Generalization Bounds for Data-
Driven Numerical Linear Algebra

Peter Bartlett Piotr Indyk Tal Wagner
UC Berkeley MIT Microsoft Research

COLT 2022

Data-Driven Algorithms

Traditional algorithm design: Modern reality of algorithm design:
|) pastE?ZItgtSeec} 'Onfp : Algorithm Input
Algorithm Input Inputs
oo e Vpal Y
O E Tl O E
'|=._'|a|_-'|a|_-'|a_'[;
Goal:

* Use data to improve algorithm
* Automate using ML

Numerical (or Efficient) Linear Algebra

* Problems in computational linear algebra:

Low-rank
approximation

2
2

Regression ?

e Exact algorithms: SLOW @
¢ O(n®) for an n X n matrix

* Approximate algorithms: Near-linear time! @
« 0(n?) for an n X n matrix, O (#nonzero entries) for a sparse matrix

Data-Driven Numerical Linear Algebra

e How do numerical linear algebra algorithms work?
* Choose auxiliary matrix

Use it to make problem smaller o

* Solve small problem

* Use solution for large problem K*
AUX

e How do we choose the auxiliary matrix?

* Traditionally: Either at random @ or by elaborate heuristics

* Recently: Learn it from data (i.e., past inputs)

a—

A0, D)
aw

* [Indyk-Vakilian-Yuan’19] [Ailon-Leibovich-Nair’20] [Luz-Galun-Maron-Basri-Yavneh’20]
[Liu-Liu-Vakilian-Wan-Woodruff’20] [Indyk-Wagner-Woodruff’'21]

AUX

Test Error
[o%] = (23] oo

o

Data-Driven Numerical Linear Algebra: In Action

Problem:

Low-rank approximation (LRA)

Setting:

Learning the auxiliary matrix

? SlE _;_":\
= |[?]|7? SIEE
Given a training set
of input matrices
| Il Learned 05 8
I Sparse Random 045 | 9}
| B Dense Random 0.4

0.05

> L3 >EEET%

Use it to learn

Evaluate S by using it for fast

an auxiliary (near-linear time) LRA on a
matrix S test set of input matrices
Eagle Dataset —o— VY
=a—Butterfly

—+—1Shot1Vec+IVY (ours)
® FewShot5GD-2 (ours)

B FewShotSGD-3 (ours)

A 1Shot2Vec (ours)

LD g 0 Ea g I E F rien d S 0 50 100 150 200 250 0 20 40 60 80 100 120 140 160 180

Time (seconds) Time (secon ds)
[Indyk-Vakilian-Yuan NeurlPS’19] [Indyk-Wagner-Woodruff NeurlPS’21]

Data-Driven Algorithms: Theory?

e Can we provably learn good algorithms from past inputs?

* Gupta & Roughgarden (2016):
* View as statistical learning problem
* Prove upper bounds on (real-valued analogs of) VC dimension

= PAC-learning generalization bounds on number of training samples

* This work: Bounds for all existing data-driven numerical linear algebra algorithms

Reference Algorithm Problem Algorithmic “family”
[Indyk-Vakilian-Yuan’19] IVY LRA Sketching
[Ailon-Leibovich-Nair’20] Butterfly LRA LRA Sketching
[Liu-Liu-Vakilian-Wan-Woodruff’20] Multisketch LRA LRA Sketching
[Indyk-Wagner-Woodruff'21] Few-shot LRA LRA Sketching
[Luz-Galun-Maron-Basri-Yavneh’20] Learned AMG Regression Multigrid

* All bounds are
near-proportional
to the number of
learned parameters

Prior and Related Work

* Gupta & Roughgarden (ITCS 2016, SICOMP 2017):
* |nitiated framework
* Upper bound technique for greedy heuristics and local search algorithms

e Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik (STOC 2021):
* General upper bound technique
* Applications for pattern matching and mechanism design algorithms
* Does not work for the linear algebra algorithms we consider

Review:

Statistical Learning

(for data-driven algorithms, but also in general)

Data-Driven Algorithms: Setting

A loss minimization problem:

* Inputs: x € X

e Algorithms: L = {Lp:p € IR"}, parameterized by p € R"

* Losses: Identify L, withamap L,: X — 10,1] that maps inputs to losses
* L, (x) is the loss of solving for x with parameters p

Our case: The low-rank approximation (LRA) problem
* Inputs: X is the set of matrices A € R™" with ||[4||r = 1
 Algorithms: L = {L¢: S € R™*™}, parameterized by auxiliary matrices § € R™*"

* Loss: Lg(A) = ||A — ﬁ5| , where Ag is the LRA of A computed with aux. matrix S

2
F

Statistical Learning and ERM

Statistical learning: Suppose we have a distribution D over X
e Goal: Estimate the best parameters for D

p* = argminyegnExep Ly (x)]

* Method: Draw s samples x4, ..., x.~D and use Empirical Risk Minimization (ERM)
1 S
P = argmlanRn_z Lp(xi)
S i=1

e Wesay L = {Lp: p E R”} is (€, 0)-learnable with s samples (by ERM) if
Pr[Erep|Lp(0)| < Exep[Lp ()| +€] 21-6

X1,

* Question: What is the smallest number of samples s that suffices?

VC-Dimension and Fat Shattering Dimension

Definition: Let £ be a family of functions X — {0,1}.

* Asetxq,..,x. € X isshattered by L if forevery] c {1, ...,s}, thereis L € L s.t..
Lx;))=1e1i€l.

* The VC-dimension VCdim (L) of L is the size of the largest shattered set.

Definition: Let £ be a family of functions X — [0,1]. Let y = 0.

 Aset xq,...,x; € X is y-fat shattered by L if there are thresholds 1, ..., 7. € R, such that
foreveryl c {1, ...,s}, thereis L € L s.t.

iEI:>L(Xi)>T'i+]/ and i%I:L(xi)<ri—)/
* The y-fat shattering dimension fat, (L) of L is the size of the largest y-fat shattered set.

Classical learning theory: The sample complexity of (€, §)-learning L (by ERM) is
proportional to the y-fat shattering dimension with y = 0(¢).

Review:

Fast Low-Rank Approximation

(with data-driven algorithms, but also in general)

Low-Rank Approximation (LRA)

* Problem:
* Input: A € R™" with ||A||r = 1, targetrank k < n

-’ ~112
* Goal: 4 of rank k that approximately minimizes ||A — A”F

 Exact solution: SVD

—_n2
e Returns: [A]., suchthat ||[A —[A].]|2 = min ||[A—-A4
(Al such that 14— (AL = min [}~

e Runtime: 0(n®) @

2

Efficient Low-Rank Approximation

* The SCW algorithm [Sarlos’06, Clarkson-Woodruff'09,13]:
* Pick an auxiliary matrix § € R™ "™, where k < m < n A
* Project A onto rows(SA4)

e Return: Best rank-k approximation of projected A
Reminder: MTM is the orthogonal

zS — [A(SA)T(SA)]R projection matrix on the row space M

* Lemma: Ag can be computed in time mult(S,A) + 0(m?n) and space O (mn).
e By the formula: Ag = [AV],VT where SA = USVT

S
e Theorem: If S hasm = 0(k/€)? rows s.t.: 0
|

e Each column one uniformly random non-zero

* Each non-zero is uniformin {1, —1}

~ n2
A-As||, <A +e)- 14— [AlliF.

Then, whp,

Data-Driven Low-Rank Approximation

» The SCW algorithm: SCW, (S, 4) = [A(SA)T(54)],
* Loss: Lg(A) = ||A — SCW, (S, A)||%

Oblivious auxiliary matrix § € R™*™:
* Each column one uniformly random non-zero . [1 -10 0 0 -1 0

* Each non-zero is uniformin {1, —1} 0O 0 1 0 -1 0 0

Data-driven auxiliary matrix § € R™*™ [indyk-Vakilian-Yuan’19]:
e Each column one uniformly random non-zero lpl p, 0 0 0 ps O
S =

* |ts value is a trainable parameter (learned via SGD) 0o 0 0 p, 0 0 p,
0O 0 p3 0 pgs 0 O

How many samples do we need to ERM-learn {L¢(4)}?

Our Results

Theorem - Fat shattering dimension of SCW:
* Upper bound: The e-fat shattering dimension of learned SCW is

O(n - (m + klog(n/k) + log(l/e))),
with 4 € R™", § € R™*" and low rank k.
e Lower bound: The e-fat shattering dimension of learned SCW is Q(n), if € < 1/(2\/%).
* Techniques apply to all other existing data-driven linear algebra algorithms.

Corollary — Sample complexity of learning SCW:
e Learning SCW with ERM requires at most O (e~
e Learning SCW with ERM requires at least Q(e "% n/k) samples.

* Learning SCW with any method requires at least Q(n + e ~1) samples.

21 - m) samples.

Remarks

 What if training set has nothing to do with test set?
e Safeguarding [Indyk-Vakilian-Yuan’19]:
* \ertically augment the learned $ a random S’
 Number of rows is only doubled
e Guarantees: S is at least as good as S’ on any input matrix 4

 What about the running time of computing the best S for the sample?
* In practice: Use stochastic gradient descent (SGD) on training set
* Not known to provably converge to empirical risk minimizer

Proof Overview

The Goldberg-Jerrum’95 Framework

Definition: A GJ-algorithm is a deterministic algorithm on real-valued inputs, with two
types of operations:

e Arithmetic: v"' = v ® v’ where ® € {+, —,%X,+}
e Conditional: “if v = 0 then ... else ...”
Where v, v’ are either inputs or values previously computed by the algorithm.

Theorem [Goldberg-Jerrum’95]:

* Suppose there is a GJ-algorithm that takes x € X, p € R™ and r € R, and returns TRUE
iff L, (x) = r.Suppose it has running time 7.

* Then, Vy, the y-fat shattering dimension of L = {Lp: p E]R"} is O(nT).

Proof sketch: The GJ algorithm partitions R™ into constant sign regions with polynomial boundaries.
Classical theorems on polynomials [Milnor’64, Warren’68] bound the number of sign regions.

Goldberg-Jerrum: First Attempt

2

Goal: GJ-algorithm for the SCW loss, Lg(A) = HA — [A(SA)T(SA)]R HF

Need two steps:
1. Projection (compute MTM for a matrix M)
2. Best rank-k approximation (computing [M], for a matrix M)

Problem: How to compute [M], with a GJ-algorithm (only arithmetic operations)?

Solution: Approximate by the Power Method
¢ [M]k ~ ZZ-I-M Wlth Z — (MMT)(IMH and gaUSSian H € RnXk [Rokhlin-Szlam-Tygert’10, Halko-Martinsson-

Tropp’11, Boutsidis-Drineas-Magdonlsmail’14,
Woodruff’14, Witten-Candes’15, Musco-Musco’15]

However:
 Power Method is slow @ q iterations take qknO(l) time (here ¢ = 0(e ' log(n/e)))
* Power Method is randomized @ derandomizing I takes (n/k)" time

Refined Goldberg-Jerrum: Definitions

Definition: A GJ-algorithm is a deterministic algorithm on real-valued inputs, with two types
of operations:

e Arithmetic: v’ = v ® v’ where ©® € {+, —,%X,+}
e Conditional: “if v = 0 then ... else ...”
Where v, v’ are either inputs or values previously computed by the algorithm.

Observe: Every value computed by a GJ-algorithm is a rational function of the inputs.

Definition:
* The degree of a GJ-algorithm is the maximum degree of any rational function it computes.

* The predicate complexity of a GJ-algorithm is the number of distinct rational functions in
its conditional statements.

Refined Goldberg-Jerrum: Theorem

Theorem: Suppose we have,

* A Gl-algorithm that takes x € X, p € R™ and v € IR, and returns TRUE iff L, (x) = .
e Suppose it has degree A and predicate complexity P.

* Then, V¢, the e-fat shattering dimension of L = {Lp: p € R} is O(nlog(AP)).

Observe: Runtime T implies A, P < 27,
* Thus, refines the previous theorem, “runtime T = fat-dim O (nT)”.

Why does it help?

* q Power Method iterations: time qknO(l), but degree 0(q)
e nT = qkn°® butnlogA = 0(nlogq)

* Minimum of t numbers: time O(t), but predicate complexity (t)
« nT = 0(nt) butnlogP = 0(nlogt)
* Derandomizing the power method: t = (k)’ thus nT = O(n(n/k)k) but nlogP = O(nklog(n/k))

Refined GJ-Algorithm for SCW

e New goal:

* GJ-algorithm for the SCW loss, Lg(A) = HA - [A(SA)T(SA)]R H

2

F
* With efficient degree and predicate complexity.

* Need two steps:
1. Projection (compute MTM for a matrix M)
2. Best rank-k approximation (computing [M], for a matrix M)

Step 1: Computing Projection Matrices

Lemma 1: Given M € R™ " there is a GJ-algorithm for computing MTM with degree
0 (m) and predicate complexity 2.

Proof:
 Fact 1: If the rows of N form a basis for the rows of M, then MM = NT(NNT)_lN.

e Fact 2 (e.g., [Csanky’76]): There are algorithms that use only arithmetic operations for
(i) checking if a matrix has full rank,
(ii) inverting an invertible matrix.

Their degree (as GJ-algorithms) for m X m matrices is O (m).

* GJ-Algorithm: Try all 2" subsets of rows of M (predicate complexity 2"*) to find a basis
N (use Fact 2(i) to check it is a basis). Invert NNT (with Fact 2(ii)). Return NT(NNT)~1N.

Step 2: Derandomized Power Method

Lemma 2: Given M € R™ "™, there is a GJ-algorithm for e—apgroximating [M];,, with
degree O (ke 'log(n/e)) and predicate complexity 2" (Z) .

Remark: Approximation is why we needed the gap y in the definition of fat shattering.

Proof (sketch):

e Fact 3: Starting with a gaussian I1 € R™*, ¢ = 0(e ' log(n/e)) Power Methods
iterations suffice to e-approximate [M];, [Musco-Musco’15], by the formula:

[M],, ~. ZZ™TM where Z = (MMT)“M1I
* Fact 4: Il can be derandomized with k-subsets of the standard basis in R™.

* GJ algorithm: Try all (Z) subset of R™ as the initial matrix I1. For each one, compute
ZZtM (using the previous lemma for ZZT, which blows up the degree by k and the

predicate complexity by 27). pick the one that minimizes the LRA error ||M ZZTM“ :

