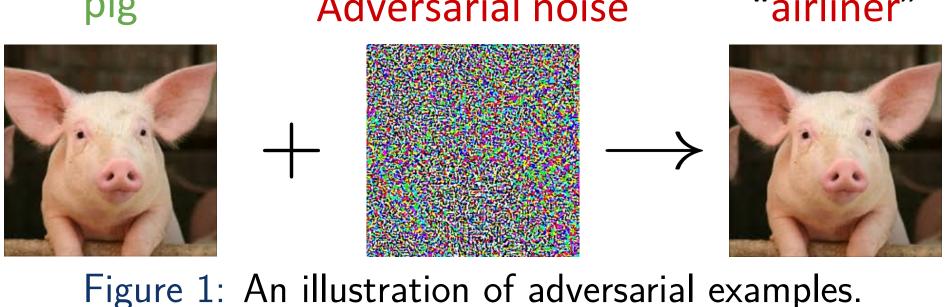


## **Adversarial Examples**

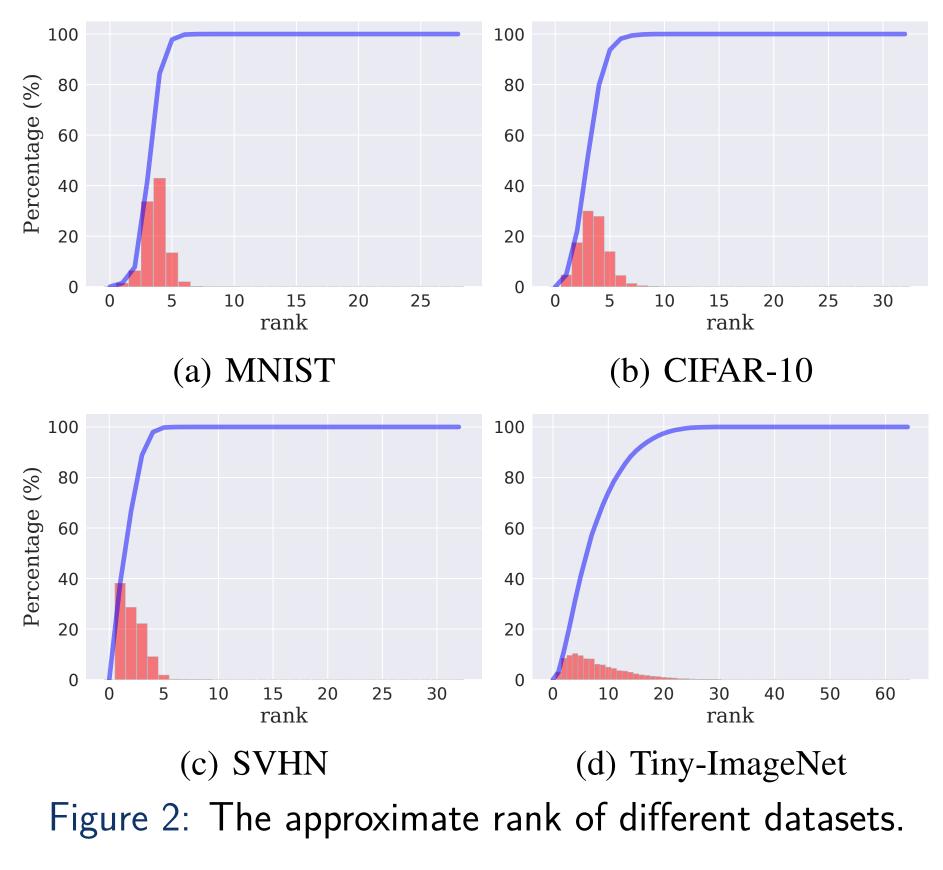
- Adversarial noise is highly structured
- Such structure is designed to fool neural nets "pig" Adversarial noise "airliner"



## **Design Motivations**

- Destroy the structure of adversarial noise
- Emphasize the **global structure** in the image

**Idea:** Images are approximately low-rank



# **Matrix Estimation**

- Recover the underlying global structure from noisy and incomplete observations
- Theoretically guaranteed if true data matrix has some global structures (e.g., low rank)
- Algos: USVT, Soft-Impute, Nuclear norm . . .

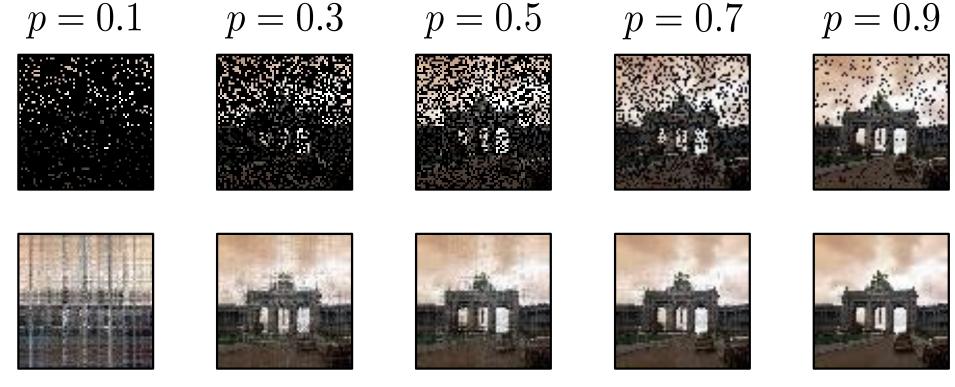
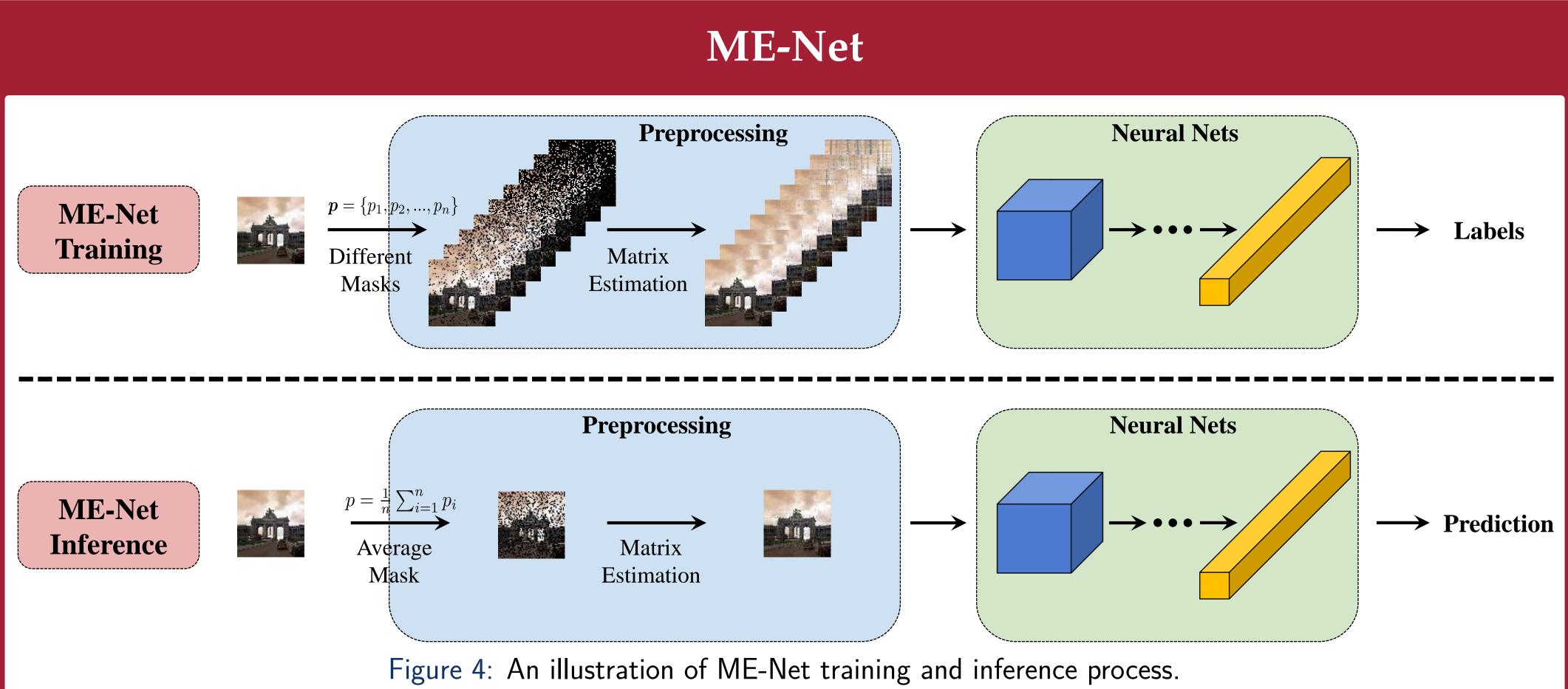


Figure 3: An example of how ME affects the input images.

# **ME-Net: Towards Effective Adversarial Robustness with Matrix Estimation**

Yuzhe Yang, Guo Zhang, Dina Katabi and Zhi Xu

MIT Computer Science and Artificial Intelligence Laboratory



- A new defense method that emphasizes the *global structure* in images using matrix estimation
- Creates more data for training by generating randomly subsampled versions for each example
- Can be combined with adversarial training, to further increase the robustness

# **Black-box Attacks**

### Threat model

•  $l_{\infty}$ -bounded perturbation (8/255 for CIFAR)

### Three types of black-box attacks

- Transfer-based: using FGSM, PGD, and CW
- Decision-based: Boundary attack
- Score-based: SPSA attack

| Attack   | Vanilla    | Madry et al.        | ME-Net |
|----------|------------|---------------------|--------|
| FGSM     | 24.8%      | 67.0%               | 92.2%  |
| PGD      | 7.6%       | 64.2%               | 91.8%  |
| CW       | 8.9%       | 78.7%               | 93.6%  |
| Boundary | 3.5%       | 61.9%               | 87.4%  |
| SPSA     | 1.4%       | 47.0%               | 93.0%  |
| Table 1  | · CIFAR-10 | black-box attacks r | esults |



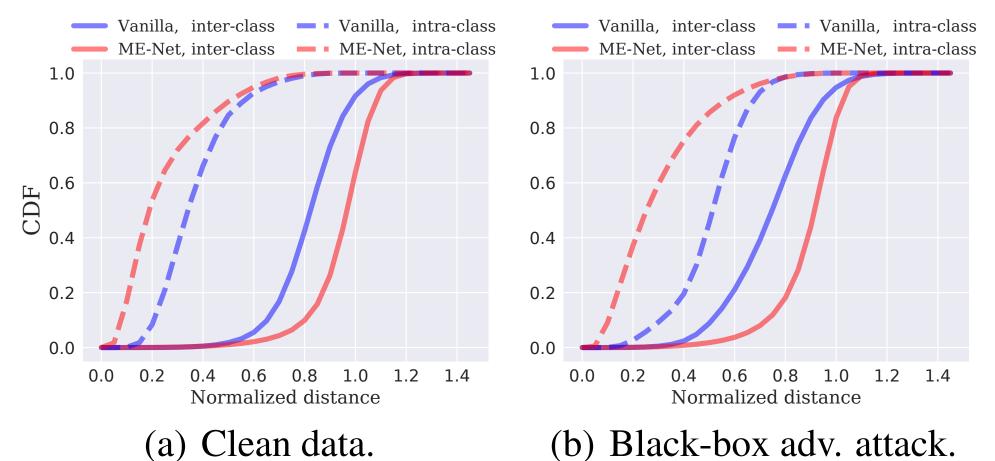


Figure 5: Empirical CDF of distance within and among classes.

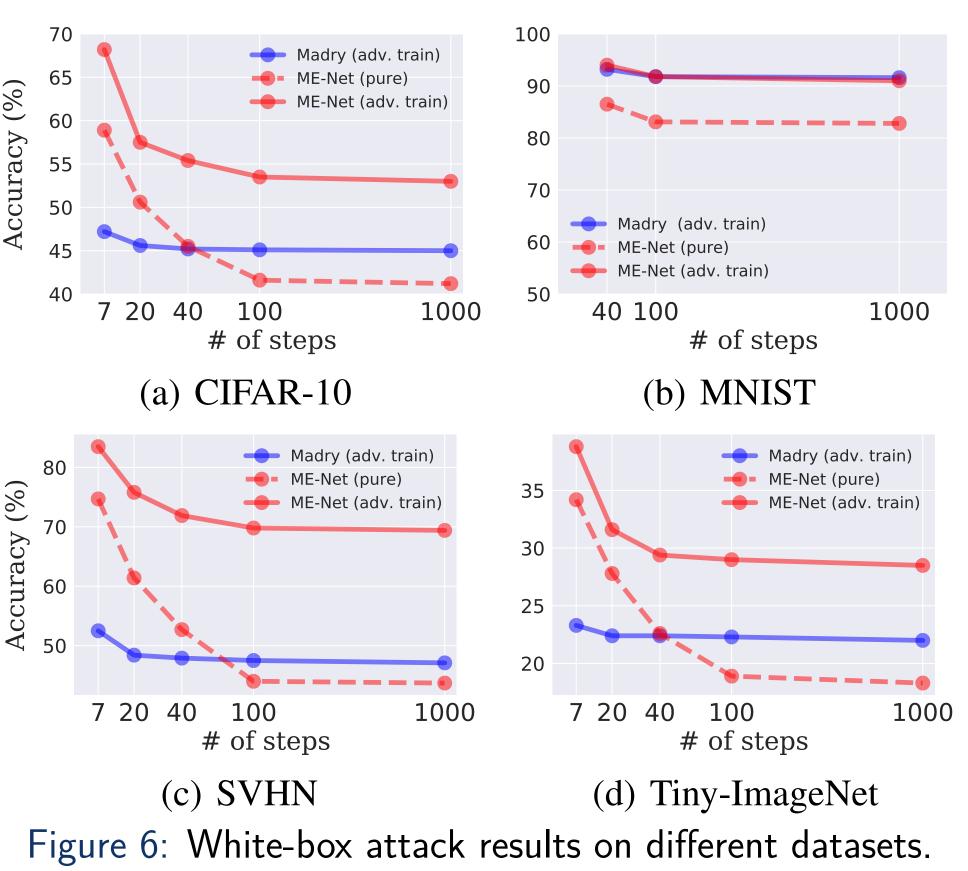
# White-box Attacks

Compared with pure preprocessing methods

| Method          | Type  | Steps | Accuracy |
|-----------------|-------|-------|----------|
| Thermometer     | Prep. | 40    | 0.0%     |
| PixelDefend     | Prep. | 100   | 9.0%     |
| TV Minimization | Prep. | 100   | 0.4%     |
| ME-Net          | Prep. | 1000  | 40.8%    |

Table 2: White-box attack against pure preprocessing schemes.

Compared with SOTA adversarial training



 Constructed after a defense is specified Takes advantage of knowledge of the defense

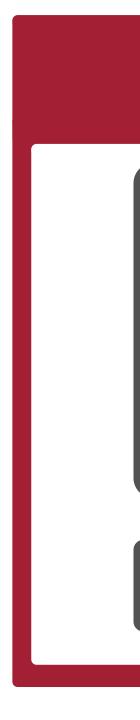
 uses exact preprocess to approximate inputs attacks the constructed inputs using BPDA

**Tra** Adv

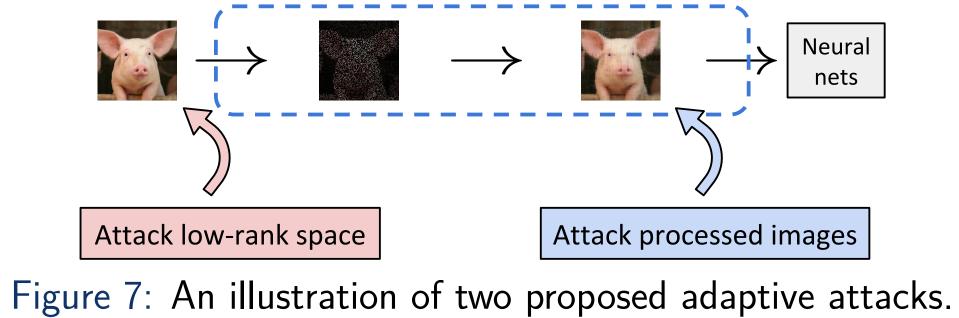
**Improving generalization** for both

 standard training (only with clean data) adversarial training (with adv. examples)

Metho Vanill ME-No Madr ME-No



# **Adaptive Attacks**



### **Approximate input attack**

### **Projected BPDA attack**

 attacks directly the main structural space projects grads to low-rank space iteratively

| aining    | Steps    | Approx. Input        | <b>Projected BPDA</b> |
|-----------|----------|----------------------|-----------------------|
| Pure      | 1000     | 41.5%                | 64.9%                 |
| versarial | 1000     | 62.5%                | 74.7%                 |
| 2. Decult | e of odo | ntivo vubito hovo at | tacks on CIEAD 10     |

Table 3: Results of adaptive white-box attacks on CIFAR-10.

### **Additional Benefits**

| od  | Training | MNIST | CIFAR | SVHN  | Tiny-ImageNet |
|-----|----------|-------|-------|-------|---------------|
| lla | Pure     | 98.8% | 93.4% | 95.0% | 66.4%         |
| let | Pure     | 99.2% | 94.9% | 96.0% | 67.7%         |
| ry  | Adv.     | 98.5% | 79.4% | 87.4% | 45.6%         |
| let | Adv.     | 98.8% | 85.5% | 93.5% | 57.0%         |
|     |          | 1     | ſ     |       |               |

 Table 4: The generalization performance on clean data.

### **More Information**



