
When NAS Meets Robustness:
In Search of Robust Architectures against Adversarial Attacks

Minghao Guo1∗ Yuzhe Yang2∗ Rui Xu1 Ziwei Liu1 Dahua Lin1

1The Chinese University of Hong Kong 2MIT CSAIL

Abstract

Recent advances in adversarial attacks uncover the
intrinsic vulnerability of modern deep neural networks.
Since then, extensive efforts have been devoted to enhancing
the robustness of deep networks via specialized learning al-
gorithms and loss functions. In this work, we take an archi-
tectural perspective and investigate the patterns of network
architectures that are resilient to adversarial attacks. To
obtain the large number of networks needed for this study,
we adopt one-shot neural architecture search, training a
large network for once and then finetuning the sub-networks
sampled therefrom. The sampled architectures together
with the accuracies they achieve provide a rich basis for our
study. Our “robust architecture Odyssey” reveals several
valuable observations: 1) densely connected patterns result
in improved robustness; 2) under computational budget,
adding convolution operations to direct connection edge
is effective; 3) flow of solution procedure (FSP) matrix is
a good indicator of network robustness. Based on these
observations, we discover a family of robust architectures
(RobNets). On various datasets, including CIFAR, SVHN,
Tiny-ImageNet, and ImageNet, RobNets exhibit superior
robustness performance to other widely used architectures.
Notably, RobNets substantially improve the robust accuracy
(∼5% absolute gains) under both white-box and black-
box attacks, even with fewer parameter numbers. Code is
available at https://github.com/gmh14/RobNets.

1. Introduction
Deep neural networks are shown to be vulnerable to

adversarial attacks, where the natural data is perturbed with
human-imperceptible, carefully crafted noises [9, 15, 35].
To mitigate this pitfall, extensive efforts have been devoted
to adversarial defense mechanisms, where the main focus
has been on specialized adversarial learning algorithms [9,
21], loss/regularization functions [13, 45], as well as image
preprocessing [37, 31, 38, 42]. Yet, there is an orthogonal
dimension that few studies have explored: the intrinsic
∗Equal contribution. Order determined by alphabetical order.

Adv
ersa

rial
Acc

urac
y (%

)

Number of Parameters (M)
44

46

48

50

52

0 10 20 30 40

RobNet-freeRobNet-smallRobNet-mediumRobNet-largeResNet-18ResNet-50WideResNet-28-10DenseNet-121
Better

RobNet Family

Figure 1. Adversarial robustness vs. parameter numbers for widely
used architectures and the proposed RobNet family on CIFAR-
10. All models are adversarially trained using PGD with 7 steps,
and evaluated by PGD white-box attack with 100 steps. RobNets
exhibit superior robustness performance to other architectures,
even with fewer parameter numbers.

influence of network architecture on network resilience
to adversarial perturbations. Although the importance of
architectures in adversarial robustness has emerged in the
experiments of several previous work [33, 39, 21], more
comprehensive study on the role of network architectures
in robustness remains needed.

In this work, we take the first step to systematically
understand adversarial robustness of neural networks from
an architectural perspective. Specifically, we aim to answer
the following questions:

1. What kind of network architecture patterns is crucial for
adversarial robustness?

2. Given a budget of model capacity, how to allocate the
parameters of the architecture to efficiently improve the
network robustness?

3. What is the statistical indicator for robust network
architectures?

It is nontrivial to answer the above questions, since we
need to train a massive number of networks with different

1

https://github.com/gmh14/RobNets

architectures and evaluate their robustness to gain insights,
which, however, is exceedingly time-consuming, especially
when adversarial training is used. Thanks to the method of
one-shot neural architecture search (NAS), it becomes more
accessible to evaluate robustness among a large number
of architectures. Specifically, we first train a supernet for
once, which subsumes a wide range of architectures as sub-
networks, such as ResNet [11] and DenseNet [12]. Then
we sample architectures from the supernet and finetune
the candidate architectures for a few epoches to obtain
their robust accuracy under adversarial attacks. We further
conduct extensive analysis on the obtained architectures and
have gained a number of insights to the above questions:

1) We present a statistical analysis on 1, 000 architec-
tures from our cell-based search space, and discover a
strong correlation between the density of the architecture
and the adversarial accuracy. This indicates that densely
connected pattern can significantly improve the network
robustness.

2) We restrict the number of parameters under three
different computational budgets, namely small, medium,
and large. Our experimental results suggest that adding
convolution operations to direct edges is more effective to
improve model robustness, especially for small computa-
tional budgets.

3) We further release the cell-based constraint and pro-
duce studies on cell-free search space. For this setting, we
find that the distance of flow of solution procedure matrix
between clean data and adversarial data can be a good
indicator of network robustness.

By adopting these observations, we search and design a
family of robust architectures, called RobNets. Extensive
experiments on popular benchmarks, including CIFAR
[14], SVHN [23], Tiny-ImageNet [16], and ImageNet [7],
indicate that RobNets achieve a remarkable performance
over widely used architectures. Our studies advocate that
future work on network robustness could concentrate more
on the intrinsic effect of network architectures.

2. Related Work
Adversarial Attack and Defence. Deep neural networks
(NNs) can be easily fooled by adversarial examples [9, 35,
20], where effective attacks are proposed such as FGSM
[9], BIM [15], C&W [5], DeepFool [22], MI-FGSM [8],
and PGD [21]. Extensive efforts have been proposed to
enhance the robustness, including preprocessing techniques
[3, 31, 42], feature denoising [38], regularization [45, 13,
17], adding unlabeled data [6, 32], model ensemble [36, 24],
where adversarial training [9, 21] turns out to be the most
effective and standard method for improving robustness. A
few empirical attempts on robustness of existing network
architectures have been made [33, 39], but no convincing
guidelines or conclusions have yet been achieved.

Neural Architecture Search. Neural architecture search
(NAS) aims to automatically design network architectures
to replace conventional handcrafted ones. Representative
techniques include reinforcement learning [48, 49, 47, 10,
1], evolution [27, 34] and surrogate model [18], which have
been widely adopted to the search process. However, these
methods usually incur very high computational cost. Other
efforts [19, 26, 2] utilize the weight sharing mechanism
to reduce the costs of evaluating each searched candidate
architecture. Towards a fast and scalable search algorithm,
our investigation here is based on the one-shot NAS [2, 4].

3. Robust Neural Architecture Search
3.1. Preliminary

In this section, we briefly introduce the concept of one-
shot NAS and adversarial training for the ease of better
understanding of our further analysis.

One-Shot NAS. The primary goal of NAS [49, 18, 19, 2]
is to search for computation cells and use them as the
basic building unit to construct a whole network. The
architecture of each cell is a combination of operations
chosen from a pre-defined operation space. In one-shot
NAS, we construct a supernet to contain every possible
architecture in the search space. We only need to train the
supernet for once and then at evaluation time, we can obtain
various architectures by selectively zero out the operations
in the supernet. The weights of these architectures are
directly inherited from the supernet, suggesting that weights
are shared across models. The evaluated performance
of these one-shot trained networks can be used to rank
architectures in the search space, since there is a near-
monotonic correlation between one-shot trained and stand-
alone trained network accuracies. We refer readers to [2]
for more details of this order preservation property.

In one-shot NAS, the one-shot trained networks are
typically only used to rank architectures and the best-
performing architecture is retrained from scratch after the
search. In our work, however, we do not aim to get one
single architecture with the highest robust accuracy, but
to study the effect of different architectures in network
robustness. Thus, we do not involve retraining stage in
our method but fully utilize the property of accuracy order
preservation in one-shot NAS.

Robustness to Adversarial Examples. Network robust-
ness refers to how network is resistant to adversarial inputs.
The problem of defending against bounded adversarial
perturbations can be formulated as follows:

min
θ

E(x,y)∼D

[
max
x′∈S

L (y,M(x′; θ))

]
, (1)

where S = {x′ : ||x − x′||p < ε} defines the set of
allowed perturbed inputs within lp distance, M denotes the

conv zeroidentity

Input

1

Input

2

f(1) f(2) f(4)

Fixed edges
Selective edges

f(3)

(a) Search space of RobNet

(b) ResNet

Input

1

Input

2

f(1) f(2) f(4)f(3) conv identity

(c) DenseNet

Input

1

identity

Input

2

f(1) f(2) f(4)f(3)

Figure 2. Overview of the search space in robust architecture search: (a) The search space of RobNet. We only consider three candidate
operations: 3× 3 separable convolution, identity, and zero. We do not restrict the number of edges between two intermediate nodes to be
one, which means that there could be multiple operations between two nodes. Such design benefits us to explore a larger space with more
variants of network topology, including many typical human-designed architectures such as (b) ResNet and (c) DenseNet.

model and D denotes the data distribution. One promising
way to improve network robustness is adversarial training.
[21] proposed to use Projected Gradient Descent (PGD)
to generate adversarial examples and augment data during
training, which shows significant improvements of network
robustness. In our study, we focus on adversarial attacks
bounded by l∞ norm and use PGD adversarial training to
obtain robust networks of different architectures.

3.2. Robust Architecture Search Framework

We now describe the core components of our robust
architecture search framework. Our work is based on con-
ventional one-shot architecture search methods [2, 19], with
certain modifications to facilitate adversarial training and
further analysis. We introduce them in detail accordingly.

Search Space. Following [49, 18, 19, 2], we search for
computation cell as the basic building unit to construct the
whole network architecture. Each cell is represented as a
directed acyclic graph G = (V,E) consisting of N nodes.
Each node V (i) corresponds to a intermediate feature map
f (i). Each edge E(i,j) represents a transformation o(i,j)(·)
chosen from a pre-defined operation pool O = {ok(·), k =
1, . . . , n} containing n candidate operations (see Fig. 2(a)).
The intermediate node is computed based on all of its
predecessors: f (j) =

∑
i<j o

(i,j)(f (i)). The overall inputs
of the cell are the outputs of previous two cells and the
output of the cell is obtained by applying concatenation
to all the intermediate nodes. For the ease of notation,
we introduce architecture parameter α = {α(i,j)

k |α(i,j)
k ∈

{0, 1}, i, j = 1, . . . , N, k = 1, . . . , n} to represent can-

didate architectures in the search space. Each architecture
corresponds to a specific architecture parameter α. For edge
E(i,j) of an architecture, the transformation can then be
represented as o(i,j)(·) =

∑n
k=1 α

(i,j)
k ok(·). We refer direct

edges to those E(i,j) ∈ {E(i,j)| j = i + 1} and refer skip
edges to those E(i,j) ∈ {E(i,j)| j > i+ 1}.

The main differences in search space between our work
and conventional NAS lie in two aspects: 1) We shrink
the total number of candidate operations in O, remaining
only: 3 × 3 separable convolution, identity, and zero.
This helps to lift the burden of adversarial training, while
remaining powerful candidate architectures in the search
space [41]. 2) We do not restrict the maximal number of
operations between two intermediate nodes to be one (i.e.,
o(i,j)(·) could contain at most n operations). As shown in
Fig. 2, such design encourages us to explore a larger space
with more variants of network architectures, where some
classical human-designed architectures can emerge such as
ResNet and DenseNet.

Robust Search Algorithm. We develop our robust search
algorithm based on the one-shot NAS approach [2]. Specif-
ically, we set all the elements in architecture parameter α as
1 to obtain a supernet containing all possible architectures.
During the training phase of the supernet, for each batch of
training data, we randomly sample a candidate architecture
from the supernet (by arbitrary setting some of the elements
in α to 0). This path dropout technique is incorporated to
decouple the co-adaptation of candidate architectures [2].
We then employ the min-max formulation in Eq. (1) to
generate adversarial examples with respect to the sampled

10
20
30
40
50

0 200 400 600 800 1000

after finetune before finetune

Adv
ersa

rial
Acc

urac
y (%

)

Architecture ID
(a)

0
10
20
30
40
50
60
70
80
90

42.0 44.0 46.0 48.0 50.0 52.0
Num

ber
of A

rchi
tect

ures
Adversarial Accuracy (%)

Average: 50.3%

(b)

Figure 3. Statistical results over 1,000 sampled architectures: (a)
The robust accuracy improvement before and after finetuning. (b)
Histogram of adversarial accuracy for all sampled architectures.

sub-network, and perform adversarial training to minimize
the adversarial loss. Such mechanism ensures adversarial
examples generated during training are not specific to one
architecture. We also provide the pseudo code of our robust
search algorithm in the Appendix.

Robustness Evaluation. Once obtaining the supernet after
robust training, we can collect candidate architectures by
random sampling from the supernet and inheriting weights.
Rather than direct evaluating the network on validation
dataset as vanilla NAS methods, we find that finetuning the
sampled network with adversarial training for only a few
epochs can significantly improve the performance, which is
also observed in [46]. The intuition behind finetuning is that
while the training scheduler tries to inflate the robustness
of each architecture, it yet needs to maintain the overall
performance of all candidate architectures. The adversarial
accuracy before and after finetuning for 1,000 randomly
sampled candidate architectures is illustrated in Fig. 3(a).
It can be clearly seen that the robustness performance has
been largely improved.

After finetuning, we evaluate each candidate architecture
on validation samples that are adversarially perturbed by
the white-box PGD adversary. We regard the adversarial
accuracy as the indicator of the network robustness.

3.3. Analysis of Cell-Based Architectures

Having set up the robust search framework, we would
like to seek for answers for the first question raised in
Sec. 3.1, that what kind of architecture patterns is crucial
for adversarial robustness. We first conduct analysis of
model robustness for cell-based architectures by following
a typical setting in NAS methods [49, 19], where the
architectures between different cells are shared.

Statistical Results. In cell-based setting, we adopt robust
architecture search on CIFAR-10. We set the number of
intermediate nodes for each cell as N = 4. Recall that
we have 2 non-zero operations and 2 input nodes, so the
total number of edges in the search space is 14. This results
in a search space with the total complexity (22)14 − 1 ≈

last-300 architectures top-300 architectures

(a)

-5
0
5

10
15
20
25
30
35
40
45

1 6 11 16 21 26Edge ID

Wei
ghts

 Val
ue

(b)

Figure 4. Analysis of the selected top 300 (robust) architectures
and last 300 (non-robust) architectures: (a) Visualization of t-SNE
on α for all 600 architectures. The embedding of α is separable
between robust and non-robust networks, which demonstrates the
architecture has an influence on network robustness. (b) Values of
weights of the trained linear classifier. We observe that almost all
of the weight values are positive, indicating that there is a strong
correlation between architecture density and adversarial accuracy.

108, where each architecture parameter is α ∈ {0, 1}2×14.
For the training of the supernet, we choose 7-step PGD
adversarial training with 0.01 step size. After training the
supernet, we randomly sample 1,000 architectures from the
supernet and finetune each of them for 3 epochs.

We plot the histogram of adversarial accuracy of these
1,000 architectures in Fig. 3(b). As the figure shows,
although most of the architectures achieve relatively high
robustness (with ∼ 50% robust accuracy), there also exist
a large number of architectures suffering from poor robust-
ness (far lower from the average 50.3%). This motivates us
to consider whether there exist some shared features among
the robust networks.

To better visualize how distinguishable the architectures
are, we first sort the 1,000 architectures with respect to the
robust accuracy. Next, top 300 architectures are selected
with a label of 1 and last 300 architectures with label of
−1. Finally, t-SNE helps us to depict the α corresponding
to each architecture. We visualize the low-dimensional
embedding of 600 α in Fig. 4(a). As shown, the embedding
of architecture parameter α is separable between robust
and non-robust networks, which clearly demonstrates that
architecture has an influence on network robustness.

This finding naturally raises a question: Which paths
are crucial to network robustness in architectures? A
straightforward idea is that we train a classifier which takes
the architecture parameter as input and predicts whether the
architecture is robust to adversarial attacks. In this case,
the weights that correspond to crucial paths are expected to
have larger values. We use the 600 architectures introduced
above and their corresponding labels to train a classifier.
Surprisingly, we find out that even a linear classifier1 fits
the data well (the training accuracy of these 600 data

1https://scikit-learn.org/stable/modules/
generated/sklearn.linear_model.SGDClassifier.html

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html

0.65
0.67
0.69
0.71
0.73
0.75
0.77
0.79

45.0 52.048.5Adversarial Accuracy (%)

Arc
hite

ctur
e D

ensi
ty

Figure 5. Correlation between architecture density and adversarial
accuracy. We show a strong correlation between them, indicating
that densely connected pattern can benefit the network robustness.

points is 98.7%). The results are illustrated in Fig. 4(b).
The figure reveals that almost all of the weight values are
positive, which indicates a strong relationship between how
denser one architecture is wired and how robust it is under
adversarial attacks. To further explore the relationship, we
perform an analysis of the correlation between adversarial
accuracy and the density of the architecture. We define
the architecture density D as the number of connected
edges over the total number of all possible edges in the
architecture, which can be expressed as:

D =
|Econnected|
|E|

=

∑
i,j,k α

(i,j)
k

|E|
. (2)

We illustrate the result in Fig. 5, which shows that there
is a strong correlation between architecture density and
adversarial accuracy. We posit that through adversarial
training, densely connected patterns in the network are
more beneficial against adversarial features and learn to
be resistant to them. This gives us the answer to the first
question in Sec. 1: Densely connected pattern can benefit
the network robustness.

3.4. Architecture Strategy under Budget

It has been observed in many previous studies [33, 21]
that, within the same family of architectures, increasing
the number of parameters of the network would bring
improvement of robustness. This is because such procedure
will promote the model capacity, and thus can benefit the
network robustness. However, if we are given a fixed total
number of parameters (or we refer to as a computational
budget), how to obtain architectures that are more robust
under the limited constraint? In this section, we concentrate
on how the pattern of an architecture influences robustness
when given different fixed computational budgets. One
advantage of our robust architecture search space for this
study is that, the number of parameters of a network is pos-
itively correlated to the number of convolution operations
in the architecture.

0.2
0.3
0.4
0.5
0.6
0.7
0.8

45.0 52.0Adversarial Accuracy (%)

Por
tion

 Rat
e

Direct Conv.Skip Conv.All Conv.

(a)

43
44
45
46
47
48
49
50
51
52

0 0.2 0.4 0.6 0.8

small budget medium budget large budget

Portion of Direct Convolutions

Adv
ersa

rial
Acc

urac
y (%

)

(b)

Figure 6. Architecture studies under computational budget: (a)
Correlation between the number of different operations and the
network robustness. When increasing the number of convolution
operations, the adversarial accuracy increases steadily. Moreover,
convolutions on direct edges contribute more on robust accuracy
than those on skip edges. (b) Performance under different compu-
tational budgets. Under small and medium budget, the proportion
of direct convolutions shows a positive correlation to adversarial
accuracy, indicating that adding convolution operations to direct
edges is more effective to improve model robustness under small
computational budget.

We first analyze the number of convolution operations
with respect to network robustness, using the 1,000 archi-
tectures obtained in Sec. 3.3. The results are illustrated
in Fig. 6(a). With the number of convolution operations
increases, the adversarial accuracy improves steadily. We
also plot the statistics for the number of convolutions on
skip edges and direct edges, respectively. The results
declare that convolutions on direct edges contribute more on
adversarial accuracy than those on skip edges. This inspires
us to dig deeper on the effect of the convolutions on direct
edges for different computational budgets.

We consider three different computational budgets:
small, medium and large. Since the maximum number of
convolution operations in the cell-based setting is 14, we
set the total number of convolutions smaller than 7 as small
budget, between 8 and 10 as medium and larger than 11 as
large. For each of the budget, we randomly sample 100
architectures, evaluate their adversarial accuracy following
Sec. 3.2 and calculate the proportion of convolutions on
direct edges among all convolutions. As illustrated in
Fig. 6(b), the adversarial accuracy has clear boundaries
between different budgets. Furthermore, for small and
medium budget, the proportion of direct convolutions has a
positive correlation to adversarial accuracy. This indicates
that for smaller computational budget, adding convolutions
to direct edges can efficiently improve the network robust-
ness. We also note that this phenomenon is not obvious for
the large setting. We speculate that for architectures within
the large budget, densely connected patterns dominate the
contributions of network robustness. With the above results,
we conclude: Under small computational budget, adding
convolution operations to direct edges is more effective to
improve model robustness.

3.5. Towards a Larger Search Space

Relax the Cell-Based Constraint. In previous sections,
we obtain several valuable observations for the cell-based
setting. One natural question to ask is: What if we
relax the constraint and permit all the cells in the network
to have different architectures? Moreover, what can be
the indicator for the network robustness in this cell-free
setting? In this section, we relax the cell-based constraint
and conduct studies on a larger architecture search space.
The relaxation of the constraint raises an explosion of the
complexity of the search space: for a network consisting
of L cells, the total complexity increases to (108)L. The
exponential complexity makes the architecture search much
more difficult to proceed.

Feature Flow Guided Search. To address the above
challenges, here we propose a feature flow guided search
scheme. Our approach is inspired by TRADES [45], which
involves a loss function minimizing the KL divergence
of the logit distribution between an adversarial example
and its corresponding clean data. The value of this loss
function can be utilized as a measurement of the gap
between network robustness and its clean accuracy. Instead
of focusing on the final output of a network, we consider the
feature flow between the intermediate cells of a network.
Specifically, we calculate the Gramian Matrix across each
cell, denoted as flow of solution procedure (FSP) matrix
[43]. The FSP matrix for the lth cell is calculated as:

Gl(x; θ) =

h∑
s=1

w∑
t=1

F inl,s,t(x; θ)× F outl,s,t(x; θ)

h× w
, (3)

where F inl (x; θ) denotes the input feature map of the cell
and F outl (x; θ) denotes the output feature map. For a
given network, we can calculate the distance of FSP matrix
between adversarial example and clean data for each cell of
the network:

LFSPl =
1

N

∑
x

‖(Gl(x; θ)−Gl(x′; θ)‖
2
2 . (4)

We sample 50 architectures without finetuning for the
cell-free search space and evaluate the gap of clean accuracy
and adversarial accuracy for each architecture. We also
calculate the FSP matrix distance for each cell of the
network and show representative results in Fig. 7 (complete
results are provided in Appendix). We can observe that
for the cells in a deeper position of the network, the FSP
distance has a positive correlation with the gap between
network robustness and clean accuracy. This gives us the
answer to the third question in Sec. 1: A robust network has
a lower FSP matrix loss in the deeper cells of network.

By observing this phenomenon, we can easily adopt FSP
matrix loss to filter out the non-robust architectures with

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045

0 10 20 30 40(Clean Acc. - Adversarial Acc.) (%)

Cell #2

0
0.002
0.004
0.006
0.008
0.01

0.012
0.014

0 10 20 30 40(Clean Acc. - Adversarial Acc.) (%)

Cell #10

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0 10 20 30 40(Clean Acc. - Adversarial Acc.) (%)

Cell #15

0
0.002
0.004
0.006
0.008
0.01

0.012
0.014

0 10 20 30 40(Clean Acc. - Adversarial Acc.) (%)

Cell #17

FSP
 Ma

trix
 Los

s
FSP

 Ma
trix

 Los
s

Figure 7. Analysis of FSP matrix distance as robustness indicator.
We compute the FSP matrix distance for each cell, along with the
performance gap between clean accuracy and adversarial accuracy
(complete results in Appendix). For cells in deeper positions of
the network, the FSP distance has a positive correlation with the
gap between network robustness and its clean accuracy, which
indicates that a robust network has a lower FSP matrix loss in the
deeper cells of the network.

high loss values, which efficiently reduces the complexity
of the search space. Thus, after the sampling process from
supernet in cell-free setting, we first calculate FSP matrix
loss for each architecture and reject those with high loss
values. We then perform finetuning to get final robustness.

4. Experiments
In this section, we empirically evaluate the adversarial

robustness of the proposed RobNet family. Following the
guidance of our three findings in Sec. 3, we train and
select a set of representative RobNet models for evaluation.
We focus on l∞-bounded attacks and compare the RobNet
family with state-of-the-art human-designed models.

4.1. Experimental Setup

Implementation Details. As described in Sec. 3, we use
both cell-based and cell-free searching algorithm to select
out a set of RobNet architectures, respectively. The robust
search is performed only on CIFAR-10, where we use PGD
adversarial training with 7 attack iterations and a step size of
2/255 (0.01). For evaluation on other datasets, we directly
transfer the RobNet architectures searched on CIFAR-10.

Specifically, we first follow the cell-based robust search
framework to obtain architectures that exhibit densely con-
nected patterns. Considering the strategy under budget,
we further generate three cell-based architectures that all
follow more convolution operations on direct edges, but
with different computational budgets. We refer to the three
selected architectures as RobNet-small, RobNet-medium,

Table 1. White-box attack results on CIFAR-10. We compare representative RobNet models with state-of-the-art architectures. All models
are adversarially trained using PGD with 7 steps. All attacks are l∞-bounded with a total perturbation scale of 8/255 (0.031).

Models Model Size Natural Acc. FGSM PGD20 PGD100 DeepFool MI-FGSM

ResNet-18 11.17M 78.38% 49.81% 45.60% 45.10% 47.64% 45.23%

ResNet-50 23.52M 79.15% 51.46% 45.84% 45.35% 49.18% 45.53%

WideResNet-28-10 36.48M 86.43% 53.57% 47.10% 46.90% 51.23% 47.04%

DenseNet-121 6.95M 82.72% 54.14% 47.93% 47.46% 51.70% 48.19%

RobNet-small 4.41M 78.05% 53.93% 48.32% 48.07% 52.96% 48.98%

RobNet-medium 5.66M 78.33% 54.55% 49.13% 48.96% 53.32% 49.34%

RobNet-large 6.89M 78.57% 54.98% 49.44% 49.24% 53.85% 49.92%

RobNet-large-v2 33.42M 85.69% 57.18% 50.53% 50.26% 55.45% 50.87%

RobNet-free 5.49M 82.79% 58.38% 52.74% 52.57% 57.24% 52.95%

and RobNet-large. Furthermore, we leverage FSP guided
search described in Sec. 3.5 to efficiently generate cell-free
robust architectures and select one representative model for
evaluation, which is referred to as RobNet-free. Note that
we are not selecting the best architecture, as the searching
space is too large to allow us to do so. Instead, we follow the
proposed algorithm to select representative architectures
and study their robustness under adversarial attacks. More
details of the selecting process and visualizations of the rep-
resentative RobNet architectures can be found in Appendix.

We compare RobNet with widely used human-designed
architectures, including ResNet [11], Wide-ResNet [44],
and DenseNet [12]. All models are adversarially trained us-
ing PGD with 7 attack steps and a step size of 2/255 (0.01).
We follow the training procedure as in [21] and keep other
hyper-parameters the same for all models.

Datasets & Evaluation. We first perform an extensive
study on CIFAR-10 to validate the effectiveness of RobNet
against black-box and white-box attacks. We then extend
the results to other datasets such as SVHN, CIFAR-100,
and Tiny-ImageNet. Finally, we show the benefits from
RobNet are orthogonal to existing techniques. We provide
additional results on ImageNet, as well as detailed training
procedure and hyper-parameters in Appendix.

4.2. White-box Attacks

Main Results. We show the results against various white-
box attacks in Table 1. We choose state-of-the-art network
architectures that are widely used in adversarial literature
[21, 38, 45] for comparison. As illustrated in the table, all
the selected models from RobNet family can consistently
achieve higher robust accuracy under different white-box
attacks, compared to other models.

The strongest adversary in our white-box setting is the
PGD attacker with 100 attack iterations (i.e., PGD100).
When zoom in to the results, we can observe that by only
changing architecture, RobNet can improve the previous

arts under white-box attacks by 5.1% from 47.5% to 52.6%.

The Effect of Dense Connections. Table 1 also reveals
interesting yet important findings on dense connections.
ResNet and its wide version (WideResNet) are most fre-
quently used architectures in adversarial training [21, 38,
45]. Interestingly however, it turns out that the rarely used
DenseNet model is more robust than WideResNet, even
with much fewer parameters. Such observation are well-
aligned with our previous study: densely connected pattern
largely benefits the model robustness. Since RobNet family
explicitly reveals such patterns during robust architecture
search, they turn out to be consistently robust.

The Effect of Parameter Numbers. Inspired by the
finding of computational budget, we seek to quantify the
robustness of RobNets with different parameter numbers.
We compare three models with different sizes obtained by
cell-based search (i.e., RobNet-small, RobNet-medium, and
RobNet-large). As Table 1 reports, with larger computa-
tional budgets, network robustness is consistently higher,
which is well aligned with our arguments.

We note that the model sizes of RobNets are consistently
smaller than other widely adopted network architectures.
Yet, the natural accuracy of RobNet model is unsatisfying
when compared to WideResNet. To further study the in-
fluence of network parameters, we extend the RobNet-large
model to have similar size as WideResNet by increasing the
number of channels and stacked cells, while maintaining
the same architecture within each cell. We refer to this new
model as RobNet-large-v2. It turns out that by increasing
the model size, not only can the robustness be strengthened,
the natural accuracy can also be significantly improved.

The Effect of Feature Flow Guided Search. When
releasing the cell-based constraints during robust searching,
RobNet models can be even more robust. We confirm it
by comparing the results of RobNet-free, which is obtained
using FSP Guided Search as mentioned in Sec. 3.5, with

Table 2. Black-box attack results on CIFAR-10. We compare two
representative RobNet architectures with state-of-the-art models.
Adversarial examples are generated using transfer-based attack on
the same copy of the victim network.

Models FGSM PGD100

ResNet-18 56.29% 54.28%

ResNet-50 58.12% 55.89%

WideResNet-28-10 58.11% 55.68%

DenseNet-121 61.87% 59.34%

RobNet-large 61.92% 59.58%

RobNet-free 65.06% 63.17%

Table 3. White-box attack results across different datasets. We use
two RobNet models searched on CIFAR-10 to directly perform
adversarial training on new datasets. We apply PGD100 white-box
attack on all models to evaluate adversarial robustness.

Models SVHN CIFAR-100 Tiny-ImageNet

ResNet-18 46.08% 22.01% 16.96%

ResNet-50 47.23% 22.38% 19.12%

RobNet-large 51.26% 23.19% 19.90%

RobNet-free 55.59% 23.87% 20.87%

other cell-based RobNet models. Remarkably, RobNet-free
achieves higher robust accuracy with 6× fewer parameter
numbers when compared to RobNet-large-v2 model.

4.3. Black-box Attacks

We further verify the robustness of RobNet family under
black-box attacks. We follow common settings in literature
[25, 21, 42] and apply transfer-based black-box attacks. We
train a copy of the victim network using the same training
settings, and apply FGSM and PGD100 attacks on the copy
network to generate adversarial examples. Note that we
only consider the strongest transfer-based attacks, i.e., we
use white-box attacks on the independently trained copy to
generate black-box examples.

The results are shown in Table 2. They reveal that both
cell-based and cell-free RobNet models are more robust
under transfer-based attacks. Note that here the source
model has the same architecture as the target model, which
makes the black-box adversary stronger [21]. We also study
the transfer between different architectures, and provide
corresponding results in the Appendix.

4.4. Transferability to More Datasets

So far, our robust searching has only been performed and
evaluated on CIFAR-10. However, the idea of robust neural
architecture search is much more powerful: we directly use
the RobNet family searched on CIFAR-10 to apply on other
datasets, and demonstrate their effectiveness. Such benefits

Table 4. Robustness comparison of different architectures with and
without feature denoising [38]. We show the benefits from RobNet
are orthogonal to existing techniques: RobNet can further boost
robustness performance when combined with feature denoising.

Models Natural Acc. PGD100

ResNet-18 78.38% 45.10%

ResNet-18 + Denoise 78.75% 45.82%

RobNet-large 78.57% 49.24%

RobNet-large + Denoise 84.03% 49.97%

come from the natural advantage of NAS that the searched
architectures can generalize to other datasets [49, 47].

We evaluate RobNet on SVHN, CIFAR-100, and Tiny-
ImageNet under white-box attacks, and set attack parame-
ters as follows: total perturbation of 8/255 (0.031), step size
of 2/255 (0.01), and with 100 total attack iterations. The
training procedure is similar to that on CIFAR-10, where
we use 7 steps PGD for adversarial training. We keep all
the training hyperparameters the same for all models.

Table 3 shows the performance of RobNet on the three
datasets and compares them with commonly used archi-
tectures. The table reveals the following results. First, it
verifies the effectiveness of RobNet family: they consis-
tently outperform other baselines under strong white-box
attacks. Furthermore, the gains across different datasets are
different. RobNets provide about 2% gain on CIFAR-100
and Tiny-ImageNet, and yield ∼10% gain on SVHN.

4.5. Boosting Existing Techniques

As RobNet improves model robustness from the aspect
of network architecture, it can be seamlessly incorporated
with existing techniques to further boost adversarial robust-
ness. To verify this advantage, we select feature denoising
technique [38] which operates by adding several denoising
blocks in the network. We report the results in Table 4.
As shown, the denoising module improves both clean and
robust accuracy of RobNet, showing their complementari-
ness. Moreover, when compared to ResNet-18, RobNet
can better harness the power of feature denoising, gaining a
larger improvement gap, especially on clean accuracy.

5. Conclusion

We proposed a robust architecture search framework,
which leverages one-shot NAS to understand the influence
of network architectures against adversarial attacks. Our
study revealed several valuable observations on designing
robust network architectures. Based on the observations,
we discovered RobNet, a family of robust architectures that
are resistant to attacks. Extensive experiments validated
the significance of RobNet, yielding the intrinsic effect of
architectures on network resilience to adversarial attacks.

References
[1] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh

Raskar. Designing neural network architectures using rein-
forcement learning. In ICLR, 2017. 2

[2] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay
Vasudevan, and Quoc Le. Understanding and simplifying
one-shot architecture search. In ICML, 2018. 2, 3

[3] Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Good-
fellow. Thermometer encoding: One hot way to resist
adversarial examples. In ICLR, 2018. 2

[4] Han Cai, Chuang Gan, and Song Han. Once for all: Train
one network and specialize it for efficient deployment. arXiv
preprint arXiv:1908.09791, 2019. 2

[5] Nicholas Carlini and David Wagner. Towards evaluating the
robustness of neural networks. In 2017 IEEE Symposium on
Security and Privacy (SP), 2017. 2

[6] Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, Percy
Liang, and John C Duchi. Unlabeled data improves adver-
sarial robustness. arXiv preprint arXiv:1905.13736, 2019.
2

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, pages 248–255, 2009. 2, 11

[8] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su,
Xiaolin Hu, Jianguo Li, and Jun Zhu. Boosting adversarial
attacks with momentum. In CVPR, 2018. 2

[9] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In ICLR,
2015. 1, 2

[10] Minghao Guo, Zhao Zhong, Wei Wu, Dahua Lin, and Junjie
Yan. Irlas: Inverse reinforcement learning for architecture
search. In CVPR, 2019. 2

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 2, 7, 11

[12] Gao Huang, Zhuang Liu, Laurens van der Maaten, and
Kilian Q Weinberger. Densely connected convolutional
networks. In CVPR, 2017. 2, 7

[13] Harini Kannan, Alexey Kurakin, and Ian Goodfellow. Adver-
sarial logit pairing. arXiv preprint arXiv:1803.06373, 2018.
1, 2, 11

[14] Alex Krizhevsky et al. Learning multiple layers of features
from tiny images. Technical report, Citeseer, 2009. 2

[15] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adver-
sarial examples in the physical world. In ICLR Workshop,
2017. 1, 2

[16] Fei-Fei Li, Andrej Karpathy, and Justin Johnson. Tiny
imagenet visual recognition challenge. 2

[17] Ji Lin, Chuang Gan, and Song Han. Defensive quanti-
zation: When efficiency meets robustness. arXiv preprint
arXiv:1904.08444, 2019. 2

[18] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon
Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan
Huang, and Kevin Murphy. Progressive neural architecture
search. In ECCV, 2018. 2, 3

[19] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:
Differentiable architecture search. In ICLR, 2019. 2, 3, 4

[20] Xin Liu, Huanrui Yang, Ziwei Liu, Linghao Song, Hai Li,
and Yiran Chen. Dpatch: An adversarial patch attack on
object detectors. arXiv preprint arXiv:1806.02299, 2018. 2

[21] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. In ICLR, 2018. 1, 2,
3, 5, 7, 8

[22] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and
Pascal Frossard. Deepfool: a simple and accurate method
to fool deep neural networks. In CVPR, 2016. 2

[23] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y Ng. Reading digits in natural
images with unsupervised feature learning. 2011. 2

[24] Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun Zhu.
Improving adversarial robustness via promoting ensemble
diversity. In ICML, 2019. 2

[25] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow.
Transferability in machine learning: from phenomena to
black-box attacks using adversarial samples. arXiv preprint
arXiv:1605.07277, 2016. 8

[26] Juan-Manuel Perez-Rua, Moez Baccouche, and Stephane
Pateux. Efficient progressive neural architecture search. In
BMVC, 2018. 2

[27] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. In AAAI, 2019. 2

[28] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In CVPR, 2018. 11

[29] Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi,
Zheng Xu, John Dickerson, Christoph Studer, Larry S Davis,
Gavin Taylor, and Tom Goldstein. Adversarial training for
free! In NeurIPS, 2019. 11, 12

[30] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 11

[31] Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Er-
mon, and Nate Kushman. Pixeldefend: Leveraging gener-
ative models to understand and defend against adversarial
examples. In ICLR, 2018. 1, 2

[32] Robert Stanforth, Alhussein Fawzi, Pushmeet Kohli, et al.
Are labels required for improving adversarial robustness?
arXiv preprint arXiv:1905.13725, 2019. 2

[33] Dong Su, Huan Zhang, Hongge Chen, Jinfeng Yi, Pin-Yu
Chen, and Yupeng Gao. Is robustness the cost of accuracy?–
a comprehensive study on the robustness of 18 deep image
classification models. In ECCV, 2018. 1, 2, 5

[34] Masanori Suganuma, Shinichi Shirakawa, and Tomoharu
Nagao. A genetic programming approach to designing
convolutional neural network architectures. In Proceedings
of the Genetic and Evolutionary Computation Conference,
pages 497–504. ACM, 2017. 2

[35] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013. 1, 2

[36] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian
Goodfellow, Dan Boneh, and Patrick McDaniel. Ensemble
adversarial training: Attacks and defenses. In ICLR, 2018. 2

[37] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren,
and Alan Yuille. Mitigating adversarial effects through
randomization. In ICLR, 2018. 1

[38] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L
Yuille, and Kaiming He. Feature denoising for improving
adversarial robustness. In CVPR, 2019. 1, 2, 7, 8, 11, 14

[39] Cihang Xie and Alan Yuille. Intriguing properties of
adversarial training. arXiv preprint arXiv:1906.03787, 2019.
1, 2

[40] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In CVPR, 2017. 11

[41] Saining Xie, Alexander Kirillov, Ross Girshick, and Kaim-
ing He. Exploring randomly wired neural networks for
image recognition. In ICCV, 2019. 3

[42] Yuzhe Yang, Guo Zhang, Dina Katabi, and Zhi Xu. ME-
Net: Towards effective adversarial robustness with matrix
estimation. In ICML, 2019. 1, 2, 8, 14

[43] Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim. A
gift from knowledge distillation: Fast optimization, network
minimization and transfer learning. In CVPR, 2017. 6

[44] Sergey Zagoruyko and Nikos Komodakis. Wide residual
networks. In BMVC, 2016. 7

[45] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing,
Laurent El Ghaoui, and Michael I Jordan. Theoretically
principled trade-off between robustness and accuracy. In
ICML, 2019. 1, 2, 6, 7, 14

[46] Yuge Zhang, Zejun Lin, Junyang Jiang, Quanlu Zhang,
Yujing Wang, Hui Xue, Chen Zhang, and Yaming Yang.
Deeper insights into weight sharing in neural architecture
search. arXiv preprint arXiv:2001.01431, 2020. 4

[47] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-
Lin Liu. Practical block-wise neural network architecture
generation. In CVPR, 2018. 2, 8

[48] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. In ICLR, 2017. 2

[49] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In CVPR, 2017. 2, 3, 4, 8

Appendices
A. Details of Robust Architecture Search

We provide details of our robust architecture search
algorithm. The pseudo code is illustrated in Algorithm 1.

Algorithm 1 Robust architecture search
1: Input: Supernet G = (V,E), architecture parameter
α, total iterations I , PGD attack iterations T .

2: Set all elements in α to 1
3: for k = 0 . . . I do
4: Randomly sample a training batch {xi, yi}Bi=1 from

train dataset
5: Randomly set some of the elements in α to 0 and get

the corresponding network parameter θk
6: /* Parallel training in PyTorch */
7: for i = 1 . . . B do
8: x

(0)
i ← xi

9: /* PGD adversarial example */
10: for t = 0 . . . (T − 1) do
11: x

(t+1)
i ← ΠS(x

(t)
i +η · sign(∇xL(θk, x

(t)
i , yi))

12: end for
13: end for
14: Use {x(T)

i , yi}Bi=1 to do one step training and update
θk by SGD

15: Set all elements in α to 1
16: end for

B. Details of Adversarial Training
We further provide training details of PGD-based adver-

sarial training for each individual architecture on CIFAR,
SVHN, and Tiny-ImageNet. We summarize our training
hyper-parameters in Table 5. We follow the standard data
augmentation scheme as in [11] to do zero-padding with
4 pixels on each side, and then random crop back to the
original image size. We then randomly flip the images
horizontally and normalize them into [0, 1]. We use the
same training settings for CIFAR-10 and CIFAR-100.

C. Additional Results on ImageNet
In this section, we provide additional robustness results

of RobNets on ImageNet [7], a large-scale image classifi-
cation dataset that contains ∼1.28 million images and 1000
classes. Since adversarial training on ImageNet demands
a vast amount of computing resources (e.g., hundreds of
GPUs [38, 13] for several days), we adopt the recent “free”
adversarial training scheme [29] for accelerating adversarial
training on ImageNet. Specifically, we follow the settings
in [29] that consider non-targeted attack, and restrict the
perturbation bound to be ε = 4/255 (0.015). We usem = 4

Table 5. Details of adversarial training on different datasets.
Learning rate is decreased at selected epochs, using a step factor
of 0.1. We apply the same training setting for both CIFAR-10 and
CIFAR-100.

CIFAR SVHN Tiny-ImageNet

Optimizer SGD SGD SGD

Momentum 0.9 0.9 0.9

Epochs 200 200 90

LR 0.1 0.01 0.1

LR decay step
(100, 150)

step
(100, 150)

step
(30, 60)

for the “free” training, and keep other hyper-parameters the
same for all models.

We compare RobNet-large model with different variants
of ResNet against white-box PGD attacks. The results are
shown in Table 6. Compared to different ResNet mod-
els, RobNet-large can consistently achieve higher robust
accuracy against PGD adversary, while maintaining similar
clean accuracy. We note that the model size of RobNet-large
is far smaller than the baseline models. As we have inves-
tigated in Sec. 4.2, by increasing the network parameters of
RobNet models, we can not only strengthen the adversarial
robustness, the natural accuracy can also be significantly
improved. This phenomenon can also be observed by
comparing ResNet models with different capacities. Thus,
we believe by further increasing the parameter numbers,
RobNets can achieve even higher accuracy in both clean and
adversarial settings.

D. Comparisons to More Architectures
In this section, we provide a more comprehensive com-

parison between RobNet models and various state-of-the-
art human-designed architectures. In addition to ResNet
and DenseNet family we have mentioned in the main text,
we further add baseline architectures including VGG [30],
MobileNetV2 [28], and ResNeXt [40], and report the results
in Table 7. We again consider l∞-bounded white-box attack
setting on CIFAR-10, with all models trained identically
as we have described. As can be observed from the table,
when comparing to various human-designed architectures,
RobNet models can consistently achieve higher adversarial
robustness, even with much fewer network parameters.

E. Complete Results of FSP Matrix Loss
We provide additional results for the correlation of FSP

matrix distance along with the performance gap between
clean accuracy and adversarial accuracy in cell-free setting.
Results for several cells have been shown in the main paper.
Here we provide results for additional cells in Fig. 8.

Table 6. White-box attack results on ImageNet. We compare representative RobNet models with state-of-the-art architectures. All models
are adversarially trained using “free” training [29]. All attacks are l∞-bounded with a total perturbation scale of 4/255 (0.015).

Models Model Size Natural Acc. PGD10 PGD50 PGD100

ResNet-50 23.52M 60.20% 32.76% 31.87% 31.81%

ResNet-101 42.52M 63.34% 35.38% 34.40% 34.32%

ResNet-152 58.16M 64.44% 36.99% 36.04% 35.99%

RobNet-large 12.76M 61.26% 37.16% 37.15% 37.14%

Table 7. Comparison between representative RobNet models and
more human-designed architectures on CIFAR-10. All models are
adversarially trained using PGD with 7 steps. All attacks are l∞-
bounded with a total perturbation scale of 8/255 (0.031).

Models Model Size Natural Acc. PGD100

VGG-16 14.73M 77.38% 44.38%

ResNet-18 11.17M 78.38% 45.10%

ResNet-50 23.52M 79.15% 45.35%

MobileNetV2 2.30M 76.79% 45.50%

ResNeXt-29 (2x64d) 9.13M 81.86% 46.04%

WideResNet-28-10 36.48M 86.43% 46.90%

DenseNet-121 6.95M 82.72% 47.46%

RobNet-small 4.41M 78.05% 48.07%

RobNet-medium 5.66M 78.33% 48.96%

RobNet-large 6.89M 78.57% 49.24%

RobNet-large-v2 33.42M 85.69% 50.26%

RobNet-free 5.49M 82.79% 52.57%

As can be observed from the figure, for cells in deeper
positions of the network, the FSP distance has a positive
correlation with the gap between network robustness and its
clean accuracy, which indicates that a robust network has a
lower FSP matrix loss in the deeper cells of the network.

F. Visualization of RobNets
In this section, we first describe the details of how we

select architectures of RobNet family. Further, we visualize
several representative RobNet architectures.

In cell-based setting, we first filter out the architectures
with architecture density D < 0.5. Then we only consider
the architectures which have a portion of direct convolutions
larger than 0.5. For each of the computational budget, we
sample 50 architectures from the supernet following the
process described above and finetune them for 3 epochs to
get the adversarial accuracy. We then select architectures
with best performance under each computational budget,
and refer to them as RobNet-small, RobNet-medium, and

RobNet-large, respectively.
In cell-free setting, we first randomly sample 300 archi-

tectures from the supernet, and calculate the average FSP
matrix distance for last 10 cells of each sampled network.
Following the finding of FSP matrix loss as indicator, we
reject those architectures whose average distance is larger
than a threshold. In our experiments, we set the threshold
to be 0.006, which leads to 68 remaining architectures.
Finally, we finetune each of them for 3 epochs and select the
architecture with the highest adversarial accuracy, which is
named as RobNet-free.

We visualize several representative architectures of Rob-
Net family in Fig. 9.

G. Additional Black-box Attack Results
We provide additional results on transfer-based black-

box attacks on CIFAR-10, across different network archi-
tectures. The black-box adversarial examples are generated
from an independently trained copy of the network, by
using white-box attack on the victim network. We apply
PGD-based black-box attacks with 100 iterations across
different architectures, and report the result in Table 8. All
models are adversarially trained using PGD with 7 steps.

In the table, we highlight the best result of each column
in bold, which corresponds to the most robust model against
black-box adversarial examples generated from one specific
source network. We also underline the empirical lower
bound for each network, which corresponds to the lowest
accuracy of each row.

As the table reveals, RobNet-free model achieves the
highest robust accuracy under transfer-based attacks from
different sources. Furthermore, the most powerful black-
box adversarial examples for each network (i.e., the under-
lined value) are from source network that uses the same
architecture as the target network. Finally, by comparing
the transferability between two network architectures (e.g.,
RobNet-free → ResNet-18 & ResNet-18 → RobNet-free),
we can observe the following phenomena. First, our
RobNet models are more robust against black-box attacks
transferred from other models. Moreover, our RobNet
models can generate stronger adversarial examples for
black-box attacks compared with other widely used models.

0
0.001
0.002
0.003
0.004
0.005
0.006

0 10 20 30 40 50

FSP
Mat

rixL
oss

(Clean Acc. - Adversarial Acc.) (%)

Cell #0

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0 10 20 30 40 50(Clean Acc. - Adversarial Acc.) (%)

Cell #1

0
0.01
0.02
0.03
0.04
0.05
0.06

0 10 20 30 40 50(Clean Acc. - Adversarial Acc.) (%)

Cell #3

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0 10 20 30 40 50(Clean Acc. - Adversarial Acc.) (%)

Cell #4

0
0.01
0.02
0.03
0.04
0.05
0.06

0 10 20 30 40 50

FSP
Mat

rixL
oss

(Clean Acc. - Adversarial Acc.) (%)

Cell #5

0
0.005
0.01

0.015
0.02

0.025
0.03

0 10 20 30 40 50(Clean Acc. - Adversarial Acc.) (%)

Cell #6

0
0.005
0.01

0.015
0.02

0.025
0.03

0 10 20 30 40 50(Clean Acc. - Adversarial Acc.) (%)

Cell #7

0
0.005
0.01

0.015
0.02

0.025
0.03

0 10 20 30 40 50(Clean Acc. - Adversarial Acc.) (%)

Cell #8

0
0.005
0.01

0.015
0.02

0.025
0.03

0 10 20 30 40 50

FSP
Mat

rixL
oss

(Clean Acc. - Adversarial Acc.) (%)

Cell #9

0
0.002
0.004
0.006
0.008
0.01

0.012

0 10 20 30 40 50(Clean Acc. - Adversarial Acc.) (%)

Cell #11

0
0.002
0.004
0.006
0.008
0.01

0.012
0.014

0 10 20 30 40 50(Clean Acc. - Adversarial Acc.) (%)

Cell #12

0
0.002
0.004
0.006
0.008
0.01

0.012
0.014
0.016

0 10 20 30 40 50(Clean Acc. - Adversarial Acc.) (%)

Cell #13

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0 10 20 30 40 50

FSP
Mat

rixL
oss

(Clean Acc. - Adversarial Acc.) (%)

Cell #14

0
0.002
0.004
0.006
0.008
0.01

0.012
0.014
0.016
0.018

0 10 20 30 40 50(Clean Acc. - Adversarial Acc.) (%)

Cell #16

0
0.002
0.004
0.006
0.008
0.01

0.012
0.014

0 10 20 30 40 50(Clean Acc. - Adversarial Acc.) (%)

Cell #18

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

0 10 20 30 40 50(Clean Acc. - Adversarial Acc.) (%)

Cell #19

Figure 8. Analysis of FSP matrix distance as robustness indicator. We compute the FSP matrix distance for each cell, along with the
performance gap between clean accuracy and adversarial accuracy. For cells in deeper positions of the network, the FSP distance has a
positive correlation with the gap between network robustness and its clean accuracy, which indicates that a robust network has a lower FSP
matrix loss in the deeper cells of the network.

Input

1

Input

2

f(1) f(2) f(4)f(3)

conv conv identityidentity

Input

1

Input

2

f(1) f(2) f(4)f(3)

Input

1

Input

2

f(1) f(2) f(4)f(3)

(b) RobNet-medium(a) RobNet-small (c) RobNet-large
Figure 9. Visualization of representative architectures of RobNet family.

Table 8. Black-box PGD100 attack results on CIFAR-10. All models are adversarially trained using PGD with 7 steps. We create PGD
adversarial examples with ε = 8/255 (0.031) for 100 iterations from the evaluation set on the source network, and then evaluate them on
an independently initialized target network. The best results of each column are in bold and the empirical lower bound (the lowest accuracy
of each row) for each network is underlined.

Target
Source

ResNet-18 ResNet-50
WideResNet-

28-10
DenseNet-

121 RobNet-large RobNet-free

ResNet-18 54.28% 54.49% 56.44% 57.19% 55.57% 59.37%

ResNet-50 56.24% 55.89% 56.38% 58.31% 57.22% 60.19%

WideResNet-28-10 57.89% 57.96% 55.68% 58.41% 59.08% 60.74%

DenseNet-121 61.42% 61.96% 60.28% 59.34% 60.03% 59.96%

RobNet-large 59.63% 59.82% 59.72% 60.03% 59.58% 60.73%

RobNet-free 66.64% 66.09% 65.05% 64.40% 63.35% 63.17%

H. Additional White-box Attack Results
As common in recent literature [38, 42, 45], strongest

possible attack should be considered when evaluating the
adversarial robustness. Therefore, we further strengthen
the adversary and vary the attack iterations from 7 to
1000. We show the results in Fig. 10, where RobNet
family outperforms other networks, even facing the strong
adversary. Specifically, compared to state-of-the-art mod-
els, RobNet-large and RobNet-free can gain ∼ 2% and
∼ 5% improvement, respectively. We also observe that
the attacker performance diminishes with 500∼1000 attack
iterations.

710 20 40 100 500 1000
Attack iterations

44

46

48

50

52

54

56

Ad
ve

rs
ar

ia
l A

cc
ur

ac
y

(%
)

RobNet-free
RobNet-large

ResNet-18
ResNet-50

WideResNet-28-10
DenseNet-121

Figure 10. White-box attack results on CIFAR-10. All models are
adversarially trained using PGD with 7 steps. We show results of
different architectures against a white-box PGD attacker with 7 to
1000 attack iterations.

