severe matching er-
rors for various stereo algorithms. In this paper, we pro-
pose a new method to deal with this problem by treating
specular reflections as occlusions. Our idea is to first de-
tect specular pixels by computing the uncertainty of depth
estimates. Then we combine the use of flexible windows
and an adaptively selected subset of images to avoid these
specular areas in all the multibaseline stereo images. Even
though specularities may exist in the reference image, ac-
curate depth is nevertheless estimated for all pixels. Exper-
iments show that our consideration of specular reflections
leads to improved stereo results.

1. Introduction

Stereo in the presence of specular reflection has been
a challenging problem. Correspondence of points among
stereo images relies heavily on the assumption of Lamber-
tian reflectance, where each scene point has the same color
or intensity in different views. Specular highlights in stereo
images differ substantially from Lambertian reflection in
that they change in position and color from view to view.
This difference in behavior is disruptive to stereo matching,
so we aim to circumvent these specularity effects.

A small amount of previous work addressed the problem
of specular reflections in stereo. Bhat and Nayar [1] con-
sider the likelihood of correct matching by analyzing rela-
tionship between stereo vergence and surface roughness. In
[2] they further propose a trinocular system where two im-
ages are used at a time in computation of depth at a point.
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Jin et al. [5] poses this problem within a variational frame-
work and seeks to estimate a shape model of the scene.
Of these methods, only [2] has endeavored to recover true
depth information for specular points, but it involves extra
efforts to determine a suitable trinocular configuration.

In this paper, we propose a stereo approach that treats
detected specular image regions as occlusions, since high-
lights effectively hide underlying Lambertian reflection.
While methods have been presented to deal with occlusion
due to scene geometry [7], they do not address the visibility
problem posed by specular reflections. Geometric occlu-
sions can occur when the view changes, but specular re-
flections typically appear in reference image itself. More-
over, shape and positioning of specular reflections in image
sequences can differ greatly from those for geometric oc-
clusions. To reduce the degradation in area-based correla-
tion caused by specular highlights, we first detect them in
stereo images using a correspondence uncertainty measure,
and then disregard these specular points in computation of
matching costs. We implicitly impose a depth continuity
constraint between the specular pixel and its neighboring
diffuse pixels by forming adaptive windows that ensure a
certain number of diffuse pixels are included. Since spec-
ular points are rejected, matching windows are adaptive in
size and have flexible shapes. They are used in a shiftable
windows strategy which is effective in dealing with pixels
near object boundaries and specular/diffuse boundaries. We
also employ temporal selection, which has been proven ef-
fective in handling semi-occluded regions [7]. Because of
large differences in intensity and color, a correspondence
cannot directly be computed between a specular pixel and
its diffuse counterpart, so we instead correspond diffuse
pixels of other images under the constraint of their disparity
relationship to the specular pixel in the reference image.

We show in our experiments that the use of adaptive
and shiftable windows, combined with temporal selection,
greatly improves the matching of pixels that are specular in
the reference image, pixels that are non-specular in the ref-
erence image but specular in others, and pixels that are near
the boundary between specular and diffuse regions.



2. Specularity detection by depth uncertainty

By forming specular masks for each image in a multi-
baseline sequence, we can selectively aggregate support
for depth estimation only from those pixels with high-
confidence color, i.e. the diffuse pixels. Various detection
algorithms have been developed that are based on physical
models. They utilize physics-based cues such as structured
light, color and polarization [4, 13, 10, 14, 8, 9]. For multi-
baseline stereo, we propose an effective method of specu-
larity detection based on uncertainty of depth estimates.

For a forward-facing multibaseline stereo configuration
[11], disparity varies linearly with horizontal pixel displace-
ment. In order to estimate the disparity for a pixel(x, y), we
first aggregate the matching costs over a window as the sum
of sum of squared differences (SSSD), namely

ESSSD(x, y, d) =
∑

k 6=0

∑

(u,v)∈W (x,y)

ρ
(
I0(u, v)−Îk(u, v, d)

)
,

(1)
whereρ(•) is per-pixel squared Euclidean distance in RGB
between reference imageI0 andÎk (warped image ofIk at
disparityd). W (x, y) is a square window centered at(x, y).

For each pixel(x, y) in reference image, the minimum
ESSSD for different disparity values determines the esti-
mated disparityd and the uncertaintyu of the estimation:

d(x, y) = arg mind ESSSD(x,y,d)

u(x, y) = mind ESSSD(x,y,d).

The value of uncertaintyu is high when match quality is
poor, as for a specular pixel. We use this quantity as a signal
for specular reflection when its value exceeds a thresholdt,
set to the mean value ofu(x, y) plus one standard deviation.
With this, the specular pixels can be represented as a binary
imageS determined byu:

S(x, y) =
{

0 if u(x, y) ≤ t
1 if u(x, y) > t.

(2)

3. Adaptive and shiftable windows

With the detected specular pixels, we can perform more
accurate stereo correspondence that excludes them from
processing by using adaptive windows. Adaptive windows,
proposed by Kanade and Okutomi [6], are square windows
that extend by different amounts in each of four directions,
to make sure that the window size is large enough to include
enough intensity variation, but small enough to avoid the
effects of projective distortion. We extend this idea of adap-
tive windows to exclude pixels detected as specular, and to
also be sure it contains enough diffuse points for reliable
matching. This results in windows not only adaptive in size,
but also adaptive in shape.

In the formation of these adaptive windows, we use the
specular detectionSk from (2) for respective imagesIk. For
each pixel(x, y), the window sizen is first set to an initial
valueni, thenn is extended until

C(x, y) =
∑

(u,v)∈Wn×n(x,y)

[1− Sk(u, v)] ≥ n2 × α. (3)

whereα is a ratio which we set to 0.5. For correspon-
dence between image pairsI0 andIk, we modify then× n
shiftable windowWn×n(x, y) into the windowWf (x, y)
whose support is flexibly shaped to exclude specularity:

Wf (x, y) =
{

(u, v) | (u, v) ∈ Wn×n(x, y) &
S0(u, v) = 0 & Sk(u, v) = 0

}
.

We also implement this window as shiftable, using a sep-
arable sliding min-filter [12]. Basic idea of shiftable win-
dows is to examine several windows that include the pixel
of interest, not just the window centered at that pixel. This
strategy has been shown to effectively handle geometric oc-
clusions [3]. We show that integrated use of adaptive and
shiftable windows improves the matching of pixels that are
specular in some images and non-specular in others. This is
furthermore effective in dealing with pixels near boundaries
between specular and diffuse regions.

Over this adaptive and shiftable window, we aggregate
the raw matching cost to compute the SSD:

ESSD(x, y, d, k) =

∑
(u,v)∈Wf (x,y)

w(u, v)Eraw(u, v, d, k)

∑
(u,v)∈Wf (x,y)

w(u, v)
,

wherew(u, v) is support weight of each pixel inWf (x, y)
for (x, y), which we set to the constant 1 to get the mean.

4. Temporal selection

We further extend our windowing procedure by dynami-
cally selecting a subset of views where the support window
is believed to be mostly diffuse and unoccluded. From the
specular detection results, we can formulate a temporally
selective aggregated matching error:

ESSSD(x, y, d) =

∑
k 6=0 , C(x,y)>T

wt(k)ESSD(x, y, d, k)

∑
k 6=0 , C(x,y)>T

wt(k)
,

where

C(x, y) =
∑

(u,v)∈Wf (x,y)

[1− Sk(u, v)]. (4)

The constraintC(x, y) > T ensures that in the selected
views the correlation window includes an appropriate num-
ber of diffuse points, whereT is a percentage of pixels in



the originaln × n shiftable window. The factorswt(k)
are weights forESSD(x, y, d, k) which could normalize for
the number of temporally selected views. We instead use
these weights to deal with occlusions in the selected views.
Views with a lower local SSD errorESSD(x, y, d, k) are
more likely to have visible corresponding pixels, so we set
wt(k) = 1 for the best 50% of images satisfying constraint
(4), andwt(k) = 0 for the remaining 50%. This temporal
selection rule is similar to that described in [7].

Finally, we utilize a winner-take-all strategy to compute
the final disparity:

d(x, y) = arg min
d

ESSSD(x, y, d).

5. Experimental Results

In this section, we present results on synthetic and real
sequences to validate our approach.

For our experiments on synthetic images, we use eleven
320 × 240 images of a 57-image sequence generated using
Phong shading. The baseline distance between consecutive
views is 3.125mm. Our results are shown in Figure 1. (a)
shows the reference image taken from our sequence. (b)
shows the ground truth depth. (c) shows the specular mask
we get from depth uncertainty, with white points represent-
ing specular and black ones representing diffuse. For com-
parison, we present the ground truth specular mask in (d).
As can be seen, very few specular pixels are missed. There
are some diffuse pixels falsely labelled as specular. One ma-
jor reason is geometric occlusion. Another reason is color
blending from more than one scene color imaged within a
single pixel. However, the false labellings due to occlu-
sions and color blending do not compromise the accuracy of
our depth estimation, because these ’pseudo’ specular pix-
els themselves are often origins of mismatches. By discard-
ing them in the matching stage, we preserve the efficacy of
our algorithm in handling specular reflections. Figures 1.(e-
h) show the comparison of results of depth estimation using
SSSD over fixed square windows with and without temporal
selection, shiftable windows and our approach.

We present experimental results on two real sequences,
shown in Figure 2 and Figure 3. Sequence A consists of 11
248× 184 images and sequence B consists of 11432× 204
images , taken at regular intervals with a camera mounted
on a horizontal translation stage, with the camera point-
ing perpendicularly to the direction of motion. In Figure
2 and Figure 3, (a) shows the reference image. (b) shows
the specular mask we get using uncertainty of initial depth
estimation. (c-d) show the comparison of stereo results us-
ing SSSD over fixed windows and our approach.

As exhibited in our experimental results, our stereo algo-
rithm is effective in handling the problematic cases of spec-
ular pixels and pixels near specular/diffuse boundaries.

6. Discussion and conclusion

We presented an approach for reliable stereo in the pres-
ence of specular reflections by avoiding their detrimental
effects. Stereo matching requires reflection to be Lamber-
tian, and we treat specularities as occlusions of this diffuse
reflection. Specular reflections are first detected by high
uncertainty in their depth estimation. Then to handle their
presence in a reference image, we perform among other
views a diffuse point correspondence that is constrained by
their disparity relationship to the highlight pixel. To account
for specular reflections and occlusions among the stereo
views, we presented extensions to adaptive and shiftable
windows with temporal selection. These ideas were verified
by experiments on synthetic and real scenes, which clearly
exhibit the benefit of specularity processing.

A potentially attractive extension to our work would be
to explicitly label specular pixels within a global energy
minimization framework, and to reason about reflection
state within this framework so that only truly diffuse pix-
els are matched.
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Figure 1. Experimental results for synthetic
scene: (a) original image; (b) ground truth
depth; (c) specular mask by depth uncer-
tainty; (d) ground truth specular mask; (e-h)
depth estimation results: (e) 3 × 3 centered
square windows; (f) 3×3 centered square win-
dows, with temporal selection; (g) 3× 3 adap-
tive but non-shiftable windows, with temporal
selection; (h) adaptive and shiftable windows,
with temporal selection.
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Figure 2. Experimental results for real scene
A: (a) original image; (b) specular mask by
depth uncertainty; (c-d) depth estimation re-
sults: (c) 5× 5 centered square windows; (d)
adaptive and shiftable windows, with tempo-
ral selection.
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Figure 3. Experimental results for real scene
B: (a) original image; (b) specular mask by
depth uncertainty; (c) depth estimation re-
sults: (c) 7× 7 centered square windows; (d)
adaptive and shiftable windows, with tempo-
ral selection.


