
Motivation

Robust Architecture Odyssey

• To enhance the robustness of deep networks, 
extensive efforts on specialized learning algorithms 
and loss functions have been developed

• However, the intrinsic influence of network 
architecture on network resilience to adversarial 
perturbations has not been well studied

• We take the first step to systematically understand 
adv. robustness from an architectural perspective

RobNet Search Framework

Finding #1: Densely connected pattern
benefits network robustness

Finding #2: Architecture strategy
under computational budget

Finding #3: FSP matrix distance as
robustness indicator

Results with RobNet

Conclusions
• See our models in

https://github.com/gmh14/RobNets
• Also checkout the project page

When NAS Meets Robustness:
In Search of Robust Architectures against Adversarial Attacks

• What kind of network architecture patterns is crucial 
for adversarial robustness?

• Given a budget of model capacity, how to allocate the
parameters of the architecture to efficiently improve 
the network robustness?

• What is the statistical indicator for robust network 
architectures?
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Search Space:
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Robust Search Algorithm:
• One-Shot NAS;
• PGD training for super-net;
• finetuning a few epochs for individual

candidate architecture

• Correlation between Architecture Density & Robustness
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Portion of Direct Convolutions
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• Under small computational budget, adding conv 
operations to direct edges is more effective.

• Flow of solution procedure (FSP) matrix

• A robust network has a lower FSP matrix loss in the 
deeper cells of network.
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• CIFAR-10

• ImageNet & other datasets

• Boosting Existing Technique

• Visualization of architectures of RobNet family

Minghao Guo*, Yuzhe Yang*, Rui Xu, Ziwei Liu, Dahua Lin
The Chinese University of Hong Kong & MIT CSAIL
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RobNet Family RobNet-free
RobNet-large
RobNet-medium
RobNet-small
VGG-16
ResNet-18
ResNet-50
MobileNetV2
ResNeXt-29 (2x64d)
WideResNet-28-10
DenseNet-121

CIFAR-10
PGD100

Robustness Evaluation:
• 1,000 randomly sampled candidates;
• white-box PGD

https://github.com/gmh14/RobNets

