Generalization Bounds for Data-Driven Numerical Linear Algebra

Peter BartlettPiotr IndykTal WagnerUC BerkeleyMITMicrosoft Research

COLT 2022

Data-Driven Algorithms

Traditional algorithm design:

Modern reality of algorithm design:

Numerical (or Efficient) Linear Algebra

• Problems in computational linear algebra:

- Exact algorithms: SLOW 🤕
 - $\Omega(n^{\omega})$ for an $n \times n$ matrix
- Approximate algorithms: Near-linear time!

• $\tilde{O}(n^2)$ for an $n \times n$ matrix, $\tilde{O}(\#nonzero \ entries)$ for a sparse matrix

Data-Driven Numerical Linear Algebra

- Choose auxiliary matrix
- Use it to make problem smaller
- Solve small problem
- Use solution for large problem

- How do we choose the auxiliary matrix?
 - Traditionally: Either at random 🤪 or by elaborate heuristics
 - Recently: Learn it from data (i.e., past inputs)
 - [Indyk-Vakilian-Yuan'19] [Ailon-Leibovich-Nair'20] [Luz-Galun-Maron-Basri-Yavneh'20] [Liu-Liu-Vakilian-Wan-Woodruff'20] [Indyk-Wagner-Woodruff'21]

Data-Driven Numerical Linear Algebra: In Action

Problem:

[Indyk-Vakilian-Yuan NeurIPS'19]

[Indyk-Wagner-Woodruff NeurIPS'21]

Setting:

Data-Driven Algorithms: Theory?

- Can we **provably** learn good algorithms from past inputs?
- Gupta & Roughgarden (2016):
 - View as statistical learning problem
 - Prove upper bounds on (real-valued analogs of) VC dimension
 - ⇒ PAC-learning generalization bounds on number of training samples
- This work: Bounds for all existing data-driven numerical linear algebra algorithms

Reference	Algorithm	Problem	Algorithmic "family"
[Indyk-Vakilian-Yuan'19]	IVY	LRA	Sketching
[Ailon-Leibovich-Nair'20]	Butterfly LRA	LRA	Sketching
[Liu-Liu-Vakilian-Wan-Woodruff'20]	Multisketch LRA	LRA	Sketching
[Indyk-Wagner-Woodruff'21]	Few-shot LRA	LRA	Sketching
[Luz-Galun-Maron-Basri-Yavneh'20]	Learned AMG	Regression	Multigrid

* All bounds are near-proportional to the number of learned parameters

Prior and Related Work

- Gupta & Roughgarden (ITCS 2016, SICOMP 2017):
 - Initiated framework
 - Upper bound technique for greedy heuristics and local search algorithms
- Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik (STOC 2021):
 - General upper bound technique
 - Applications for **pattern matching** and **mechanism design** algorithms
 - Does not work for the linear algebra algorithms we consider

Review: Statistical Learning

(for data-driven algorithms, but also in general)

Data-Driven Algorithms: Setting

A loss minimization problem:

- Inputs: $x \in X$
- Algorithms: $\mathcal{L} = \{L_{\rho} : \rho \in \mathbb{R}^n\}$, parameterized by $\rho \in \mathbb{R}^n$
- Losses: Identify L_{ρ} with a map $L_{\rho}: X \to [0,1]$ that maps inputs to losses
 - $L_{\rho}(x)$ is the loss of solving for x with parameters ρ

Our case: The low-rank approximation (LRA) problem

- Inputs: X is the set of matrices $A \in \mathbb{R}^{n \times n}$ with $||A||_F = 1$
- Algorithms: $\mathcal{L} = \{L_{\mathbf{S}}: \mathbf{S} \in \mathbb{R}^{m \times n}\}$, parameterized by auxiliary matrices $\mathbf{S} \in \mathbb{R}^{m \times n}$
- Loss: $L_{S}(A) = \|A \widetilde{A}_{S}\|_{F}^{2}$, where \widetilde{A}_{S} is the LRA of A computed with aux. matrix S

Statistical Learning and ERM

Statistical learning: Suppose we have a distribution *D* over *X*

• Goal: Estimate the best parameters for *D*

 $\rho^* = \operatorname{argmin}_{\rho \in \mathbb{R}^n} \mathbb{E}_{x \in D} \left[L_{\rho}(x) \right]$

• Method: Draw *s* samples $x_1, \dots, x_s \sim D$ and use Empirical Risk Minimization (ERM)

$$\hat{\rho} = \operatorname{argmin}_{\rho \in \mathbb{R}^n} \frac{1}{s} \sum_{i=1}^{s} L_{\rho}(x_i)$$

- We say $\mathcal{L} = \{L_{\rho}: \rho \in \mathbb{R}^n\}$ is (ϵ, δ) -learnable with s samples (by ERM) if $\Pr_{x_1, \dots, x_s \sim D} \left[\mathbb{E}_{x \in D} \left[L_{\widehat{\rho}}(x) \right] \le \mathbb{E}_{x \in D} \left[L_{\rho^*}(x) \right] + \epsilon \right] \ge 1 - \delta$
- **<u>Question</u>**: What is the smallest number of samples s that suffices?

VC-Dimension and Fat Shattering Dimension

Definition: Let \mathcal{L} be a family of functions $X \to \{0,1\}$.

- A set $x_1, ..., x_s \in X$ is **shattered** by \mathcal{L} if for every $I \subset \{1, ..., s\}$, there is $L \in \mathcal{L}$ s.t.: $L(x_i) = 1 \Leftrightarrow i \in I$.
- The VC-dimension $VCdim(\mathcal{L})$ of \mathcal{L} is the size of the largest shattered set.

Definition: Let \mathcal{L} be a family of functions $X \to [0,1]$. Let $\gamma \ge 0$.

A set x₁, ..., x_s ∈ X is γ-fat shattered by L if there are thresholds r₁, ..., r_s ∈ ℝ, such that for every I ⊂ {1, ..., s}, there is L ∈ L s.t.:

 $i \in I \Rightarrow L(x_i) > r_i + \gamma$ and $i \notin I \Rightarrow L(x_i) < r_i - \gamma$

• The γ -fat shattering dimension fat_{γ}(\mathcal{L}) of \mathcal{L} is the size of the largest γ -fat shattered set.

<u>Classical learning theory</u>: The sample complexity of (ϵ, δ) -learning \mathcal{L} (by ERM) is proportional to the γ -fat shattering dimension with $\gamma = \Theta(\epsilon)$.

Review: Fast Low-Rank Approximation

(with data-driven algorithms, but also in general)

Low-Rank Approximation (LRA)

• Problem:

- Input: $\mathbf{A} \in \mathbb{R}^{n \times n}$ with $\|\mathbf{A}\|_F = 1$, target rank $k \ll n$
- Goal: \widetilde{A} of rank k that approximately minimizes $\|A \widetilde{A}\|_{F}^{2}$

• Exact solution: SVD

- Returns: $[A]_k$ such that $||A [A]_k||_F^2 = \min_{\widetilde{A} \text{ of rank } k} ||A \widetilde{A}||_F^2$
- Runtime: $O(n^{\omega})$

Efficient Low-Rank Approximation

- The SCW algorithm [Sarlos'06, Clarkson-Woodruff'09,13]:
 - Pick an auxiliary matrix $\boldsymbol{S} \in \mathbb{R}^{m \times n}$, where $k \leq m \ll n$
 - Project *A* onto *rows*(*SA*)
 - Return: Best rank-k approximation of projected A

$$\widetilde{A}_{S} = \left[A(SA)^{\dagger}(SA) \right]_{k}$$

Reminder: $M^{\dagger}M$ is the orthogonal projection matrix on the row space M

- Lemma: \widetilde{A}_S can be computed in time $mult(S, A) + O(m^2 n)$ and space O(mn).
 - By the formula: $\widetilde{A}_{S} = [AV]_{k}V^{T}$ where $SA = U\Sigma V^{T}$
- <u>Theorem</u>: If **S** has $m = \tilde{O}(k/\epsilon)^2$ rows s.t.:
 - Each column one uniformly random non-zero
 - Each non-zero is uniform in $\{1, -1\}$

Then, whp,
$$\left\| \boldsymbol{A} - \widetilde{\boldsymbol{A}}_{\boldsymbol{S}} \right\|_{F}^{2} \leq (1 + \epsilon) \cdot \| \boldsymbol{A} - [\boldsymbol{A}]_{k} \|_{F}^{2}$$
.

Data-Driven Low-Rank Approximation

- The **SCW** algorithm: $SCW_k(S, A) = [A(SA)^{\dagger}(SA)]_k$
 - Loss: $L_{\boldsymbol{S}}(\boldsymbol{A}) = \|\boldsymbol{A} \text{SCW}_{k}(\boldsymbol{S}, \boldsymbol{A})\|_{F}^{2}$
- Oblivious auxiliary matrix $S \in \mathbb{R}^{m \times n}$:
 - Each column one uniformly random non-zero
 - Each non-zero is uniform in $\{1, -1\}$
- **Data-driven** auxiliary matrix $S \in \mathbb{R}^{m \times n}$ [Indyk-Vakilian-Yuan'19]:
 - Each column one uniformly random non-zero
 - Its value is a trainable parameter (learned via SGD)
- How many samples do we need to ERM-learn {L_S(A)}?

 $\boldsymbol{S} = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & -1 & 0 & 0 \end{bmatrix}$

 $\mathbf{S} = \begin{bmatrix} \rho_1 & \rho_2 & 0 & 0 & 0 & \rho_6 & 0 \\ 0 & 0 & \rho_4 & 0 & 0 & \rho_7 \\ 0 & 0 & \rho_2 & 0 & \rho_7 & 0 \end{bmatrix}$

Our Results

Theorem – Fat shattering dimension of SCW:

• <u>Upper bound</u>: The ϵ -fat shattering dimension of learned SCW is

 $O(n \cdot (m + k \log(n/k) + \log(1/\epsilon))),$

with $A \in \mathbb{R}^{n \times n}$, $S \in \mathbb{R}^{m \times n}$, and low rank k.

- Lower bound: The ϵ -fat shattering dimension of learned SCW is $\Omega(n)$, if $\epsilon < 1/(2\sqrt{k})$.
- Techniques apply to all other existing data-driven linear algebra algorithms.

Corollary – Sample complexity of learning SCW:

- Learning SCW with ERM requires at most $\tilde{O}(\epsilon^{-2}n \cdot m)$ samples.
- Learning SCW with ERM requires at least $\Omega(\epsilon^{-2} n/k)$ samples.
- Learning SCW with any method requires at least $\Omega(n + \epsilon^{-1})$ samples.

Remarks

- What if training set has nothing to do with test set?
 - **Safeguarding** [Indyk-Vakilian-Yuan'19]:
 - Vertically augment the learned S a random S'
 - Number of rows is only doubled
 - <u>Guarantees</u>: S is at least as good as S' on <u>any</u> input matrix A
- What about the running time of computing the best S for the sample?
 - In practice: Use stochastic gradient descent (SGD) on training set
 - Not known to provably converge to empirical risk minimizer

Proof Overview

The Goldberg-Jerrum'95 Framework

Definition: A **GJ-algorithm** is a deterministic algorithm on real-valued inputs, with two types of operations:

- <u>Arithmetic</u>: $v'' = v \odot v'$ where $\odot \in \{+, -, \times, \div\}$
- <u>Conditional</u>: "if $v \ge 0$ then ... else ..."

Where v, v' are either inputs or values previously computed by the algorithm.

Theorem [Goldberg-Jerrum'95]:

- Suppose there is a GJ-algorithm that takes $x \in X$, $\rho \in \mathbb{R}^n$ and $r \in \mathbb{R}$, and returns TRUE iff $L_{\rho}(x) \ge r$. Suppose it has running time T.
- Then, $\forall \gamma$, the γ -fat shattering dimension of $\mathcal{L} = \{L_{\rho} : \rho \in \mathbb{R}^n\}$ is O(nT).

<u>Proof sketch</u>: The GJ algorithm partitions \mathbb{R}^n into constant sign regions with polynomial boundaries. Classical theorems on polynomials [Milnor'64, Warren'68] bound the number of sign regions.

Goldberg-Jerrum: First Attempt

• Goal: GJ-algorithm for the SCW loss,
$$L_{S}(A) = \left\| A - [A(SA)^{\dagger}(SA)]_{k} \right\|_{F}^{2}$$
.

- Need two steps:
 - 1. Projection (compute $M^{\dagger}M$ for a matrix M)
 - 2. Best rank-k approximation (computing $[M]_k$ for a matrix M)
- <u>Problem</u>: How to compute $[M]_k$ with a GJ-algorithm (only arithmetic operations)?
- Solution: Approximate by the Power Method
 - $[M]_k \approx ZZ^{\dagger}M$ with $Z = (MM^T)^q M\Pi$ and gaussian $\Pi \in \mathbb{R}^{n \times k}$

[Rokhlin-Szlam-Tygert'10, Halko-Martinsson-Tropp'11, Boutsidis-Drineas-MagdonIsmail'14, Woodruff'14, Witten-Candes'15, Musco-Musco'15]

- However:
 - Power Method is *slow* $\bigotimes q$ iterations take $qkn^{O(1)}$ time (here $q = O(e^{-1}\log(n/e))$)

• Power Method is randomized \bigotimes derandomizing Π takes $(n/k)^k$ time

Refined Goldberg-Jerrum: Definitions

Definition: A **GJ-algorithm** is a deterministic algorithm on real-valued inputs, with two types of operations:

- <u>Arithmetic</u>: $v'' = v \odot v'$ where $\odot \in \{+, -, \times, \div\}$
- <u>Conditional</u>: "if $v \ge 0$ then ... else ..."

Where v, v' are either inputs or values previously computed by the algorithm.

Observe: Every value computed by a GJ-algorithm is a rational function of the inputs.

Definition:

- The **degree** of a GJ-algorithm is the maximum degree of any rational function it computes.
- The **predicate complexity** of a GJ-algorithm is the number of **distinct** rational functions in its conditional statements.

Refined Goldberg-Jerrum: Theorem

Theorem: Suppose we have,

- A GJ-algorithm that takes $x \in X$, $\rho \in \mathbb{R}^n$ and $r \in \mathbb{R}$, and returns TRUE iff $L_{\rho}(x) \ge r$.
- Suppose it has degree Δ and predicate complexity P.
- Then, $\forall \epsilon$, the ϵ -fat shattering dimension of $\mathcal{L} = \{L_{\rho} : \rho \in \mathbb{R}^n\}$ is $O(n \log(\Delta P))$.
- <u>Observe</u>: Runtime T implies Δ , $P \leq 2^T$.
- Thus, refines the previous theorem, "runtime $T \Rightarrow fat-dim O(nT)$ ".

Why does it help?

- q Power Method iterations: time $qkn^{O(1)}$, but degree O(q)
 - $nT = qkn^{O(1)}$ but $n \log \Delta = O(n \log q)$
- Minimum of t numbers: time O(t), but predicate complexity $\binom{t}{2}$
 - nT = O(nt) but $n \log P = O(n \log t)$
 - Derandomizing the power method: $t = \binom{n}{k}$, thus $nT = O(n(n/k)^k)$ but $n \log P = O(nk \log(n/k))$

Refined GJ-Algorithm for SCW

- <u>New goal</u>:
 - GJ-algorithm for the SCW loss, $L_{S}(A) = \left\| A [A(SA)^{\dagger}(SA)]_{k} \right\|_{E}^{2}$
 - With efficient **degree** and **predicate complexity**.
- <u>Need two steps</u>:
 - 1. Projection (compute $M^{\dagger}M$ for a matrix M)
 - 2. Best rank-k approximation (computing $[M]_k$ for a matrix M)

Step 1: Computing Projection Matrices

Lemma 1: Given $M \in \mathbb{R}^{m \times n}$, there is a GJ-algorithm for computing $M^{\dagger}M$ with degree O(m) and predicate complexity 2^{m} .

Proof:

- <u>Fact 1</u>: If the rows of N form a basis for the rows of M, then $M^{\dagger}M = N^T (NN^T)^{-1}N$.
- <u>Fact 2</u> (e.g., [Csanky'76]): There are algorithms that use only arithmetic operations for (i) checking if a matrix has full rank,

(ii) inverting an invertible matrix.

Their degree (as GJ-algorithms) for $m \times m$ matrices is O(m).

• **GJ-Algorithm**: Try all 2^m subsets of rows of M (predicate complexity 2^m) to find a basis N (use Fact 2(i) to check it is a basis). Invert NN^T (with Fact 2(ii)). Return $N^T(NN^T)^{-1}N$.

Step 2: Derandomized Power Method

Lemma 2: Given $M \in \mathbb{R}^{n \times n}$, there is a GJ-algorithm for ϵ -approximating $[M]_k$, with degree $O(k\epsilon^{-1}\log(n/\epsilon))$ and predicate complexity $2^k \binom{n}{k}^2$.

<u>Remark</u>: Approximation is why we needed the gap γ in the definition of fat shattering.

Proof (sketch):

- <u>Fact 3</u>: Starting with a gaussian $\Pi \in \mathbb{R}^{n \times k}$, $q = O(\epsilon^{-1} \log(n/\epsilon))$ Power Methods iterations suffice to ϵ -approximate $[M]_k$ [Musco-Musco'15], by the formula: $[M]_k \approx_{\epsilon} ZZ^{\dagger}M$ where $Z = (MM^T)^q M\Pi$
- Fact 4: Π can be derandomized with k-subsets of the standard basis in \mathbb{R}^n .
- **GJ algorithm:** Try all $\binom{n}{k}$ subset of \mathbb{R}^n as the initial matrix Π . For each one, compute $ZZ^{\dagger}M$ (using the previous lemma for ZZ^{\dagger} , which blows up the degree by k and the predicate complexity by 2^k). pick the one that minimizes the LRA error $\|M ZZ^{\dagger}M\|_{F}^{2}$.