

Motivation

- To enhance the robustness of deep networks, extensive efforts on specialized learning algorithms and loss functions have been developed
- However, the intrinsic influence of network architecture on network resilience to adversarial perturbations has not been well studied
- We take the first step to systematically understand adv. robustness from an architectural perspective

Robust Architecture Odyssey

- What kind of network architecture patterns is crucial for adversarial robustness?
- Given a budget of model capacity, how to allocate the parameters of the architecture to efficiently improve the network robustness?
- What is the statistical indicator for robust network architectures?

When NAS Meets Robustness: In Search of Robust Architectures against Adversarial Attacks

Minghao Guo*, Yuzhe Yang*, Rui Xu, Ziwei Liu, Dahua Lin The Chinese University of Hong Kong & MIT CSAIL

RobNet Search Framework

(a) Search space of RobNet

Robust Search Algorithm:

- One-Shot NAS;
- PGD training for super-net;
- finetuning a few epochs for individual candidate architecture

Robustness Evaluation:

- 1,000 randomly sampled candidates;
- white-box PGD

Finding #1: Densely connected pattern benefits network robustness

Correlation between Architecture Density & Robustness

Adversarial Accuracy (%)

Finding #2: Architecture strategy under computational budget

 Under small computational budget, adding conv operations to direct edges is more effective.

Finding #3: FSP matrix distance as robustness indicator

• Flow of solution procedure (FSP) matrix

$$G_{l}(x;\theta) = \sum_{s=1}^{h} \sum_{t=1}^{w} \frac{F_{l,s,t}^{in}(x;\theta) \times F_{l,s,t}^{out}(x;\theta)}{h \times w}$$

A robust network has a lower FSP matrix loss in the deeper cells of network.

Results with RobNet

CIFAR-10

Models	Model Size	Natural Acc.	FGSM	\mathbf{PGD}^{20}	\mathbf{PGD}^{100}	DeepFool	MI-FGSM
ResNet-18	11.17 M	78.38%	49.81%	45.60%	45.10%	47.64%	45.23%
ResNet-50	23.52M	79.15%	51.46%	45.84%	45.35%	49.18%	45.53%
ideResNet-28-10	36.48M	86.43%	53.57%	47.10%	46.90%	51.23%	47.04%
DenseNet-121	6.95M	82.72%	54.14%	47.93%	47.46%	51.70%	48.19%
RobNet-small	4.41M	78.05%	53.93%	48.32%	48.07%	52.96%	48.98%
obNet-medium	5.66M	78.33%	54.55%	49.13%	48.96%	53.32%	49.34%
RobNet-large	6.89M	78.57%	54.98%	49.44%	49.24%	53.85%	49.92%
obNet-large-v2	33.42M	85.69%	<u>57.18%</u>	<u>50.53%</u>	<u>50.26%</u>	<u>55.45%</u>	<u>50.87%</u>
RobNet-free	5.49M	82.79%	58.38%	52.74%	52.57%	57.24%	52.95%

ImageNet & other datasets

Models	Mode	Size	Natural Acc	PGD ¹⁰	PGD ⁵⁰	PGD ¹⁰⁰	Models	SVHN	CIFAR-100	Tiny-ImageNet
esNet-50	23.5	2M	60.20%	32.76%	31.87%	31.81%	ResNet-18	46.08%	22.01%	16.96%
esNet-101	42.5	2M	63.34%	35.38%	34.40%	34.32%	ResNet-50	47.23%	22.38%	19.12%
esNet-152	58.1	6M	64.44%	36.99%	36.04%	35.99%	RobNet-larg	e 51.26%	23.19%	19.90%
bNet-large	12.7	6M	61.26%	37.16%	37.15%	37.14%	RobNet-free	55.59%	23.87%	20.87%

Boosting Existing Technique

Models	Natural Acc.	\mathbf{PGD}^{100}
ResNet-18	78.38%	45.10%
ResNet-18 + Denoise	78.75%	45.82%
RobNet-large	78.57%	49.24%
RobNet-large + Denoise	84.03%	49.97%

Visualization of architectures of RobNet family

Conclusions

See our models in https://github.com/gmh14/RobNets Also checkout the project page

