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Abstract

In this paper, we present a method that integrates cues
from shading, shadow and specular reflections for estimat-
ing directional illumination in a textured scene. Texture
poses a problem for lighting estimation, since texture edges
can be mistaken for changes in illumination condition, and
unknown variations in albedo make reflectance model fit-
ting inpractical. Unlike previous works which all assume
known or uniform reflectance, our method can deal with the
effects of textures by capitalizing on physical consistencies
that exist among the lighting cues. Since scene textures do
not exhibit such coherence, we use this property to minimize
the influence of texture on illumination direction estimation.
For the recovered light source directions, a technique for
estimating their intensities in the presence of texture is also
proposed.

1 Introduction

The appearance of objects depends greatly on illumina-
tion conditions. Since substantial image variation can result
from shading, shadows and highlights, there has been much
research on dealing with such lighting effects, such as in
face recognition where variations in appearance are gener-
ally greater for changes in illumination than for changes in
face identity [5]. Because of the significant effect of light-
ing, it is often helpful to know the lighting conditions of a
scene so that an image can be more accurately analyzed.

Recovery of illumination conditions is also important for
computer graphics applications, such as inserting correctly-
shaded virtual objects into augmented reality systems [9]
and lighting reproduction for compositing actors into video
footage [2]. While these graphics methods introduce spe-
cial devices into a scene to capture the lighting distribution,
estimation of illumination in a general image has proven to
be a challenge.
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1.1 Previous works

Previous approaches for illumination estimation have
obtained information from either shading, shadows or spec-
ular reflections. Most methods are based on shading, and
many of these focus on recovering the direction of a single
light source [18, 8]. To deal with the more common sce-
nario of multiple illuminants, several methods have been
proposed. Hougen and Ahuja [4] solve a set of linear equa-
tions for intensities of sampled light directions. Yang and
Yuille [15] use image intensities and surface normals at oc-
cluding boundaries to constrain illuminant directions. Ra-
mamoorthi and Hanrahan [7] compute a low-frequency il-
lumination distribution from a deconvolution of reflectance
and lighting. Zhang and Yang [17] estimate lighting direc-
tions from critical points that have surface normals perpen-
dicular to an illuminant direction. Based on this, Wang and
Samaras [14] segmented images into regions of uniform
lighting and then performed estimation by recursive least-
squares fitting of the Lambertian reflectance model to these
regions.

Cast shadows can also provide important information
about light directions and intensities. Sato et al. [10, 12, 11]
utilized brightness values within shadows to solve a system
of equations for light source intensities at sampled direc-
tions.

Specularity-based methods typically rely upon a calibra-
tion sphere inserted into the scene, where specularity posi-
tions and the mirror reflection property give illuminant di-
rections. Debevec [1] uses a mirrored ball to capture real-
world illumination environments. Powell et al. [6] use three
mirrored spheres at known relative positions to triangulate
light source locations. Zhou and Kambhamettu [19] capture
a stereo image pair of a sphere that exhibits both diffuse and
specular reflection, where specularities are used to triangu-
late light positions and diffuse reflections provide informa-
tion on light intensities.

These previous methods have shown some success in
lighting estimation, but they also are restricted by some
shortcomings. In shading-based estimation, critical points

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set 
0-7695-1950-4/03 $17.00 © 2003 IEEE 



Figure 1. Consistency of shading critical points
and shadow contours (blue) with respect to a illu-
minant direction. Such consistency does not exist
between texture edges (green) on the sphere and
on the planar surface.

and image intensity features are often difficult to detect ac-
curately because their subtle appearance can be masked by
image noise. For shadow techniques, shadows that result
from frontal illumination tend to be occluded by the object,
and frontal lighting is of most importance in image appear-
ance. Methods based on specularities all require the use of a
special calibration object, so they cannot be used for general
images.

A major limitation of all these previous methods is that
known and/or uniform reflectance of the surfaces is an es-
sential condition. The presence of texture would disrupt the
detection of critical points in shading. For shadow-based
algorithms, texture would either distort brightness values or
be mistaken for shadow edges. Because of this reflectance
assumption, these methods are unsuitable for many real
scenes.

1.2 Overview

Consideration of only a single illumination cue does not
take full advantage of the rich information present in an im-
age. In this paper, we propose to integrate shading, shadow
and specularity information in a single framework for esti-
mating multiple illuminant directions. One reason for com-
bination is that each individual cue is suspectable to error,
so a consensus of these independent cues provides a more
robust estimation. They also complement each other in that
shading and specularities offer more reliable performance
for frontal illumination, while shadows yield better clues
about anterior lighting.

Another reason for integration is that we can exploit the
physical consistencies that exist among these cues to avoid
the confounding effects of scene texture. Fig. 1 illustrates
this concept for shading and shadows. The curves drawn in
green represent texture edges, and the curves drawn in blue
denote lighting edges from critical points and shadows. For
the given illuminant direction, there is a contour of critical

points (critical boundary) on the sphere and a cast shadow
from this sphere onto the planar surface. A relationship be-
tween shading and shadows is that the line defined by the
light source direction through a critical point must include
a shadow edge point. In other words, there is a correspon-
dence between critical points and shadow edge points with
respect to the light direction. Such consistency does not
exist among texture edges because there is no physical re-
lationship between the texture on the sphere and the texture
on the plane. We take advantage of this property to filter out
texture effects from our illuminant estimation.

From Fig. 1, we can furthermore notice that some con-
sistency also must exist within each cue. For shading, a sub-
set of critical points on a critical boundary implies that the
other points on the critical boundary should be present. A
similar observation can be made about cast shadows. In our
proposed method, we use this characteristic to help evalu-
ate the presence of light sources, and also to reject texture
edges from the estimation process.

Our method uses this distinction between lighting edges
and texture edges to determine the light intensities of the es-
timated directions. From these edges, our technique locates
pixels of the same texture color that have different light-
ing conditions. With these pixels a relationship between the
two lighting conditions is formed without estimating texture
albedos, and a system of these constraints is used to solve
for the light intensities. A related approach is that of [11],
where an additional image is captured without the occlud-
ing object, and is used to cancel out the effect of albedo
in the image with the occluding object. An additional im-
age without the occluding object, though, is rarely available
for general canned images. Rather than using a correspon-
dence between two registered images to deal with albedo,
our method relates certain pixels within a single image to
estimate illumination intensities in the presence of textures.

The primary contributions of this work towards illumi-
nation estimation are as follows:

• Integration of shading, shadows and specular reflec-
tions in a single framework.

• Consideration of data consistency within each cue.

• Utilization of consistency among cues to distinguish
lighting changes from texture edges in a scene.

• Texture-independent estimation of light source inten-
sities.

We assume that texture edges in the scene are not too
densely distributed, since this would effectively mask all
the shadow and shading information, and lead to numerous
coincidental correspondences between critical points and
shadow edges. Like many previous methods, we also as-
sume the lights to be distant point sources and that diffuse
reflectance is Lambertian.
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There exists one recent work [13] that combines shading
and shadows by adding the shadow-based estimation of [12]
into the shading algorithm of [14]. In this approach, texture
is not addressed, and consistency is only lightly considered
by removing weak critical points for illumination directions
processed by the shadow algorithm. Another related work
attempts to distinguish shadow boundaries from reflectance
edges by projecting image chromaticity values along the
direction of the Planckian locus [3]. In this method, the
chromaticity-space projection will mistakenly map together
different texture colors that lie along the same Planckian
locus, and some results indicate that shadow edges are re-
duced in magnitude but not eliminated.

In our algorithm, we take as input a single image that
is annotated with partial geometry of the scene. As in
[10, 12, 14] or [16], this geometry can be provided using an
interactive modeling tool. From this information, we evalu-
ate the consistency of shading, shadows and specular reflec-
tions as described in Section 2, and from their integrated
information, the illuminant directions are estimated. The
relative intensities of these illuminants are then computed
using the technique described in Section 3. Experimental
results are given in Section 4, followed by a discussion of
our algorithm in Section 5.

2 Multiple-cue integration

The approach we take for integrating cues is based on
physical consistency. For a potential illuminant direction,
the existence of a light source is more likely if it is sup-
ported by more than one cue, such as when corresponding
critical points, shadow edges and specularities are present.
Additionally, evidence is more convincing if within a cue,
support for the light direction is more complete. A full criti-
cal boundary or shadow contour provides greater validation
of a light direction than a few scattered points. Attention
to consistency both among cues and within each cue can
lead to more robustness and can also avoid the problems
presented by texture edges, which do not exhibit such co-
herence.

Our method first determines the expected positions of
critical points, shading edges and specularities for hypo-
thetical lighting directions sampled from a tesselated hemi-
sphere. For a direction L, let D(L) denote the set of ex-
pected unoccluded shadow edges, C(L) be the set of criti-
cal point positions that correspond to the elements in D(L),
and S(L) be the expected specularity peaks determined us-
ing the mirror reflection law. These sets are all computed
from the scene geometry, and expressed in the 3D global
coordinate frame. Note that some points in C(L) may be
occluded in the image.

After computing the expected positions of the three cues
for a given light direction, our method then checks whether

these cues are present in the image at these predicted lo-
cations. Shadow boundary points in the image are com-
puted by Canny edge detection. For each point xD in D(L),
we set PD(xD) = 1 if the distance of its image projection
from a detected edge falls below a threshold, which allows
for some inexactness due to geometric inaccuracies. Other-
wise, PD(xD) = 0. Since texture edges are also included
in the edge detection results, they will introduce error into
PD that needs to be discounted by consistency measures.

To determine whether a critical point exists at an ex-
pected location xC , we apply the critical point detection
technique of [14] in the perpendicular direction to the crit-
ical boundary at this point. A benefit of discerning critical
points with respect to a light direction L, instead of solving
for them independently, is that a critical boundary can be
computed, and the intensity profile features that character-
ize critical points are more pronounced along the perpen-
dicular direction to this boundary. We set PC(xC) = 1 for
each unoccluded point xC in C(L) whose image projection
is detected as a critical point; otherwise, PC(xC) = 0. For
occluded points xC , we set PC(xC) = 1, so that they will
not be considered inconsistent with the presence of other
visible cues. A modification we add to the method of [14]
is that our algorithm disregards points where intensity pro-
file parameters cannot be accurately fit. Such cases occur
in local windows of dense texture where intensity profiles
are useless for critical point detection. Many texture edges
will nevertheless be detected as critical points, and critical
points found on surface normal discontinuities can possibly
result from shading differences instead of an actual critical
boundary.

Specularity peaks are simply computed as pixels whose
intensity exceeds a threshold and is the local maximum
within a 5x5 window centered on the pixel. We set
PS(xS) = 1 for a point xS in S(L) if its image projec-
tion lies within a certain distance of a specular peak pixel;
otherwise, PS(xS) = 0. Since some objects in the image
may be composed of non-specular material, intra-cue con-
sistency is not considered for the specularity cue. As a re-
sult, if PS(xS) = 1 for any xS in S(L), we consider the
specularity cue to support light direction L, and we denote
this by Sp(L) = 1. Otherwise, Sp(L) = 0.

With these detected cues, inter-cue consistency for L is
then expressed as∑

xD∈D(L)

[PC(x′
D) ∧ PD(xD)] ∨ [PD(xD) ∧ Sp(L)],

where x′
D denotes the point xC that corresponds to the

shadow point xD. For a given light direction, this quantity
measures the consistent presence of shadows and at least
one other cue. Our method does not require consistency of
all three cues because some objects exhibit little specular re-
flection, and critical points may become too subtle to detect
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when there are numerous light sources present.
To incorporate intra-cue consistency, we account for how

much of a shadow contour or critical boundary is present in
the image. This is done by normalizing the above equa-
tion by the total number of expected points |D(L)| on the
shadow contour. With the normalized values, the prospect
of L containing an illumination source is measured as

γ(L) =
1

|D(L)|
∑

xD∈D(L)

[PC(x′
D) ∧ PD(xD)]

∨[PD(xD) ∧ Sp(L)]. (1)

For values of γ(L) that are a local maximum and exceed a
given threshold, L is estimated as a light direction. To re-
fine an estimated light source direction, our method samples
more finely within the pencil of neighboring light directions
on the tesselated hemisphere, and then finds the sample with
the largest value of γ.

This integration based on consistency greatly reduces
texture effects, since texture edges in shading and in shad-
ows are generally inconsistent in position with respect to
lighting and geometry. Some coincidental consistencies due
to texture will often be present, but they typically do not
affect the estimation results since they are too infrequent
and random in location to exhibit a high degree of intra-cue
consistency. With the estimated light directions, the corre-
sponding lighting edges can be computed, then subtracted
from the original set of critical points and shadow edges to
give a set of estimated texture edges.

3 Light intensity estimation

After estimating the illuminant directions, the intensities
of the light sources are computed in a manner that avoids
the effects of texture. In our technique, we first divide the
image into regions of uniform lighting conditions. For each
image pixel, its visibility with respect to each light direc-
tion can be computed from the geometry. Pixels with the
same visibility conditions are grouped together such that
each group is a connected component in the image and is
connected geometrically in the scene. Let S(R) denote the
set of light sources visible from region R. For each region
R, let the set of adjacent regions be represented by Λ(R),
where adjacency is determined from the geometry.

For each pair of adjacent regions, we find several pairs
of pixels between the two regions such that each pair has a
similar reflectance value. From the set of all selected pixel
pairs, a system of equations is formed to solve for the light
intensities. In our implementation, we utilize the Lamber-
tian model for diffuse reflectance, so we locate pixel pairs
that have the same albedo. Specifically, we first sample
points along the boundary between each pair of adjacent
regions, and take these sampled points as seed points. For
each seed point, a circular window is grown such that it lies

within the two regions and its pixels do not lie within a cer-
tain distance from the estimated texture edges. This window
contains two sets of pixels with the same texture color but
with different illumination conditions. To reduce suscep-
tibility to slight errors in illuminant directions, we discard
from the window all pixels within a given buffer zone sur-
rounding the region boundary.

Our method then determines the pixel of median in-
tensity in each of the two sets. With this pair of pix-
els (xR1 , xR2), the lighting conditions of the two regions
R1, R2 can be related. All the selected pixel pairs from all
adjacent regions forms a set Ω.

From the lighting additivity property, we can express the
color of a pixel x in region R as

I(x) = ρ(x)
∑

i∈S(R)

liLi · N(x) (2)

where ρ is the albedo, N is the surface normal, and li is the
light intensity from direction Li. With this, we can form a
system of equations for light intensities l1, l2, .., lk, which
are solved by least-squares minimization:

arg min
l2,l3,..,lk

∑
(xR1 ,xR2 )∈Ω

[ ∑
i∈S(R1)

liLi · N(xR1)∑
j∈S(R2)

ljLj · N(xR2)
− I(xR1 )

I(xR2 )

]2

(3)
where l1 = 1, and k is the number of light directions.
This quotient of Lambertian equations effectively avoids
dependence on the unknown albedo values. Note that each
R, G, B color channel can be computed separately in this
way, so that illuminant colors could be recovered as well.
The intensity of L1 is set to 1 because only relative inten-
sity values can be computed from the system of equations.
This arises from an inherent ambiguity between illumina-
tion intensity and albedo magnitude, as seen in Eq.(2).

The magnitude of the minimized error in (3) is an indi-
cator of errors in the estimated light directions. To improve
the direction estimates, we perturb the light directions in an
effort to reduce the error in (3). In this manner, both the
illuminant directions and intensities can be refined.

4 Experimental Results

With our proposed algorithm, we estimated the illumi-
nant directions for different images. The number of sam-
pled illuminant directions is 1800, and for each estimated
direction, 72 more finely sampled directions are used for
more precise estimation. The lights we used are all white
sources, and for all images we set the γ threshold to 0.6.
The distance threshold for computing PD(xD) is 8 pixels
for coarse sampling and 2 pixels for fine sampling. For light
intensity estimation, we sample the lighting boundary at ev-
ery 15 points, and the buffer zone width from the lighting
boundary and the texture edges is 5.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Illumination estimation for a textured non-specular vase on a textured plane. (a) original image; (b)
Canny edges; (c) detected specularities; (d) map of γ with respect to spherical angles of L; (e) illumination
edges for estimated light directions; (f) remaining texture edges; (g) regions of uniform lighting condition;
(h) pixel pairs for light intensity estimation (marked on the blended image of the (a)and(g)).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Intermediate integration results. (a,e) expected lighting edges for eventually estimated light direc-
tions (green: visible, yellow: occluded, blue: specular); (b,f) detected lighting edges and specularities (red);
(c-d,g-h) expected and detected edges for light directions that are not estimated.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Illumination estimation for a textured specular bottle on a textured plane. (a-h) same as in Fig.2.

Light Ground truth Estimated
source x y z intensity x y z intensity

1 0.2111 0.7935 0.5707 1.0000 0.2038 0.7882 0.5807 1.0000
2 0.5499 -0.4581 0.6984 0.9081 0.5495 -0.4450 0.7071 0.9234
3 -0.7925 0.1991 0.5764 0.8709 -0.7882 0.2038 0.5807 0.8852

Table 1. Ground truth comparison of light estimation for vase image

Light Ground truth Estimated
source x y z intensity x y z intensity

1 0.5549 -0.6680 0.4959 1.0000 0.5536 -0.6716 0.4924 1.0000
2 0.1640 -0.6824 0.7123 0.9769 0.1636 -0.6815 0.7132 0.9655
3 -0.7544 -0.2699 0.5984 0.9330 -0.7528 -0.2666 0.6018 0.9113
4 -0.4455 0.6567 0.6084 0.9707 -0.4436 0.6577 0.6088 0.9821
5 0.3232 0.7617 0.5616 0.9853 0.3201 0.7540 0.5736 0.9607
6 0.7321 0.5055 0.4567 1.1001 0.7320 0.4937 0.4695 1.1352

Table 2. Ground truth comparison of light estimation for specular bottle image
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The first image, displayed in Fig.2(a), is of a textured
vase lying on a textured planar surface. There are three
light sources present. The shadow edge points found by
Canny edge detection are shown in (b). The specularity cue
is not present in this scene, as shown in (c), so we depend
on the consistency between shading and shadows for our es-
timation. After integrating shading and shadows using our
algorithm, the support of each lighting direction is depicted
in (d), where the horizontal direction represents the azimuth
angle and the vertical direction denotes the elevation angle.
From this, our method determines three illuminants which
have critical points and shadow edges exhibited in (e). Re-
moving the illumination edge points from the Canny results
leaves the texture edge points shown in (f). With the esti-
mated directions, the image can be partitioned into regions
of uniform lighting condition illustrated in (g). With the
pixel pairs marked in (h), where each pixel pair and the cor-
responding seed point on the lighting edge are connected by
a triangle, the illuminant intensities are computed.

Experiments were also done for an image of a specular
object lying on a textured surface, illuminated by six light
sources. The original image and the results are displayed in
Fig.4. In this scene, estimation of critical points cannot be
done reliably because the dense textures prevent accurate
fitting of intensity profiles. Since most shading informa-
tion is consequently disregarded, and the burden of proof is
shifted to the consistency between shadows and specular-
ities. For instances where some points are incorrectly de-
tected as specular, such as some bright textures on the lid,
our method relies on intra-cue consistency of the shadow
edges to avoid errors in illumination direction estimates.

Some intermediate results of the integration process are
exhibited in Fig.3. For one of the eventually estimated light
directions, we show the expected critical points, shadow
edges, and specular peaks in (a) and (e), where the visible
illumination edge points are marked in green, the occluded
ones are in yellow, and the specular peaks in blue. (b) and
(f) give the corresponding integration results, where red de-
notes points on the expected shadow edges, critical points
and specular peaks that are detected. As can be seen for the
given light directions, much consistency exists and the inte-
gration results provide strong evidence. We also show ex-
amples for light directions that are ultimately not estimated.
In (c) and (g), the expected lighting edges for this direction
are drawn, and in (d) and (h) the expected lighting edges
that are detected are marked by red as in (b) and (f). The
false detections in (d) and (h) do not exhibit much inter-cue
or intra-cue consistency, so these two light directions are
not strongly supported.

Table 1 and Table 2 list comparisons of the estimated
directions and intensities with ground truth obtained from
high dynamic range images of a mirrored sphere. The light
direction is expressed as a unit vector in a coordinate system

centered on the sphere. Intensity values are given relative to
light source 1.

Although our experiments have been done for single ob-
jects, multiple objects would provide additional data. In the
case of multiple objects, it would be assumed that they do
not interact with each other, such as by light occlusion or
having overlapping shadows.

5 Discussion

We note that cue integration does not apply for some
cases of backlighting, since only cast shadow information
may be available. In this case, illumination estimation could
potentially be performed based on consistency within the
shadow cue. For most computer vision purposes though,
the backlighting distribution is of far less importance than
frontal lighting, since it has relatively little impact on object
appearance. We also note that although some cast shad-
ows are occluded for frontal lighting, this does not affect
the consistency calculations of critical points on the visible
object surface, because their corresponding shadow edges
lie to the sides of the object, not behind it.

Detection of low-level features such as edges and crit-
ical points can be affected by sensor noise and imaging
conditions. Despite this obstacle, we base our method on
illumination edges because textures significantly compli-
cate lighting estimation based on image intensities. To
obtain illumination information from image colors, the re-
flectances over the textured surfaces need to be recovered,
and this remains a challenging research problem. The posi-
tions of lighting edges, however, are independent of scene
reflectances and can be used for illuminant direction esti-
mation without regard of reflectance properties.

Our algorithm does not deal with extended or diffuse
lighting. While it would be useful to handle both textures
and continuous lighting distributions together, this presents
a major challenge given our scenario of only a single im-
age with no assumptions about scene reflectance. Previous
methods that address continuous lighting require additional
images or restrictive assumptions on the scene. We pur-
posely do not use more than one image or knowledge of the
reflectance, since this information is not available for gen-
eral canned images. The combination of continuous light-
ing and scene textures is nevertheless an important problem,
and we plan to investigate in future work possible ways to
make this problem more manageable.

In this paper, we have presented a method for illumi-
nation estimation that integrates different cues for greater
robustness and for handling scene texture. Consistency
among cues and within each cue is the basic principle be-
hind our integration framework. To reduce the influence
of texture on the illumination estimation process, our al-
gorithm exploits the physical coherence between shadow
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edges and critical points that texture edges do not have.
From estimated lighting directions and texture edges, a sys-
tem of constraints is formulated for solving the lighting in-
tensities in a texture-independent manner. Although the
presence of continuously varying texture could render the
shading or shadow cue useless, the ability of our method
to handle a fair amount of texture significantly increases
the applicability of illumination estimation methods, which
have not addressed texture until now.
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