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A theory is semantically closed if it contains, for each sentence A

of the language in which it is framed, all biconditionals of the form

T[A] ≡ A.1   Tarski showed that no consistent 1st order theory with

a good grip on its language's syntax could be semantically closed.

This is because a theory with a good grip on its language's syntax

will (by the diagonal lemma) contain for each formula j(x) a

biconditional E ≡ j[E], hence in particular a biconditional L ≡

ÿT[L].  A theory with L ≡ ÿT[L] cannot in consistency also

contain T[L] ≡ L. But that is what semantic closure requires.

                                      
1 Every sentence is assumed to have at least one name in the

language.  '[A]' is schematic over names of A.



There is no denying Tarski's result, but one can try to steer around

it.  The ways of steering around it correspond to a number of things

that Tarski did not show.

• He did not show that a theory with a poor grip on its

language's syntax could not be consistent and semantically

closed. One way to avoid Tarski's result is to insist that all

reference to sentences be by means of quotation names.2

There is nothing to prevent a consistent theory from

containing all biconditionals of the form T'A' ≡ A, which on

the stated hypothesis is all the T-biconditionals there are.

(See Gupta 1982.)

                                      
2 I am oversimplifying, since paradoxes can also be fashioned out

of syntactic predicates.  See Gupta 1982 for details.



• He did not show that a consistent, syntactically resourceful

theory could not be weakly closed in the sense of containing,

not perhaps all T-biconditionals, but at least one such

biconditional for each A.  A second way to avoid Tarski's

result is to construct the T-biconditional for L using a

different name from the one the theory uses to affirm that L ≡

ÿT[L].  (See Skyrms 1984.)

• Tarski did not show that a consistent, syntactically

resourceful theory could not be partly closed in the sense of

containing, not perhaps all T-biconditionals for every

sentence A, but all for sentences A of a particularly well-

behaved type.  A third way to avoid Tarski's result is to

require T-biconditionals for "nice" sentences only, settling

for approximations thereto when A is not nice.  (See

Feferman 1984.)



• He did not show that a consistent, syntactically resourceful

theory could not be quasi-closed in the sense of containing all

sentences of the form T[A] #  A, where # expresses a type of

equivalence other than the type expressed by ≡.  A fourth

way to avoid Tarski's result is to add a non-classical

conditional Æ to the language and include in your theory all

instances of (T[A] Æ A) Ÿ (A Æ T[A]), that is, T[A] ´ A.

(See Brady 1989.)

• Tarski did not show that a semantically closed theory could

not be consistent by the lights of a suitably chosen non-

classical logic.  A fifth way to avoid Tarski's result is to

concede classical inconsistency but maintain that this or that

classical rule is in the present context invalid. (See Priest

1979.)

*************



All of these strategies have been tried, separately and in

combination. But the last two have been tried the least.  Field's

approach combines elements of both. He adds a non-classical

connective Æ while at the same time de-classicalizing the logic of

the other connectives (by rejecting excluded middle).   This makes

for a remarkably powerful package, as you can see from the list

now provided of its

Top Ten Excellent Features

1. Verifies all sentences of the form T[A]´A3

2. Makes T[A] and A substitutable “salva valutate”

3.  Provides an explicit model, hence…

4.  No possibility of hidden paradoxes

                                      
3 Here and throughout, C ´ D =df (C Æ D) Ÿ (D Æ C).



5. High degree of revenge-immunity, even though…

6. Vengeance-threatening notions are expressible

7. Æ has a natural semantics

8. Æ has a …-like logic

9. Æ "becomes" … in bivalent contexts

10. Only theory to inspire a Top Ten list.4

These features will come in for further explanation below, but let

me say now what is meant by feature 2.  T[A] and A are

substitutable "salva valutate" iff for all sentential contexts j(…),

Æ-contexts not excluded, j(T[A]) agrees with j(A) on whatever

semantic values there happen to be.

Well, what semantic values do there happen to be?   Field uses a

three-valued scheme in which sentences are assigned either 1

(determinate truth, or something like it), 0 (determinate falsity), or

                                      
4 OK, so I ran out of ideas after nine.



1/2 (indeterminate). Values are generated by a transfinite series Pa

of Kripkean fixed points, each the Kripke-closure (see below) of a

“seed” valuation Sa
 that assigns values only to conditionals,

defined here as statements whose main connective is Æ.  Each Pb

gives clues to the proper interpretation of Æ, clues that guide the

construction of Sb +1, which forms the basis for Pb+1. This results in

the back-and-forth process shown in Figure 1: 5

                                      
5 Yablo 1985 used a series of Kripkean fixed points to interpret the

truth predicate, which was seen as nonmonotonic.  Mention was

made at the end of extending the method to "Lukasciewicz

implication" (?), but I seem to remember having no idea what I

was talking about.



Figure 1

Three things need to be explained in this diagram.  (a) How is Sa

built up into Pa?  (b) How is Sa
 calculated on the basis of earlier

Pbs?   And (c) how does the process determine semantic values for

sentences?  The answer to (a) comes from Kripke. The answer to

(c) comes from Herzberger and Gupta. The answer to (b) is new

with Field and the key to his construction.
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To begin with (a), we can think of valuations (e.g., Sa and Pa) as

sets of ordered pairs <A, v>, where A is a sentence and v is a truth-

value, either 0 or 1.  A valuation V is Kleene  (strictly, Kleene over

M, for M a model of the base language) iff

(1) <Fa,1> Œ V iff M(a) Œ M(F)6

(2) <Fa,0> Œ V iff M(a) œ M(F)

(3) <ÿA,1> Œ V iff <A,0> Œ V

(4) <ÿA,0> Œ V iff <A,1> Œ V

(5) <AvB,1> Œ V iff <A,1> Œ V or <B,1> Œ V

(6)  <AvB,0> Œ V iff <A,0> Œ V and <B,0> Œ V

(7) <"x Gx,1> Œ V iff <Ga,1> Œ V for each name a7

(8) <"x Gx,0> Œ V iff <Ga,0> Œ V for some name a

                                      
6 Assume for simplicity that all predicates are monadic.

7 Assume that every object has a name.



V is Kripke iff

(9) <T[A],1> Œ V iff <A,1> Œ V

(10) <T[A],0> Œ V iff <A,0> Œ V

A  fixed point – of Kripke's jump operator, but let that be

understood -- is a valuation that is both Kleene and Kripke.

Provided a valuation V is sound in the sense of satisfying the left-

to-right directions of (1)-(10), it can be built up into a fixed point

V* by closing under the right-to-left directions of  (1)-(10).   Note

that Sa
 is automatically sound because it assigns truth-values only

to conditionals, and there are no conditionals on the left sides of

(1)-(10).  The relation between Pa
 and Sa

 is simply that Pa
  = Sa*.

Now let's consider (b) how Sa
 is calculated on the basis of earlier

Pbs.  Given our treatment of valuations as (not necessarily single-

valued) relations between sentences and truth-values,  A's semantic



value in V is best understood as {v | <A,v> Œ V}.  Thus, limiting

ourselves for now to consistent valuations, the semantic values are

{1}, {0}, and  {}.  These values are ordered in the obvious way:

{1} > {} > {0}.  (Sometimes we use Field's notation and write {1}

as 1, {0} as 0, and {} as 1/2; then the ordering is by numerical

size.)  If a is a successor ordinal b+1, then Sa
 is

{<AÆB,1>| Pb(A) < Pb(B)} »{<AÆB,0>| Pb(A) > Pb(B)}.

If a is a limit ordinal, then Sa is  

{<AÆB,1>| $g<a "bŒ[g,a)  Pb(A) < Pb(B)} 

»{<AÆB,0>| $g<a "bŒ[g,a)  Pb(A) > Pb(B)}.

The Sas and Pas will as Field says "oscillate wildly" (Figure 1 is in

that respect misleading), but the hope is that deserving sentences

will eventually stabilize on their deserved classical value (1 or 0),



while defective sentences will stabilize at 1/2 or never stabilize at

all.  Which brings us to (c), the assignment of ultimate values. ||A||

is limb Pb
 (A) if the limit exists, otherwise 1/2. That is, ||A|| = 1 (0)

if Pb(A) is eventually always 1 (0), and ||A|| = 1/2 if Pb(A) is

eventually always 1/2 or not eventually always anything.

***********

The main and most exciting claim Field makes on behalf of his

semantics is that it validates the “naïve theory of truth”:

(i) ||T[A] ´ A|| = 1 unrestrictedly, and

(ii) ||…T[A]…|| = ||…A…|| unrestrictedly.

Property (i) and most of property (ii) are immediate from the fact

that each Pb is a Kripkean fixed point. For it is a feature of every

fixed point that Pb(T[A]) = Pb (A), and that T[A] and A are freely



substitutable in other-than-conditional contexts.  Substitutivity

within the scope of Æ is proved by induction on the complexity of

A.  For instance, ||B Æ C|| = 1 iff Pb(B) is eventually always <

Pb(C) iff Pb(T[B]) is eventually always < Pb(C) iff ||T[B]ÆC|| = 1.

Field proves in fact that ||…|| is one of the Pbs and so a full-fledged

Kripkean fixed point.

Note that to call ||…|| a Kripkean fixed point is not to say that it is a

fixed point of Field's operator, the operator taking Pb to Pb+1.

Recall that a Kripkean fixed point needs only to satisfy (1)-(10)

above.  The closure S* of any seed set S, obtained by slapping 1's

and 0's on conditionals however one likes, does that much. To be a

Fieldian fixed point, V must also satisfy

(11) <AÆB,1> Œ V if V(A) < V(B)

(12) <AÆB,0> Œ V if V(A) > V(B).



This means that V must be S* not for any old S  but the particular

one SV that V induces:

{<AÆB,1>| V(A) < V(B)} » {<AÆB,0>| V(A) > V(B)}.

But if the language contains a Curry sentence – a K identical or

equivalent  to T[K]Æ0=1 – then no V can do this. Either V(T[K])

< V(0=1) or V(T[K]) > V(0=1). If the latter, then by (12),

V(T[K]Æ0=1) = V(K) = 0, whence (by (10)), V(T[K]) =0 <

V(0=1) after all.  If the former, then by (11), V(K) = 1, whence

(by (9)) V(T[K]) = 1, contradicting our assumption that V(T[K]) <

V(0=1).

How much should it bother us that ||….|| is not a Fieldian fixed

point?  What is nice about (11) and (12) is that they equip Æ-

sentences with intuitive and comprehensible truth-conditions.  By

the same token, it should be no great cause for alarm if the “real”



truth-conditions don't take precisely the (11)-(12) form, provided

that intuitive comprehensibility is not sacrificed,

Indeed (11) and (12) might be considered problematic, since they

prevent AÆB from assuming the value 1/2, thus obliterating the

distinction between conditionals whose antecedents are much truer

than their consequents (1Æ0) and ones whose antecedents are only

a little truer (1 Æ 1/2, or 1/2 Æ 0).  Better from this perspective

would be an interpretation along the lines of

(11') <AÆB,1> Œ V if V(A) < V(B)

(12')  <AÆB, V(A)–V(B)> if V(A) > V(B)

(the 3-valued Lukasciewicz conditional). However, (11') and (12')

are no more within reach than (11) and (12).  Consider K as above

(T[K]Æ0=1) and K' which says that 0=0ÆK.   At odd stages K

and K' are 1 and 0; at even non-limit stages they are 0 and 1.  Since



||K|| and ||K'|| are 1/2,  ||KÆK'|| should according to (11') be 1.  But

it can't be 1, for at odd stages K has a higher value than K', making

KÆK' 0 at even successor stages.  ||KÆK'|| is in fact 1/2.  That

some 1/2Æ1/2 conditionals, like KÆK, are 1, while others, like

KÆK' are 1/2, shows that Æ is not value-functional. Therefore

nothing like (11)-(12) and (11')-(12') can possibly work.8

*************

Of course Field is under no illusions about this.  He is not for a

moment suggesting that Æ is a standard issue extensional

connective.  Still, it is natural to wonder how in that case Æ is to

be understood. I am not sure that a commonsensical explanation of

Æ's meaning is possible. What we can do is try to place it on the

map between two more familiar sorts of connective.

                                      
8 See Field 2003a for a type of semantic value with respect to

which Æ  is compositional.



One is the extensional connective Ë defined by (11') and (12'), the

Lukasciewicz conditional. A look at the truth tables shows that Æ

is stronger than Ë, in that ||AÆB|| is never greater than ||AËB||

and occasionally less, for instance ||KÆK'|| = 1/2 while ||KËK'|| =

1.  This raises the question, in what does the additional strength

consist?  What more is asserted by AÆB than AËB?

Necessitating a claim is the obvious way to strengthen it, so one

natural conjecture is that AÆB is £(AËB) for some suitable

modal operator £. But Æ does not appear to pack much modal

punch. If it did, then one would expect AÆB not to hold unless A

somehow necessitated B, and BÆA not to hold unless B

necessitated A.  Since “most” pairs of sentences necessitate in

neither direction,  one would expect ||(AÆB)⁄(BÆA)|| to not often

be 1. But in fact it is always 1 except under rather special

conditions. For ||(AÆB)⁄(BÆA)|| not to be 1, we need first that



neither A nor B stabilizes at a classical value, and second that at

least one of A, B does not stabilize at all.9 If the first condition is

met but not the second, as for instance when A and B are the

Truthteller and the Liar, then AÆB and BÆA are both true.  This

suggests that CÆD, although stronger than CËD, is not as strong

as £(CËD).

What does it matter, one might say, whether Æ has an

antecedently comprehensible meaning?  A conditional that gets the

job done in other respects is one we will learn how to use, and

learning the use will teach us the meaning.  This response is fair

enough in principle.  But it assumes that Æ does get the job done

in other respects, and that a certain semantic obscurity is just the

price that has to be paid.  This may be right in the end.  But it

seems to me that Æ's performance in other respects is not beyond

                                      
9 These conditions are necessary for a value other than 1, but not

sufficient.



criticism, and that attending to the criticism makes Æ's meaning

less obscure rather than more.

*********

When we speak of getting the job done in other respects, we

should distinguish Job 1 -- verifying the T-biconditionals – from

Jobs 2, 3, 4, etc. -- assigning appropriate values to other sentences

(sentences not of the form T[A]´A).  When it comes to the

evaluation of other sentences, I see three areas where Æ could

stand to be tweaked.  The first is that Æ should be less arbitrary.

AÆB should not be assigned 1 when there is an equally good case

for assigning it 0.  The second is that Æ should be more grounded.

Assignments should be made on some prior and independent basis,

and the dependency chains should eventually bottom out.   The

third is that Æ should be stricter. If A contradicts B, for instance,

we want not only that AÆÿB is 1, but also that AÆB is not 1.



Arbitrariness

One objection people have raised to counting E (the Truthteller)

true is that one could just as easily consider it false.  Construed as

true, it verifies itself, construed as false, it falsifies itself, and there

is no reason to prefer one scenario over the other.10   To treat the

Truthteller as true, pure and simple, strikes us as arbitrary, which

in a truth-value assignment seems a Bad Thing.

                                      
10 I  myself think that there is a reason and that the Truth-Teller is

false (Yablo 1985, 1993).  But I am not aware of having convinced

anyone of this,  so I treat the Truth-Teller as semantically

underdetermined.  A better example from my perspective would be

J = 'S is false', S = 'J is false.' That really is underdetermined.



By the Conditional Truthteller, let's mean a sentence F to the effect

that (AÆA)ÆT[F].11  F describes itself as true-if-AÆA.  Because

AÆA is a tautology, this should be the same as F describing itself

simply as true.   The hypothesis that F is true is self-justifying, and

likewise the hypothesis that F is false.  Since there is no reason to

prefer one outcome to the other, to consider F true, pure and

simple, seems unacceptably arbitrary.

However, that is the value the semantics assigns.  Recall that at

stage 0, all conditionals are 1/2, including AÆA and

(AÆA)ÆT[F] (= F). That F's antecedent and consequent have the

same value at stage 0 makes F 1 at stage 1. That F's consequent is

1 at stage 1 makes F 1 at stage 2, and so on indefinitely.  “I am true

if AÆA” has therefore an ultimate value of 1.12

                                      
11 A can be any sentence you like.

12 Another oddity is that ||F|| becomes 0 if in place of AÆA we put

0=0. .



Groundedness

A second reason not to call the Truthteller true is that truth

attributions should be based on prior facts, facts already in place

before they are made.  I call this a different reason because there

are cases where a non-arbitrary assignment seems objectionable

simply because there is no prior and independent basis for it.

Consider an infinite line-up of people each saying “I am speaking

truly … the person behind me is speaking truly” (Sn is T[Sn] …

T[Sn+1]).  The only classically defensible assignment is 11111…..,

since if any Sn were false it would have a false antecedent, making

it true after all. Still we are hard put to regard any of these

sentences as true.  There is no basis for calling Sn true that does not

run through assignments to later Sms for which the same problem

arises.



Suppose now that the people in our infinite line decide to use

arrows instead of horseshoes (Sn is T[Sn]ÆT[Sn+1]).  There is no

more reason to call the sentences true than before, but this is the

assignment that the semantics makes. Each Sn is 1/2 at stage 0, so 1

at stage 1, and then we never look back.  Such an outcome  may

not be arbitrary, but it does seem ungrounded.  To suppose that Sn

is true is to suppose it has a true antecedent. But then its truth is

owing to the truth of its consequent T[Sn+1] , with the buck being

passed on forever down the line.

Strictness

If a thing is red, then it is not orange. This seems true not only of

determinately red and determinately orange objects but also objects

on the red/orange border. The incompatibility of red with orange is

not limited to the clear cases on either side.  Similarly, if a

sentence is true, then it not false. This applies not only to



determinately true and determinately false sentences but also to

sentences on the border.13 The incompatibility of true with false is

not limited to the clear cases on either side. Facts like these ought

to be expressible in the language. (This is more or less the problem

of penumbral connections.)

Suppose that Jones, assured by her instructor that the Truthteller is

true, asserts T'E', while Smith, assured by his instructor that it is

false, asserts T'ÿE'.  It seems that Jones and Smith are saying

incompatible things.  If Smith is right in calling E false, then Jones

is wrong to call it true.  Similarly if Jones and Smith call each

                                      
13 Does it apply to all sentences on the border?  Some might think

it false of the Liar that if it is true, then it is not false.  I suspect it

seems false only because of a felt tension with 'if the Liar is true

then it is false,'  and that we do best to regard both sentences as

true.  No such problems arise for the examples in the text.



other liars: J = ÿT[S] and S =ÿT[J].14  They cannot both be right.

If Jones's statement J is true, then Smith's statement S is false, and

vice versa.

It would seem natural to try to register the incompatibility of T'E'

with T'ÿE' by saying that T'E' Æ ÿT'ÿE'.  This sentence is

certainly true for Field.  But does it express the incompatibility of

T'E' with T'ÿE'? I would say not, since ||T'E' Æ  T'ÿE'|| is also 1,

and far from being incompatible with ÿT'ÿE', T'E' would seem to

imply it.  A similar situation arises if one tries to express the

incompatibility of J with S by saying that J Æ ÿS.  This has

ultimate value 1 as desired.  However J Æ S also has ultimate

value 1, even though it is precisely not the case that J is

incompatible with ÿS (= ÿÿT[J]).15

                                      
14 I assume that S and J are {} (in Field's notation 1/2).

15 The last three paragraphs take issue with a claim that Field has

since dropped.  He now says that the contrariety of red with orange



                                                                                                                 
consists in the fact that £"x (x is red Æ x is not orange), where £

is conceptual necessity. (??p. 20??).  A couple of things still worry

me, however.  First,  Field uses the unnecessitated conditional to

express a related notion: an object x is red-to-orange iff x isn't red

Æ x is orange.   However if this conditional really expressed that x

was red-to-orange, one would expect it not to be true that x isn't

red Æ x is big, for x is not red-to-big. And it looks like it will be

true if x is borderline big, or at least that is the natural assumption

given the almost-extensionality of Æ.    A different explanation of

red-to-orange avoids this problem: £"y (y is indiscernible in color

from x Æ (y is not red Æ y is orange)).  This will be false if "big"

is substituted since we can choose y to be small.  Second,  suppose

with Field that P is contrary to Q iff  £"A (P[A] Æ ÿQ[A]).

"True" and "untrue if 0=0" are intuitively speaking contraries, so

we should have £"A (T[A] Æ ÿ(0=0 Æ ÿT[A])).  But "A (T[A]

Æ ÿ(0=0 Æ ÿT[A])) is not true on Field's semantics, since it does



A thing is orange if and only if it is redder than yellow things and

yellower than red ones. A sentence A is true iff A. Both claims

seem correct for definite and borderline cases alike. The

equivalence of orange with redder-than-yellow-and-vice-versa is

not limited to the clear cases on either side, and likewise the

equivalence of T[A] with A. Our theory of these matters should

somehow register these equivalences.

Kripke's theory comes close to registering the T-equivalence, in

that each fixed point treats the two sides alike.  The trouble is that

this is for Kripke an essentially metalinguistic observation. He

lacks an object language connective # with the property that ||B#C||

                                                                                                                 
not hold for the Curry sentence K.  (||T[K] Æ ÿ(0=0 Æ ÿT[K])|| =

1/2.)



= 1 iff Q(B) = Q(C) for all fixed points Q.16 This is because his

connectives are monotonic, and no monotonic connective can

permit the combination of ||B # C||  = 1 with ||B|| = ||C|| = 1/2.

Now Field's Æ is not monotonic, so one might hope it would allow

the equivalence of T[A] with A finally to be stated.   This requires

not just that ||T[A]´A||=1, but also that ||T[A]´ÿA|| not be 1

(leaving aside cases, like the Liar, where the second assignment is

forced on us by the first). .  However this is not what we find, since

||T[G]´ÿG|| = 1 for every G that stabilizes at 1/2, including the

Truthteller and the Tautologyteller ("this sentence is either true or

not true").  A related situation arises with sentences A that do not

stabilize at 1/2.  Notice first that  if A' is 0=0ÆA, then A and A'

are intuitively speaking equivalent.  One might hope then that

||T[A]´A'|| = 1  and ||T[A]´ÿA'|| = 0.  In fact the reverse is true

                                      
00 Kripke 1975 does discuss the possibility of adding a modal

operator.



for certain choices of A: ||T[A]´A'|| = 0  and ||T[A]´ÿA'|| = 1.

(This happens for instance if A is a Curry sentence.)  To be sure,

when A has ultimate value 1 or 0, biconditionals framed with Æ

behave as they should: ||T[A] ´ A|| = 1, ||T[A] ´ ÿA|| = 0.  But

that much we get already from the material biconditional ≡.  The

advantage of Æ is supposed to lie with its treatment of the ||A|| =

1/2 case.

**********

A number of strategies might be tried to address these issues (I

don't call them "problems" since my reactions may be

idiosyncratic).  The ones I will look at exploit the fact that Kripke's

minimal fixed point P is, as the name implies, only one of a class

of valuations all satisfying conditions (1)-(10) listed above.  The

idea very roughly will be to give a possible worlds semantics for

Æ, with these valuations playing the role of worlds.  I will first



sketch a construction in the style of Field, building on Herzberger

and Gupta; it helps with some of the examples just discussed but

does not greatly clarify the truth-conditions of AÆB.   This will be

followed by a construction in the style of Kripke (and Yablo 1985),

which addresses all of the examples and makes the truth-conditions

relatively straightforward.

Field-style Possible Worlds Semantics

Call a fixed point "categorical" if it leaves Æ-statement

unevaluated.  The Field-style construction takes off from (i) the

minimal fixed point P and (ii) the set Q of all categorical fixed

points.  Because no consistency requirement is imposed – Q Œ Q

can contain neither, either, or both of <A,1> and <A,0>.  -- the

members of Q form a lattice under the operations

Q1⁄Q2 = (Q1»Q2)*



Q1ŸQ2 = (Q1«Q2)*.

Each Q Œ Q has a dual that turns Q's gaps into gluts and vice

versa, leaving other sentences unchanged.  In particular Q contains

a (unique) maximal fixed point obtained by taking the dual of P.

(See Woodruff 1984.)

The definition of stages is by a simultaneous induction starting

from Q = {Qi | i Œ I}.   Each Qk is the starting point Qk
0 of a

sequence <Qk
a>, with Qk

b+1 determined by Qb  = {Qi
b | i Œ I}.  The

key to the construction is that A Æ B is true in Qk
b+1 iff B is valued

as highly as A by all the members of Qb.  By “valued as highly as”

I mean

Q(A) < Q(B) =df

<A,1>Œ Q only if <B,1>Œ Q, and



<B,0> Œ Q only if <A,0> Œ Q.17

If Q(C) is considered {}, {1}, {0}, or {1,0} according as Q

contains neither of <C,1>, <C,0>, the first  only, the second only,

or both, then this corresponds to the ordering that has {0} <  all

other values, {1} > all other values (and that's all).. Q is said to

validate AÆB iff Q(A)<Q(B).

Suppose we have Qa  = {Qi
a  | i Œ I} in hand.  Then Qa+1 is the set

of all Qi
a+1 (i Œ I), where

Qk
a+1 =

({<AÆB, 1> | every Qi
a ⊇ Qk

a validates AÆB})}

» {<AÆB,0> | not every Qi
a ⊇ Qk

a validates AÆB})*.

                                      
17 Q(C) = Q(D) means that <C, v> Œ Q iff <D,v> Œ Q.



AÆB is true in Qk
l iff as g approaches l, it is eventually always the case

that every Qi
g ⊇ Qk

g validates AÆB.18

Qk
l =

({<AÆB, 1>|$b<l "gŒ[b, l) each Qi
a ⊇ Qk

a validates AÆB}

» {<AÆB,0>|$b<l "gŒ[b, l) no Qi
a ⊇ Qk

a validates AÆB})*.

This results in the back-and-forth process shown in

Figure 2:

                                      
18 This looks a little different from the successor clause but is in

keeping with Field..

…….
…….…….
…….Q0

1 Q0
2 Q0

3 Q0
l+1

Qk
0 Qk

1 Qk
2 Qk

3 Qk
l Qk

l+1

Q0 Q1 Q2 Q3 Ql Ql+1



Figure 2

Now the definition of ultimate values. For each Qk in Q, let Qk
•

 be

liminfbQk
b, that is

Qk
• = {<C,v> | <C,v>ŒQi

b
 for all large enough b}.

If Q0 is the minimal fixed point, then A's ultimate value is the

value it is assigned by Q0
•.   Consider for instance "if J, then not

S", where again J is ÿT[S] and S is ÿT[J].   This receives value 1

because Q(J)  < Q(ÿS)  (= Q(ÿÿT[J])) for all fixed points Q. "If J,

Q0
0

 =P Q0
l



then S" is not assigned 1 because it is not validated by consistent

Qs assigning 1 to J, and such Qs can be found in every Qb
. (Recall

that "if J then S" is 1 on the original Field semantics.)

I do not want to dwell too long on this system, so let me just note a

few basic properties. That Qk
a 

 is always a Kripkean fixed point

means that each Q0
a validates both directions of T[A]´A, so

Q0
•(T[A]´A) = 1.  Substitutivity is harder to prove, but it holds,

so we have the full naïve theory of truth. Æ is stricter than it was

than on the original Field semantics, which helps with penumbral

connections (as just observed in effect with J and S).  But the

issues of arbitrariness and groundedness remain. It is unfortunately

not the case that P•(A Æ B) = 1 iff " Qk
•

 ⊇ Q0
•

  Qk(A)<Qk(B).19

The new truth-conditions are as obscure as the old ones.

                                      
19 The right hand side holds for K, 0=0ÆK but P•(KÆ(0=0ÆK))

≠ 1.



Kripke-style Possible Worlds Semantics

This time we start not with the set R of all categorical fixed points

meeting a certain condition: R Œ R must be "transparent" in the

sense that substituting T[C] for C always preserves semantic value

in R.  (Note that each opaque fixed point has a least transparent

extension, obtained by closing under both directions of

<j(T[C]),v> Œ V iff <j(C),v> Œ V and (1)-(10).) <R, Ÿ, ⁄> is a

lattice under the same operations as before. Each R Œ R has a dual

in R that turns gaps into gluts and vice versa, leaving everything

else alone.  In particular R contains a maximal transparent fixed

point making each conditional statement both true and false.

(Woodruff 1984).

The idea is to develop an increasing series of fixed points Pb in

tandem with a decreasing series Rb
 of sets of fixed points. AÆB is



to be true  in Pa+1 iff each R Œ Ra
 validates it.   Ra+1 is obtained by

purging Ra
 of any valuations that conflict with Pa+1.  Pa grows as

Ra shrinks, because the smaller Ra  is, the easier it becomes for all

its members to validate AÆB.  Ra 
  shrinks as Pa  grows,  because

the more opinionated a valuation is, the more it comes into conflict

with other valuations.

Above we said that R(A)<R(B) just in case R assigns 1 to B if to

A, and 0 to A if to B.  And we said that R validates AÆB iff

R(A)<R(B).  Now we further stipulate that R(A)>R(B) iff R(A) >

R(B) and R(A) ≠ R(B).  Explicitly,

R(A) > R(B) =df

R assigns 1 to A if to B, and 0 to B if to A, and

(either) 1 to A only or 0 to B only. 

When R(A) > R(B), we say that R invalidates AÆB.  The



induction goes as follows.  Suppose we have Pa  and Ra in hand.

Pa+1 =

({<AÆB,1> | each R Œ Ra validates AÆB}

               {<AÆB,0> | each R Œ Ra invalidates AÆB})*

Valuations are incompatible when they disagree in their unique

assignments, i.e., one makes a sentence uniquely true (false) that

the other fails to make uniquely true (false)..

Ra+1 =

{R Œ Ra | R is compatible with Pa+1}.

Limit stages are similar. Suppose we have Pg   and Rg  in hand for all

g < l.

Pl 
  =



 ({<AÆB,1>|$b<l "gŒ[b, l) each RŒRg  validates AÆB)}  »

{<AÆB,0> |$b<l "gŒ[b, l) each R ŒRg  invalidates AÆB })*

Rl  = {R Œ «g<l Rg  | R is compatible with Pl}.

This gives us the sequence depicted in Figure 3:

Figure 3

That the Ras  are (weakly) decreasing is clear from their definition.

P0 P1 P2 Pl Pl+1

R0 R1 R3 Rl Rl+1

……



Since Pa  varies inversely with Ra, Pa Õ Pb if a < b. By the usual

cardinality argument,  we eventually reach Pk   = Pk+1 and Rk = Rk+1;

these are henceforth known as P•  and R•. Ultimate values are the

values assigned by P•.  (||…|| and P•  are one and the same set of

ordered pairs.)

**********

Some properties of  P•, aka ||…||, are clear from the construction.

All the Pas, P• included, are fixed points of Kripke's jump

operator, which is just to say they satisfy (1)-(10). What sets P•

apart is that it is a fixed point of the operator taking Pa to Pa+1.  If

we think of the members of R•  as the worlds accessible from P•,

the truth-conditions for conditionals are:

(11")

 P•(A Æ B) = 1 iff



AÆB is validated by all accessible worlds.

(12")

P•(A Æ B) = 0 iff

AÆB is invalidated by all accessible worlds

Given the definition of an accessible world, this means that

||AÆB|| is 1 or 0 according to whether AÆB is validated or

invalidated by all transparent fixed points compatible with ||…||.20

                                      
20 Someone might worry that P• is inconsistent, that is, assigns

some sentence both 1 and 0.  It is certainly not consistent if R•  is

empty, for then every conditional is validated and invalidated by

every possible world.  If R• has even one member, though, then

conditionals have at most  one truth-value, hence P• is consistent

overall.   And each Ra does have at least one member, since it

contains at a minimum Pa.



A third property clear from the construction is that P•  verifies

every  T-biconditional. The proof that ||T[C] ´ C|| = 1 is that both

directions are validated by all accessible worlds, given that worlds

are fixed points. Interchangeability of T[C] and C in all contexts is

proved by induction on the complexity of C.  The one nontrivial

part is to show that C and T[C] are substitutable in AÆB if in A

and B.  Here we rely on the fact that the valuations in R•  are

transparent. Suppose, for instance, that AÆ(CÆD) is 1 and

consider AÆ(T[C]ÆD). ||AÆ(CÆD)|| = 1 only if for all

accessible worlds R, R(A)<R(CÆD).  Transparency tells us that

R(CÆD) = R(T[C]ÆD), so for all accessible R,

R(A)<R(T[C]ÆD), whence ||AÆ(T[C]ÆD)|| = 1.

Next we consider the issues of arbitrariness, ungroundedness, and

“laxity” (insufficient strictness).  Our example of arbitrariness was

the conditional Truthteller F (= (AÆA)ÆT[F]).   Field gives this a

value of 1 even though 0 seems on the face of it just as justified.



What value does P• assign?  First let's show that <F,1>œP1.  R0

contains a least R assigning 1 to both AÆA and T[F]; call it R1. R0

also contains  a least R assigning 1 to AÆA and 0 to T[F]; call it

R2. Since R1 validates F and R2  invalidates it, P1 leaves

(AÆA)ÆT[F] unevaluated.  Since P1 assigns 1 to AÆA (why?)

and nothing to F, P1 is compatible with both R1 and R2. Hence R1

and R2 survive into R1, which by the same argument as before

means that P2 leaves (AÆA)ÆT[F] unevaluated.  Continuing in

this way we see that P•(F) = {}.

Our example of ungroundedness was the infinite Curryesque

sequence Ki = T[Ki] ÆT[Ki+1]. R0 contains for each i a smallest

valuation Ri1 assigning 1 to Ki and 1 to Ki+1 , and a smallest

valuation Ri2  assigning 1 to Ki and 0 to Ki+1 The first validates Ki

and the second invalidates it, so P1(Ki) = {} for all i. But then as

above Ri1. and Ri2 survive into R1, so P2(Ki) = {} for all i, and so on

ad infinitum. . The Kis are 1 on the Field semantics but are neither



1 nor 0 by the lights of P•.    The strictness issue was addressed

already by the previous semantics, and the same considerations

apply.  Consider for instance T'K' Æ ÿT'ÿK'.  This has ultimate

value 1 because every fixed point (including those making K both

1 and 0) validates it. T'K' Æ T'ÿK' is not 1 because fixed points

assigning just 1 to K fail to validate it, and not 0 either because

fixed points assigning just 0 to K fail to invalidate it.

********

Look back now at the Top Ten Excellent Features of Field's system

(the original system, without possible worlds).  How many of these

are shared by the system sketched in the last section?  I have

already said that the Kripke system verifies all T-biconditionals

(that's 1.), and permits the substitution salva valutate of T[A] for A

(that's 2.). Certainly it provides an explicit model (that's 3.) which



means no hidden paradoxes (that's 4.).21 When it comes to 7. and

8., there is a tradeoff.  The Kripke system gives Æ a more natural

semantics -- a fixed point semantics.  -- but at the cost of a less

horseshoe-like logic.  For a sense of what is lost (and what is not),

some key axioms, rules, and metarules of the Field system are

A1 |= AÆA,

A2 |= ÿÿAÆA,

A3 |= AÆ(A⁄B),

A4 |= AŸB Æ A

A5 |= (AÆÿB)Æ(BÆÿA)

A6 |= (AÆÿA)Æÿ(TÆA)

R1 A, AÆB |= B

R2 A, ÿB |= ÿ(AÆB)
                                      
21 One might worry about inconsistencies, but see the previous

note.



R3 A |= BÆA

R4 (AÆB) Ÿ (AÆC) |= A Æ (B Ÿ C)

R5 (AÆC) Ÿ (B ÆC) |= (A ⁄ B) Æ C

R6 AÆB |= (CÆA)Æ(CÆB).

A1 – A4 are valid on the present semantics, but A5 and A6  hold in

rule form only: AÆÿB  |= BÆÿA and AÆÿA |= ÿ(TÆA).  R1-

R5 are truth-preserving but R6 fails.22   This last is important to the

proof that, as in the Field system,  Æ “becomes” horseshoe in

bivalent contexts (that's feature 9).23

                                      
22 One key weakness of the present logic is its obliviousness in

many cases to embedded conditionals. (As evidenced, for instance,

in the failure A5 and A6.)  It might help to impose more conditions

on R0 than just transparency.

23 Field's “Theorem on Æ and …” (Field 2003a) still holds when |-

LCC   is replaced by |=,  understood as 1-preservingness in the

Kripke semantics.  The modified theorem states that:



                                                                                                                 

(ia) A…B |= AÆB

(ib) (A⁄ÿA)Ÿ(B⁄ÿB) |= (A…B)Æ(AÆB)

(iia) (A⁄ÿA)Ÿ(AÆB) |= A … B

(iib) (A⁄ÿA)Ÿ(B⁄ÿB) |= (A Æ B)Æ(A…B)

Clearly B |= A Æ B, and ÿA |= AÆB. ⁄-elimination holds

because ||A ⁄ B|| = 1 only if ||A|| = 1 or ||B|| = 1. By ⁄-elimination,

ÿA⁄B |= AÆB, which is the same as (ia). For (ib) and (iib), if

||(A⁄ÿA)Ÿ(B⁄ÿB)|| = 1 then ||A|| = 1 or 0, and ||B|| = 1 or 0. But

then R(A) = ||A|| and R(B) = ||B|| for all RŒR•. It follows that

||AÆB|| = ||A … B|| = 1 or 0.  Either way R(A … B) = R(AÆB) for

all RŒR•, so ||(A…B)Æ(AÆB)|| =1 (proving (ib) and

||(AÆB)Æ(A… B)|| = 1  (proving iib).   For (iia), that ||A⁄ÿA|| = 1

means that ||A|| is 1 or 0. If the latter then ||A … B|| = 1. If the

former then "RŒR• R(A) = 1.  Also though " RŒR• R(A)<R(B)

since ||AÆB|| = 1. So ||B|| = 1, hence   ||A … B|| = 1. QED



That leaves  5. and 6.: high degree of revenge-immunity, and not

because vengeance-threatening notions are inexpressible.  One of

the great attractions of Field's theory is the astonishing mileage he

gets out of a language-internal determinacy operator DA,  defined

as (0=0ÆA) & A.  DA is 1 at stage a+1 iff A is true both at stage

a+1 and stage a, and 0 at stage a+1 iff A fails either at the given

stage or the one before it.  DA is 1 at limit stage l iff A is 1

through the closed interval [b, l] for some b < l, and 0 at stage l

if A is either 0 at l or less than 1 through the half-open interval [b,

l).  If L is the Liar then DL is 0; if L1 is the strengthened Liar "I

am not determinately true" then DDL1 is 0; if L2 is the double-

strength Liar "I am not determinately determinately true" then D3A

is 0; and so on until the ordinal notations run out.  That none of

these Liars is unevaluable, and indeed each is truly describable as

defectivea  (ÿDaA ŸÿDaÿA) for suitably large a, might seem to

support a claim of revenge-immunity.



Distinguish two questions, however. Question #1:  is the language

able to characterize as defective every sentence that deserves to be

so characterized?  Question #2: are there intelligible semantic

notions such that paradox is avoided only because those notions

are not expressible in the language?  Field goes a long way towards

addressing the first of these, but revenge-mongers have

traditionally been more interested in second.

Now it may seem that Field does address the second question, in

the section called “Revenge (2).”  The revenge-monger (RM) asks

us to imagine the chaos that would result if having an ultimate

value other than 1 were expressible in the language.  A Superliar

L• could then be constructed saying that ||L•|| ≠ 1.. “Why imagine

it?,"  Field asks. The mentioned predicate

needn't even be added to the language: [it is] already there, at

least if the base language from which we started the



construction…. included the language of set theory, for the

construction…showed how to explicitly define [it] in set-

theoretic terms … (Field 2003b,??31-2??)

That Field goes so far as to lend RM his tools makes the next step

all the more crushing:

Can't we then reinstitute a paradox?  No we can't…our

construction yields the consistency of the claim True (||A|| ≠

1) ´ ||A|| ≠ 1 (ibid.??32??)

The problem is that by Tarski's theorem, “we can't within classical

set theory define any notion of determinate truth that fully

corresponds to the intuitive notion” (ibid,??33??), what Tarski

would have called the metalinguistic notion.  The paradox fails

because the predicate '||…|| ≠ 1'  does not mean what RM wanted it

to.



But of course it was clear from the start that no truth-predicate

definable in the language was going to express the notion of

having a semantic value ≠  1.  What then was the point of inviting

RM into his workshop and offering the use of his tools?  I will not

speculate about motive, but the result was to get RM off the street

where he might really have caused some trouble.  From that

external vantage point, RM would have seen the old familiar

bargain at work and raised the old familiar alarm: consistency is

being maintained through a sacrifice of expressive power.  I am not

saying I agree with RM about this, just that he should be allowed

the platform from which his type has traditionally threatened

revenge.

Field does have a response to this: "RM, you are taking the

semantics and its classical setting too seriously.  The most a

classical semantics can accomplish is to provide a consistency

proof for the theory.  The “real” semantics, if there were going to



be one, would be carried out in a non-classical set theory, a theory

that is needed anyway to deal with the set paradoxes. Sentences

like '||this very sentence|| ≠ 1' will not bother us any longer, when

we are free of the requirement that ||A||=1 v ||A||≠1."  A unified

treatment of the set and semantic paradoxes is the grail cup of

antinomy studies. Russell thought he had it in the theory of types,

but we know how that turrned out.  How Field's attempt at a

unified treatment will turn out, we don't know.  But the attempt

bears watching.24
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