Generalization Bounds for DataDriven Numerical Linear Algebra

Peter Bartlett
UC Berkeley
Piotr Indyk
MIT
Tal Wagner
Microsoft Research

Data-Driven Algorithms

Traditional algorithm design:
Modern reality of algorithm design:

Numerical (or Efficient) Linear Algebra

- Problems in computational linear algebra:

- Exact algorithms: SLOW
- $\Omega\left(n^{\omega}\right)$ for an $n \times n$ matrix
- Approximate algorithms: Near-linear time!
- $\tilde{O}\left(n^{2}\right)$ for an $n \times n$ matrix, \tilde{O} (\#nonzero entries) for a sparse matrix

Data-Driven Numerical Linear Algebra

- How do numerical linear algebra algorithms work?
- Choose auxiliary matrix
- Use it to make problem smaller
- Solve small problem
- Use solution for large problem

- How do we choose the auxiliary matrix?
- Traditionally: Either at random or by elaborate heuristics
- Recently: Learn it from data (i.e., past inputs)
- [Indyk-Vakilian-Yuan'19] [Ailon-Leibovich-Nair'20] [Luz-Galun-Maron-Basri-Yavneh'20] [Liu-Liu-Vakilian-Wan-Woodruff'20] [Indyk-Wagner-Woodruff'21]

Data-Driven Numerical Linear Algebra: In Action

Problem:

Low-rank approximation (LRA)

Setting:

Learning the auxiliary matrix

Given a training set of input matrices

Use it to learn an auxiliary matrix S

Evaluate S by using it for fast (near-linear time) LRA on a test set of input matrices

[Indyk-Vakilian-Yuan NeurIPS'19]

[Indyk-Wagner-Woodruff NeurIPS'21]

Data-Driven Algorithms: Theory?

- Can we provably learn good algorithms from past inputs?
- Gupta \& Roughgarden (2016):
- View as statistical learning problem
- Prove upper bounds on (real-valued analogs of) VC dimension
\Rightarrow PAC-learning generalization bounds on number of training samples
- This work: Bounds for all existing data-driven numerical linear algebra algorithms

Reference	Algorithm	Problem	Algorithmic "family"
[Indyk-Vakilian-Yuan'19]	IVY	LRA	Sketching
[Ailon-Leibovich-Nair'20]	Butterfly LRA	LRA	Sketching
[Liu-Liu-Vakilian-Wan-Woodruff'20]	Multisketch LRA	LRA	Sketching
[Indyk-Wagner-Woodruff'21]	Few-shot LRA	LRA	Sketching
[Luz-Galun-Maron-Basri-Yavneh'20]	Learned AMG	Regression	Multigrid

* All bounds are near-proportional to the number of learned parameters

Prior and Related Work

- Gupta \& Roughgarden (ITCS 2016, SICOMP 2017):
- Initiated framework
- Upper bound technique for greedy heuristics and local search algorithms
- Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik (STOC 2021):
- General upper bound technique
- Applications for pattern matching and mechanism design algorithms
- Does not work for the linear algebra algorithms we consider

Review:

 Statistical Learning

 Statistical Learning}
(for data-driven algorithms, but also in general)

Data-Driven Algorithms: Setting

A loss minimization problem:

- Inputs: $x \in X$
- Algorithms: $\mathcal{L}=\left\{L_{\rho}: \rho \in \mathbb{R}^{n}\right\}$, parameterized by $\rho \in \mathbb{R}^{n}$
- Losses: Identify L_{ρ} with a map $L_{\rho}: X \rightarrow[0,1]$ that maps inputs to losses
- $L_{\rho}(x)$ is the loss of solving for x with parameters ρ

Our case: The low-rank approximation (LRA) problem

- Inputs: X is the set of matrices $A \in \mathbb{R}^{n \times n}$ with $\|\boldsymbol{A}\|_{F}=1$
- Algorithms: $\mathcal{L}=\left\{L_{S}: \boldsymbol{S} \in \mathbb{R}^{m \times n}\right\}$, parameterized by auxiliary matrices $\boldsymbol{S} \in \mathbb{R}^{m \times n}$
- Loss: $L_{S}(\boldsymbol{A})=\left\|\boldsymbol{A}-\widetilde{\boldsymbol{A}}_{\boldsymbol{S}}\right\|_{F}^{2}$, where $\widetilde{\boldsymbol{A}}_{\boldsymbol{S}}$ is the LRA of \boldsymbol{A} computed with aux. matrix \boldsymbol{S}

Statistical Learning and ERM

Statistical learning: Suppose we have a distribution D over X

- Goal: Estimate the best parameters for D

$$
\rho^{*}=\operatorname{argmin}_{\rho \in \mathbb{R}^{n}} \mathbb{E}_{x \in D}\left[L_{\rho}(x)\right]
$$

- Method: Draw s samples $x_{1}, \ldots, x_{s} \sim D$ and use Empirical Risk Minimization (ERM)

$$
\hat{\rho}=\operatorname{argmin}_{\rho \in \mathbb{R}^{n}} \frac{1}{s} \sum_{i=1}^{s} L_{\rho}\left(x_{i}\right)
$$

- We say $\mathcal{L}=\left\{L_{\rho}: \rho \in \mathbb{R}^{n}\right\}$ is (ϵ, δ)-learnable with s samples (by ERM) if

$$
\operatorname{Pr}_{x_{1}, \ldots, x_{S} \sim D}\left[\mathbb{E}_{x \in D}\left[L_{\widehat{\rho}}(x)\right] \leq \mathbb{E}_{x \in D}\left[L_{\rho^{*}}(x)\right]+\epsilon\right] \geq 1-\delta
$$

- Question: What is the smallest number of samples s that suffices?

VC-Dimension and Fat Shattering Dimension

Definition: Let \mathcal{L} be a family of functions $X \rightarrow\{0,1\}$.

- A set $x_{1}, \ldots, x_{s} \in X$ is shattered by \mathcal{L} if for every $I \subset\{1, \ldots, s\}$, there is $L \in \mathcal{L}$ s.t.:

$$
L\left(x_{i}\right)=1 \Leftrightarrow i \in I .
$$

- The VC-dimension $\operatorname{VCdim}(\mathcal{L})$ of \mathcal{L} is the size of the largest shattered set.

Definition: Let \mathcal{L} be a family of functions $X \rightarrow[0,1]$. Let $\gamma \geq 0$.

- A set $x_{1}, \ldots, x_{s} \in X$ is γ-fat shattered by \mathcal{L} if there are thresholds $r_{1}, \ldots, r_{s} \in \mathbb{R}$, such that for every $I \subset\{1, \ldots, s\}$, there is $L \in \mathcal{L}$ s.t.:

$$
i \in I \Rightarrow L\left(x_{i}\right)>r_{i}+\gamma \quad \text { and } \quad i \notin I \Rightarrow L\left(x_{i}\right)<r_{i}-\gamma
$$

- The γ-fat shattering dimension fat $_{\gamma}(\mathcal{L})$ of \mathcal{L} is the size of the largest γ-fat shattered set.

Classical learning theory: The sample complexity of (ϵ, δ)-learning \mathcal{L} (by ERM) is proportional to the γ-fat shattering dimension with $\gamma=\Theta(\epsilon)$.

Review:
 Fast Low-Rank Approximation

(with data-driven algorithms, but also in general)

Low-Rank Approximation (LRA)

- Problem:
- Input: $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ with $\|\boldsymbol{A}\|_{F}=1$, target rank $k \ll n$
- Goal: \widetilde{A} of rank k that approximately minimizes $\|A-\widetilde{A}\|_{F}^{2}$

- Exact solution: SVD
- Returns: $[\boldsymbol{A}]_{k}$ such that $\left\|\boldsymbol{A}-[\boldsymbol{A}]_{k}\right\|_{F}^{2}=\min _{\widetilde{\boldsymbol{A}} \text { of } \operatorname{rank} k}\|\boldsymbol{A}-\widetilde{\boldsymbol{A}}\|_{F}^{2}$
- Runtime: $O\left(n^{\omega}\right)$

Efficient Low-Rank Approximation

- The SCW algorithm [Sarlos'06, Clarkson-Woodruff'09,13]:
- Pick an auxiliary matrix $\boldsymbol{S} \in \mathbb{R}^{m \times n}$, where $k \leq m \ll n$
- Project \boldsymbol{A} onto rows $(\boldsymbol{S A})$
- Return: Best rank- k approximation of projected \boldsymbol{A}

$$
\widetilde{\boldsymbol{A}}_{\boldsymbol{S}}=\left[\boldsymbol{A}(\boldsymbol{S A})^{\dagger}(\boldsymbol{S A})\right]_{k}
$$

Reminder: $\boldsymbol{M}^{\dagger} \boldsymbol{M}$ is the orthogonal projection matrix on the row space M

- Lemma: $\widetilde{\boldsymbol{A}}_{\boldsymbol{S}}$ can be computed in time $\operatorname{mult}(\boldsymbol{S}, \boldsymbol{A})+O\left(m^{2} n\right)$ and space $O(m n)$.
- By the formula: $\widetilde{\boldsymbol{A}}_{\boldsymbol{S}}=[\boldsymbol{A} \boldsymbol{V}]_{k} \boldsymbol{V}^{T}$ where $\boldsymbol{S} \boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$
- Theorem: If \boldsymbol{S} has $m=\tilde{O}(k / \epsilon)^{2}$ rows s.t.:
- Each column one uniformly random non-zero

\boldsymbol{S}						
± 1	± 1	0	0	0	± 1	
0	0	0				
0	0	0	± 1	0	0	
± 1						
0	0	± 1	0	± 1	0	

- Each non-zero is uniform in $\{1,-1\}$

Then, whp, $\left\|\boldsymbol{A}-\widetilde{\boldsymbol{A}}_{\boldsymbol{S}}\right\|_{F}^{2} \leq(1+\epsilon) \cdot\left\|\boldsymbol{A}-[\boldsymbol{A}]_{k}\right\|_{F}^{2}$.

Data-Driven Low-Rank Approximation

- The SCW algorithm: $\operatorname{SCW}_{k}(\boldsymbol{S}, \boldsymbol{A})=\left[\boldsymbol{A}(\boldsymbol{S A})^{\dagger}(\boldsymbol{S} \boldsymbol{A})\right]_{k}$
- Loss: $L_{\boldsymbol{S}}(\boldsymbol{A})=\left\|\boldsymbol{A}-\operatorname{SCW}_{k}(\boldsymbol{S}, \boldsymbol{A})\right\|_{F}^{2}$
- Oblivious auxiliary matrix $\boldsymbol{S} \in \mathbb{R}^{m \times n}$:
- Each column one uniformly random non-zero
- Each non-zero is uniform in $\{1,-1\}$

$$
\boldsymbol{S}=\left[\begin{array}{ccccccc}
1 & -1 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & -1 & 0 & 0
\end{array}\right]
$$

- Data-driven auxiliary matrix $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ [Indyk-Vakilian-Yuan'19]:
- Each column one uniformly random non-zero
- Its value is a trainable parameter (learned via SGD)

$$
\boldsymbol{S}=\left[\begin{array}{ccccccc}
\rho_{1} & \rho_{2} & 0 & 0 & 0 & \rho_{6} & 0 \\
0 & 0 & 0 & \rho_{4} & 0 & 0 & \rho_{7} \\
0 & 0 & \rho_{3} & 0 & \rho_{5} & 0 & 0
\end{array}\right]
$$

- How many samples do we need to ERM-learn $\left\{L_{\boldsymbol{S}}(\boldsymbol{A})\right\}$?

Our Results

Theorem - Fat shattering dimension of SCW:

- Upper bound: The ϵ-fat shattering dimension of learned SCW is

$$
O(n \cdot(m+k \log (n / k)+\log (1 / \epsilon)))
$$

with $\boldsymbol{A} \in \mathbb{R}^{n \times n}, \boldsymbol{S} \in \mathbb{R}^{m \times n}$, and low rank k.

- Lower bound: The ϵ-fat shattering dimension of learned SCW is $\Omega(n)$, if $\epsilon<1 /(2 \sqrt{k})$.
- Techniques apply to all other existing data-driven linear algebra algorithms.

Corollary - Sample complexity of learning SCW:

- Learning SCW with ERM requires at most $\tilde{O}\left(\epsilon^{-2} n \cdot m\right)$ samples.
- Learning SCW with ERM requires at least $\Omega\left(\epsilon^{-2} n / k\right)$ samples.
- Learning SCW with any method requires at least $\Omega\left(n+\epsilon^{-1}\right)$ samples.

Remarks

- What if training set has nothing to do with test set?
- Safeguarding [Indyk-Vakilian-Yuan'19]:
- Vertically augment the learned \boldsymbol{S} a random \boldsymbol{S}^{\prime}
- Number of rows is only doubled
- Guarantees: \boldsymbol{S} is at least as good as \boldsymbol{S}^{\prime} on any input matrix \boldsymbol{A}
- What about the running time of computing the best \boldsymbol{S} for the sample?
- In practice: Use stochastic gradient descent (SGD) on training set
- Not known to provably converge to empirical risk minimizer

Proof Overview

The Goldberg-Jerrum'95 Framework

Definition: A GJ-algorithm is a deterministic algorithm on real-valued inputs, with two types of operations:

- Arithmetic: $v^{\prime \prime}=v \odot v^{\prime}$ where $\odot \in\{+,-, \times, \div\}$
- Conditional: "if $v \geq 0$ then ... else ..."

Where v, v^{\prime} are either inputs or values previously computed by the algorithm.

Theorem [Goldberg-Jerrum'95]:

- Suppose there is a GJ-algorithm that takes $x \in X, \rho \in \mathbb{R}^{n}$ and $r \in \mathbb{R}$, and returns TRUE iff $L_{\rho}(x) \geq r$. Suppose it has running time T.
- Then, $\forall \gamma$, the γ-fat shattering dimension of $\mathcal{L}=\left\{L_{\rho}: \rho \in \mathbb{R}^{n}\right\}$ is $O(n T)$.

Proof sketch: The GJ algorithm partitions \mathbb{R}^{n} into constant sign regions with polynomial boundaries. Classical theorems on polynomials [Milnor'64, Warren'68] bound the number of sign regions.

Goldberg-Jerrum: First Attempt

- Goal: GJ-algorithm for the SCW loss, $L_{\boldsymbol{S}}(\boldsymbol{A})=\left\|\boldsymbol{A}-\left[\boldsymbol{A}(\boldsymbol{S A})^{\dagger}(\boldsymbol{S A})\right]_{k}\right\|_{F}^{2}$.
- Need two steps:

1. Projection (compute $\boldsymbol{M}^{\dagger} \boldsymbol{M}$ for a matrix \boldsymbol{M})
2. Best rank- k approximation (computing $[\boldsymbol{M}]_{k}$ for a matrix \boldsymbol{M})

- Problem: How to compute $[\boldsymbol{M}]_{k}$ with a GJ-algorithm (only arithmetic operations)?
- Solution: Approximate by the Power Method
$\cdot[\boldsymbol{M}]_{k} \approx \boldsymbol{Z} \boldsymbol{Z}^{\dagger} \boldsymbol{M}$ with $\boldsymbol{Z}=\left(\boldsymbol{M} \boldsymbol{M}^{\boldsymbol{T}}\right)^{q} \boldsymbol{M} \boldsymbol{\Pi}$ and gaussian $\boldsymbol{\Pi} \in \mathbb{R}^{n \times k}$
- However:
- Power Method is slow ing q iterations take $q k n^{O(1)}$ time (here $q=O\left(\epsilon^{-1} \log (n / \epsilon)\right)$)
- Power Method is randomized derandomizing $\boldsymbol{\Pi}$ takes $(n / k)^{k}$ time

Refined Goldberg-Jerrum: Definitions

Definition: A GJ-algorithm is a deterministic algorithm on real-valued inputs, with two types of operations:

- Arithmetic: $v^{\prime \prime}=v \odot v^{\prime}$ where $\odot \in\{+,-, \times, \div\}$
- Conditional: "if $v \geq 0$ then ... else ..."

Where v, v^{\prime} are either inputs or values previously computed by the algorithm.
Observe: Every value computed by a GJ-algorithm is a rational function of the inputs.

Definition:

- The degree of a GJ-algorithm is the maximum degree of any rational function it computes.
- The predicate complexity of a GJ-algorithm is the number of distinct rational functions in its conditional statements.

Refined Goldberg-Jerrum: Theorem

Theorem: Suppose we have,

- A GJ-algorithm that takes $x \in X, \rho \in \mathbb{R}^{n}$ and $r \in \mathbb{R}$, and returns TRUE iff $L_{\rho}(x) \geq r$.
- Suppose it has degree Δ and predicate complexity P.
- Then, $\forall \epsilon$, the ϵ-fat shattering dimension of $\mathcal{L}=\left\{L_{\rho}: \rho \in \mathbb{R}^{n}\right\}$ is $O(n \log (\Delta P))$.

Observe: Runtime T implies $\Delta, P \leq 2^{T}$.

- Thus, refines the previous theorem, "runtime $T \Rightarrow$ fat-dim $O(n T)$ ".

Why does it help?

- q Power Method iterations: time $q k n^{O(1)}$, but degree $O(q)$
- $n T=q k n^{O(1)}$ but $n \log \Delta=O(n \log q)$
- Minimum of t numbers: time $O(t)$, but predicate complexity $\binom{t}{2}$
- $n T=O(n t)$ but $n \log P=O(n \log t)$
- Derandomizing the power method: $t=\binom{n}{k}$, thus $n T=O\left(n(n / k)^{k}\right)$ but $n \log P=O(n k \log (n / k))$

Refined GJ-Algorithm for SCW

- New goal:
- GJ-algorithm for the SCW loss, $L_{\boldsymbol{S}}(\boldsymbol{A})=\left\|\boldsymbol{A}-\left[\boldsymbol{A}(\boldsymbol{S A})^{\dagger}(\boldsymbol{S A})\right]_{k}\right\|_{F}^{2}$
- With efficient degree and predicate complexity.
- Need two steps:

1. Projection (compute $\boldsymbol{M}^{\dagger} \boldsymbol{M}$ for a matrix \boldsymbol{M})
2. Best rank- k approximation (computing $[\boldsymbol{M}]_{k}$ for a matrix \boldsymbol{M})

Step 1: Computing Projection Matrices

Lemma 1: Given $\boldsymbol{M} \in \mathbb{R}^{m \times n}$, there is a GJ-algorithm for computing $\boldsymbol{M}^{\dagger} \boldsymbol{M}$ with degree $O(m)$ and predicate complexity 2^{m}.

Proof:

- Fact 1: If the rows of \boldsymbol{N} form a basis for the rows of \boldsymbol{M}, then $\boldsymbol{M}^{\dagger} \boldsymbol{M}=\boldsymbol{N}^{T}\left(\boldsymbol{N} \boldsymbol{N}^{T}\right)^{-1} \boldsymbol{N}$.
- Fact 2 (e.g., [Csanky'76]): There are algorithms that use only arithmetic operations for (i) checking if a matrix has full rank,
(ii) inverting an invertible matrix.

Their degree (as GJ-algorithms) for $m \times m$ matrices is $O(m)$.

- GJ-Algorithm: Try all 2^{m} subsets of rows of \boldsymbol{M} (predicate complexity 2^{m}) to find a basis \boldsymbol{N} (use Fact 2(i) to check it is a basis). Invert $\boldsymbol{N} \boldsymbol{N}^{T}$ (with Fact 2(ii)). Return $\boldsymbol{N}^{T}\left(\boldsymbol{N} \boldsymbol{N}^{T}\right)^{-1} \boldsymbol{N}$.

Step 2: Derandomized Power Method

Lemma 2: Given $\boldsymbol{M} \in \mathbb{R}^{n \times n}$, there is a GJ-algorithm for ϵ-approximating $[\boldsymbol{M}]_{k}$, with degree $O\left(k \epsilon^{-1} \log (n / \epsilon)\right)$ and predicate complexity $2^{k}\binom{n}{k}^{2}$.

Remark: Approximation is why we needed the gap γ in the definition of fat shattering.

Proof (sketch):

- Fact 3: Starting with a gaussian $\boldsymbol{\Pi} \in \mathbb{R}^{n \times k}, q=O\left(\epsilon^{-1} \log (n / \epsilon)\right)$ Power Methods iterations suffice to ϵ-approximate $[\boldsymbol{M}]_{k}$ [Musco-Musco'15], by the formula:

$$
[\boldsymbol{M}]_{k} \approx_{\epsilon} \boldsymbol{Z Z}^{\dagger} \boldsymbol{M} \text { where } \boldsymbol{Z}=\left(\boldsymbol{M} \boldsymbol{M}^{T}\right)^{q} \boldsymbol{M} \boldsymbol{\Pi}
$$

- Fact 4: Π can be derandomized with k-subsets of the standard basis in \mathbb{R}^{n}.
- GJ algorithm: Try all $\binom{n}{k}$ subset of \mathbb{R}^{n} as the initial matrix Π. For each one, compute $\boldsymbol{Z} \boldsymbol{Z}^{\dagger} \boldsymbol{M}$ (using the previous lemma for $\boldsymbol{Z} \boldsymbol{Z}^{\dagger}$, which blows up the degree by k and the predicate complexity by 2^{k}). pick the one that minimizes the LRA error $\left\|\boldsymbol{M}-\boldsymbol{Z} \boldsymbol{Z}^{\dagger} \boldsymbol{M}\right\|_{F}^{2}$.

