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Adversarial Examples

• Adversarial noise is highly structured
• Such structure is designed to fool neural nets

“pig” Adversarial noise “airliner”

Figure 1: An illustration of adversarial examples.

Design Motivations

• Destroy the structure of adversarial noise
• Emphasize the global structure in the image

Idea: Images are approximately low-rank
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Figure 1. The approximate rank of different datasets. We plot
the histogram (in red) and the empirical CDF (in blue) of the
approximate rank for images in each dataset.

Figure 2: The approximate rank of different datasets.

Matrix Estimation

• Recover the underlying global structure from
noisy and incomplete observations

• Theoretically guaranteed if true data matrix
has some global structures (e.g., low rank)

• Algos: USVT, Soft-Impute, Nuclear norm . . .

Figure 3: An example of how ME affects the input images.

ME-Net

Labels

Prediction

Neural Nets

Neural Nets

Different 

Masks

Preprocessing

Average 

Mask

Preprocessing

Matrix 

Estimation

Matrix 

Estimation

ME-Net

Training

ME-Net

Inference

Figure 4: An illustration of ME-Net training and inference process.

• A new defense method that emphasizes the global structure in images using matrix estimation
• Creates more data for training by generating randomly subsampled versions for each example
• Can be combined with adversarial training, to further increase the robustness

Black-box Attacks

Threat model
• l∞-bounded perturbation (8/255 for CIFAR)

Three types of black-box attacks
• Transfer-based: using FGSM, PGD, and CW
• Decision-based: Boundary attack
• Score-based: SPSA attack

Attack Vanilla Madry et al. ME-Net
FGSM 24.8% 67.0% 92.2%
PGD 7.6% 64.2% 91.8%
CW 8.9% 78.7% 93.6%

Boundary 3.5% 61.9% 87.4%
SPSA 1.4% 47.0% 93.0%

Table 1: CIFAR-10 black-box attacks results.
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(a) Clean data.
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(b) Black-box adv. attack.

Figure 1. The empirical CDF of the distance within and among classes. We quantitatively show the intra-class and inter-class distances
between vanilla model and ME-Net on clean data and under black-box adversarial attacks.

Figure 5: Empirical CDF of distance within and among classes.

White-box Attacks

• Compared with pure preprocessing methods

Method Type Steps Accuracy
Thermometer Prep. 40 0.0%
PixelDefend Prep. 100 9.0%

TV Minimization Prep. 100 0.4%
ME-Net Prep. 1000 40.8%

Table 2: White-box attack against pure preprocessing schemes.

• Compared with SOTA adversarial training
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(c) SVHN
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Figure 1. White-box attack results on different datasets.

Figure 6: White-box attack results on different datasets.

Adaptive Attacks

• Constructed after a defense is specified
• Takes advantage of knowledge of the defense

Figure 7: An illustration of two proposed adaptive attacks.

Approximate input attack
• uses exact preprocess to approximate inputs
• attacks the constructed inputs using BPDA

Projected BPDA attack
• attacks directly the main structural space
• projects grads to low-rank space iteratively

Training Steps Approx. Input Projected BPDA
Pure 1000 41.5% 64.9%

Adversarial 1000 62.5% 74.7%
Table 3: Results of adaptive white-box attacks on CIFAR-10.

Additional Benefits

Improving generalization for both
• standard training (only with clean data)
• adversarial training (with adv. examples)

Method Training MNIST CIFAR SVHN Tiny-ImageNet
Vanilla Pure 98.8% 93.4% 95.0% 66.4%

ME-Net Pure 99.2% 94.9% 96.0% 67.7%
Madry Adv. 98.5% 79.4% 87.4% 45.6%

ME-Net Adv. 98.8% 85.5% 93.5% 57.0%
Table 4: The generalization performance on clean data.

More Information


