
Generalization Bounds for Data-
Driven Numerical Linear Algebra

COLT 2022

Peter Bartlett Piotr Indyk Tal Wagner

UC Berkeley MIT Microsoft Research

Data-Driven Algorithms

Algorithm Input

Dataset of

past/related inputs

Traditional algorithm design: Modern reality of algorithm design:

Algorithm Input

Goal:
• Use data to improve algorithm
• Automate using ML

Numerical (or Efficient) Linear Algebra

• Problems in computational linear algebra:

• Exact algorithms: SLOW

• Ω 𝑛𝜔 for an 𝑛 × 𝑛 matrix

• Approximate algorithms: Near-linear time!

• ෨𝑂 𝑛2 for an 𝑛 × 𝑛 matrix, ෨𝑂 #𝑛𝑜𝑛𝑧𝑒𝑟𝑜 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 for a sparse matrix

?

?
?

?≈? ≈Regression
Low-rank

approximation

Data-Driven Numerical Linear Algebra

• How do numerical linear algebra algorithms work?

• Choose auxiliary matrix

• Use it to make problem smaller

• Solve small problem

• Use solution for large problem

• How do we choose the auxiliary matrix?

• Traditionally: Either at random or by elaborate heuristics

• Recently: Learn it from data (i.e., past inputs)
• [Indyk-Vakilian-Yuan’19] [Ailon-Leibovich-Nair’20] [Luz-Galun-Maron-Basri-Yavneh’20]

[Liu-Liu-Vakilian-Wan-Woodruff’20] [Indyk-Wagner-Woodruff’21]

? =
AUX

? =

AUX

AUX

Data-Driven Numerical Linear Algebra: In Action
Problem:

Low-rank approximation (LRA)

Given a training set
of input matrices

Setting:

Learning the auxiliary matrix

Use it to learn
an auxiliary

matrix 𝑺

Evaluate 𝑺 by using it for fast
(near-linear time) LRA on a
test set of input matrices

?

?
?

?≈

[Indyk-Vakilian-Yuan NeurIPS’19] [Indyk-Wagner-Woodruff NeurIPS’21]

Data-Driven Algorithms: Theory?
• Can we provably learn good algorithms from past inputs?

• Gupta & Roughgarden (2016):

• View as statistical learning problem

• Prove upper bounds on (real-valued analogs of) VC dimension

⇒ PAC-learning generalization bounds on number of training samples

• This work: Bounds for all existing data-driven numerical linear algebra algorithms

Reference Algorithm Problem Algorithmic “family”

[Indyk-Vakilian-Yuan’19] IVY LRA Sketching

[Ailon-Leibovich-Nair’20] Butterfly LRA LRA Sketching

[Liu-Liu-Vakilian-Wan-Woodruff’20] Multisketch LRA LRA Sketching

[Indyk-Wagner-Woodruff’21] Few-shot LRA LRA Sketching

[Luz-Galun-Maron-Basri-Yavneh’20] Learned AMG Regression Multigrid

* All bounds are
near-proportional
to the number of
learned parameters

Prior and Related Work

• Gupta & Roughgarden (ITCS 2016, SICOMP 2017):

• Initiated framework

• Upper bound technique for greedy heuristics and local search algorithms

• Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik (STOC 2021):

• General upper bound technique

• Applications for pattern matching and mechanism design algorithms

• Does not work for the linear algebra algorithms we consider

Review:

Statistical Learning
(for data-driven algorithms, but also in general)

Data-Driven Algorithms: Setting

A loss minimization problem:

• Inputs: 𝑥 ∈ 𝑋

• Algorithms: ℒ = 𝐿𝜌: 𝜌 ∈ ℝ𝑛 , parameterized by 𝜌 ∈ ℝ𝑛

• Losses: Identify 𝐿𝜌 with a map 𝐿𝜌: 𝑋 → 0,1 that maps inputs to losses

• 𝐿𝜌 𝑥 is the loss of solving for 𝑥 with parameters 𝜌

Our case: The low-rank approximation (LRA) problem

• Inputs: 𝑋 is the set of matrices 𝑨 ∈ ℝ𝑛×𝑛 with 𝑨 𝐹 = 1

• Algorithms: ℒ = 𝐿𝑺: 𝑺 ∈ ℝ𝑚×𝑛 , parameterized by auxiliary matrices 𝑺 ∈ ℝ𝑚×𝑛

• Loss: 𝐿𝑺 𝑨 = 𝑨 − ෩𝑨𝑺 𝐹

2
, where ෩𝑨𝑺 is the LRA of 𝑨 computed with aux. matrix 𝑺

Statistical Learning and ERM

Statistical learning: Suppose we have a distribution 𝐷 over 𝑋

• Goal: Estimate the best parameters for 𝐷

𝜌∗ = argmin𝜌∈ℝ𝑛𝔼𝑥∈𝐷 𝐿𝜌 𝑥

• Method: Draw 𝑠 samples 𝑥1, … , 𝑥𝑠~𝐷 and use Empirical Risk Minimization (ERM)

ො𝜌 = argmin𝜌∈ℝ𝑛
1

𝑠

𝑖=1

s

𝐿𝜌 𝑥𝑖

• We say ℒ = 𝐿𝜌: 𝜌 ∈ ℝ𝑛 is (𝜖, 𝛿)-learnable with 𝑠 samples (by ERM) if

Pr
𝑥1,…,𝑥𝑠~𝐷

𝔼𝑥∈𝐷 𝐿ෝ𝜌 𝑥 ≤ 𝔼𝑥∈𝐷 𝐿𝜌∗ 𝑥 + 𝜖 ≥ 1 − 𝛿

• Question: What is the smallest number of samples 𝑠 that suffices?

VC-Dimension and Fat Shattering Dimension

Definition: Let ℒ be a family of functions 𝑋 → 0,1 .

• A set 𝑥1, … , 𝑥𝑠 ∈ 𝑋 is shattered by ℒ if for every 𝐼 ⊂ 1,… , 𝑠 , there is 𝐿 ∈ ℒ s.t.:

𝐿 𝑥𝑖 = 1 ⇔ 𝑖 ∈ 𝐼.

• The VC-dimension VCdim(ℒ) of ℒ is the size of the largest shattered set.

Definition: Let ℒ be a family of functions 𝑋 → 0,1 . Let 𝛾 ≥ 0.

• A set 𝑥1, … , 𝑥𝑠 ∈ 𝑋 is 𝛾-fat shattered by ℒ if there are thresholds 𝑟1, … , 𝑟𝑠 ∈ ℝ, such that
for every 𝐼 ⊂ 1,… , 𝑠 , there is 𝐿 ∈ ℒ s.t.:

𝑖 ∈ 𝐼 ⇒ 𝐿 𝑥𝑖 > 𝑟𝑖 + 𝛾 and 𝑖 ∉ 𝐼 ⇒ 𝐿 𝑥𝑖 < 𝑟𝑖 − 𝛾

• The 𝛾-fat shattering dimension fat𝛾(ℒ) of ℒ is the size of the largest 𝛾-fat shattered set.

Classical learning theory: The sample complexity of 𝜖, 𝛿 -learning ℒ (by ERM) is
proportional to the 𝛾-fat shattering dimension with 𝛾 = Θ 𝜖 .

Review:

Fast Low-Rank Approximation
(with data-driven algorithms, but also in general)

Low-Rank Approximation (LRA)

• Problem:

• Input: 𝑨 ∈ ℝ𝑛×𝑛 with 𝑨 𝐹 = 1, target rank 𝑘 ≪ 𝑛

• Goal: ෩𝑨 of rank 𝑘 that approximately minimizes 𝑨 − ෩𝑨
𝐹

2

• Exact solution: SVD

• Returns: [𝑨]𝑘 such that 𝑨 − [𝑨]𝑘 𝐹
2 = min

෩𝑨 of rank 𝑘
𝑨 − ෩𝑨

𝐹

2

• Runtime: 𝑂 𝑛𝜔

?

?
?

?≈

Efficient Low-Rank Approximation

• The SCW algorithm [Sarlos’06, Clarkson-Woodruff’09,13]:

• Pick an auxiliary matrix 𝑺 ∈ ℝ𝑚×𝑛, where 𝑘 ≤ 𝑚 ≪ 𝑛

• Project 𝑨 onto 𝑟𝑜𝑤𝑠(𝑺𝑨)

• Return: Best rank-𝑘 approximation of projected 𝑨

෩𝑨𝑺 = 𝑨 𝑺𝑨 † 𝑺𝑨
𝑘

• Lemma: ෩𝑨𝑺 can be computed in time 𝑚𝑢𝑙𝑡 𝑺, 𝑨 + 𝑂 𝑚2𝑛 and space 𝑂 𝑚𝑛 .

• By the formula: ෩𝑨𝑺 = 𝑨𝑽 𝑘𝑽
𝑇 where 𝑺𝑨 = 𝑼𝚺𝑽𝑇

• Theorem: If 𝑺 has 𝑚 = ෨𝑂 Τ𝑘 𝜖 2 rows s.t.:

• Each column one uniformly random non-zero

• Each non-zero is uniform in 1,−1

Then, whp, 𝑨 − ෩𝑨𝑺 𝐹

2
≤ 1 + 𝜖 ⋅ 𝑨 − [𝑨]𝑘 𝐹

2 .

iiiiiiiiiiii iiiiii
iiiiii iiiiii

iiiiii iiiiii

𝑨𝑺

±1±1

±1

±1

±1

±1

±10

0

0

0

0

0

00

0

0

00

0 0

𝑨
𝑺

Reminder: 𝑴†𝑴 is the orthogonal
projection matrix on the row space 𝑴

Data-Driven Low-Rank Approximation

• The SCW algorithm: SCW𝑘 𝑺, 𝑨 = 𝑨 𝑺𝑨 † 𝑺𝑨
𝑘

• Loss: 𝐿𝑺 𝑨 = 𝑨 − SCW𝑘 𝑺, 𝑨 𝐹
2

• Oblivious auxiliary matrix 𝑺 ∈ ℝ𝑚×𝑛:
• Each column one uniformly random non-zero
• Each non-zero is uniform in 1,−1

• Data-driven auxiliary matrix 𝑺 ∈ ℝ𝑚×𝑛 [Indyk-Vakilian-Yuan’19]:
• Each column one uniformly random non-zero
• Its value is a trainable parameter (learned via SGD)

• How many samples do we need to ERM-learn 𝐿𝑺 𝑨 ?

𝑺 =
1 −1 0 0 0 −1 0
0 0 0 −1 0 0 1
0 0 1 0 −1 0 0

𝑺 =

𝜌1 𝜌2 0 0 0 𝜌6 0
0 0 0 𝜌4 0 0 𝜌7
0 0 𝜌3 0 𝜌5 0 0

Our Results

Theorem – Fat shattering dimension of SCW:

• Upper bound: The 𝜖-fat shattering dimension of learned SCW is

𝑂 𝑛 ⋅ 𝑚 + 𝑘 log Τ𝑛 𝑘 + log Τ1 𝜖 ,

with 𝑨 ∈ ℝ𝑛×𝑛, 𝑺 ∈ ℝ𝑚×𝑛, and low rank 𝑘.

• Lower bound: The 𝜖-fat shattering dimension of learned SCW is Ω 𝑛 , if 𝜖 < Τ1 (2 𝑘).

• Techniques apply to all other existing data-driven linear algebra algorithms.

Corollary – Sample complexity of learning SCW:

• Learning SCW with ERM requires at most ෨𝑂 𝜖−2𝑛 ⋅ 𝑚 samples.

• Learning SCW with ERM requires at least Ω 𝜖−2 Τ𝑛 𝑘 samples.

• Learning SCW with any method requires at least Ω 𝑛 + 𝜖−1 samples.

Remarks

• What if training set has nothing to do with test set?

• Safeguarding [Indyk-Vakilian-Yuan’19]:

• Vertically augment the learned 𝑺 a random 𝑺′

• Number of rows is only doubled

• Guarantees: 𝑺 is at least as good as 𝑺′ on any input matrix 𝑨

• What about the running time of computing the best 𝑺 for the sample?

• In practice: Use stochastic gradient descent (SGD) on training set

• Not known to provably converge to empirical risk minimizer

Proof Overview

The Goldberg-Jerrum’95 Framework

Definition: A GJ-algorithm is a deterministic algorithm on real-valued inputs, with two
types of operations:

• Arithmetic: 𝑣′′ = 𝑣 ⨀ 𝑣′ where ⨀ ∈ +,−,×,÷

• Conditional: “if 𝑣 ≥ 0 then … else …”

Where 𝑣, 𝑣′ are either inputs or values previously computed by the algorithm.

Theorem [Goldberg-Jerrum’95]:

• Suppose there is a GJ-algorithm that takes 𝑥 ∈ 𝑋, 𝜌 ∈ ℝ𝑛 and 𝑟 ∈ ℝ, and returns TRUE
iff 𝐿𝜌 𝑥 ≥ 𝑟. Suppose it has running time 𝑇.

• Then, ∀𝛾, the 𝛾-fat shattering dimension of ℒ = 𝐿𝜌: 𝜌 ∈ ℝ𝑛 is 𝑂(𝑛𝑇).

Proof sketch: The GJ algorithm partitions ℝ𝑛 into constant sign regions with polynomial boundaries.
Classical theorems on polynomials [Milnor’64, Warren’68] bound the number of sign regions.

Goldberg-Jerrum: First Attempt

• Goal: GJ-algorithm for the SCW loss, 𝐿𝑺 𝑨 = 𝑨 − 𝑨 𝑺𝑨 † 𝑺𝑨
𝑘 𝐹

2
.

• Need two steps:
1. Projection (compute 𝑴†𝑴 for a matrix 𝑴)
2. Best rank-𝑘 approximation (computing 𝑴 𝑘 for a matrix 𝑴)

• Problem: How to compute 𝑴 𝑘 with a GJ-algorithm (only arithmetic operations)?

• Solution: Approximate by the Power Method
• 𝑴 𝑘 ≈ 𝒁𝒁†𝑴 with 𝒁 = 𝑴𝑴𝑇 𝑞𝑴𝚷 and gaussian 𝚷 ∈ ℝ𝑛×𝑘

• However:
• Power Method is slow 𝑞 iterations take 𝑞𝑘𝑛𝑂(1) time (here 𝑞 = 𝑂 𝜖−1 log Τ𝑛 𝜖)

• Power Method is randomized derandomizing 𝚷 takes Τ𝑛 𝑘 𝑘 time

[Rokhlin-Szlam-Tygert’10, Halko-Martinsson-
Tropp’11, Boutsidis-Drineas-MagdonIsmail’14,
Woodruff’14, Witten-Candes’15, Musco-Musco’15]

Refined Goldberg-Jerrum: Definitions

Definition: A GJ-algorithm is a deterministic algorithm on real-valued inputs, with two types
of operations:

• Arithmetic: 𝑣′′ = 𝑣 ⨀ 𝑣′ where ⨀ ∈ +,−,×,÷

• Conditional: “if 𝑣 ≥ 0 then … else …”

Where 𝑣, 𝑣′ are either inputs or values previously computed by the algorithm.

Observe: Every value computed by a GJ-algorithm is a rational function of the inputs.

Definition:

• The degree of a GJ-algorithm is the maximum degree of any rational function it computes.

• The predicate complexity of a GJ-algorithm is the number of distinct rational functions in
its conditional statements.

Refined Goldberg-Jerrum: Theorem

Theorem: Suppose we have,

• A GJ-algorithm that takes 𝑥 ∈ 𝑋, 𝜌 ∈ ℝ𝑛 and 𝑟 ∈ ℝ, and returns TRUE iff 𝐿𝜌 𝑥 ≥ 𝑟.

• Suppose it has degree Δ and predicate complexity 𝑃.

• Then, ∀𝜖, the 𝜖-fat shattering dimension of ℒ = 𝐿𝜌: 𝜌 ∈ ℝ𝑛 is 𝑂(𝑛 log Δ𝑃).

Observe: Runtime 𝑇 implies Δ, 𝑃 ≤ 2𝑇.
• Thus, refines the previous theorem, “runtime 𝑇 ⇒ fat-dim 𝑂(𝑛𝑇)”.

Why does it help?

• 𝑞 Power Method iterations: time 𝑞𝑘𝑛𝑂 1 , but degree 𝑂 𝑞
• 𝑛𝑇 = 𝑞𝑘𝑛𝑂 1 but 𝑛 logΔ = 𝑂 𝑛 log 𝑞

• Minimum of 𝑡 numbers: time 𝑂 𝑡 , but predicate complexity
• 𝑛𝑇 = 𝑂 𝑛𝑡 but 𝑛 log𝑃 = 𝑂 𝑛 log 𝑡

• Derandomizing the power method: 𝑡 =
𝑛
𝑘

, thus 𝑛𝑇 = 𝑂 𝑛 Τ𝑛 𝑘 𝑘 but 𝑛 log𝑃 = 𝑂 𝑛𝑘 log Τ𝑛 𝑘

𝑡
2

Refined GJ-Algorithm for SCW

• New goal:

• GJ-algorithm for the SCW loss, 𝐿𝑺 𝑨 = 𝑨 − 𝑨 𝑺𝑨 † 𝑺𝑨
𝑘 𝐹

2

• With efficient degree and predicate complexity.

• Need two steps:

1. Projection (compute 𝑴†𝑴 for a matrix 𝑴)

2. Best rank-𝑘 approximation (computing 𝑴 𝑘 for a matrix 𝑴)

Step 1: Computing Projection Matrices

Lemma 1: Given 𝑴 ∈ ℝ𝑚×𝑛, there is a GJ-algorithm for computing 𝑴†𝑴 with degree
𝑂 𝑚 and predicate complexity 2𝑚.

Proof:

• Fact 1: If the rows of 𝑵 form a basis for the rows of 𝑴, then 𝑴†𝑴 = 𝑵𝑇 𝑵𝑵𝑇 −1𝑵.

• Fact 2 (e.g., [Csanky’76]): There are algorithms that use only arithmetic operations for

(i) checking if a matrix has full rank,

(ii) inverting an invertible matrix.

Their degree (as GJ-algorithms) for 𝑚 ×𝑚 matrices is 𝑂 𝑚 .

• GJ-Algorithm: Try all 2𝑚 subsets of rows of 𝑴 (predicate complexity 2𝑚) to find a basis
𝑵 (use Fact 2(i) to check it is a basis). Invert 𝑵𝑵𝑇 (with Fact 2(ii)). Return 𝑵𝑇 𝑵𝑵𝑇 −1𝑵.

Step 2: Derandomized Power Method

Lemma 2: Given 𝑴 ∈ ℝ𝑛×𝑛, there is a GJ-algorithm for 𝜖-approximating 𝑴 𝑘, with

degree 𝑂 𝑘𝜖−1 log Τ𝑛 𝜖 and predicate complexity 2𝑘
𝑛
𝑘

2
.

Remark: Approximation is why we needed the gap 𝛾 in the definition of fat shattering.

Proof (sketch):

• Fact 3: Starting with a gaussian 𝚷 ∈ ℝ𝑛×𝑘, 𝑞 = 𝑂 𝜖−1 log Τ𝑛 𝜖 Power Methods
iterations suffice to 𝜖-approximate 𝑴 𝑘 [Musco-Musco’15], by the formula:

𝑴 𝑘 ≈𝜖 𝒁𝒁
†𝑴 where 𝒁 = 𝑴𝑴𝑇 𝑞𝑴𝚷

• Fact 4: 𝚷 can be derandomized with 𝑘-subsets of the standard basis in ℝ𝑛.

• GJ algorithm: Try all
𝑛
𝑘

subset of ℝ𝑛 as the initial matrix 𝚷. For each one, compute
𝒁𝒁†𝑴 (using the previous lemma for 𝒁𝒁†, which blows up the degree by 𝑘 and the

predicate complexity by 2𝑘). pick the one that minimizes the LRA error 𝑴− 𝒁𝒁†𝑴
𝐹

2
.

