Learning Space Partitions for Nearest Neighbor Search

Yihe Dong
MSR
Piotr Indyk
MIT
Ilya Razenshteyn
Tal Wagner
MSR
MIT

Nearest Neighbor Search

- Given:
- Dataset of points in \mathbb{R}^{d}.
- Query:

- k-nearest neighbors from dataset.

Method: Space Partitions of $\mathbb{R}^{\boldsymbol{d}}$

Advantages:

- Sublinear query time
- Compute distance from query to a subset of candidate data points
- Distributed computation
- Put each bin on different machine

Space Partition Desiderata

- Want a partition of \mathbb{R}^{d} that:
- Returns accurate nearest neighbors
- Approximately balanced
- w.r.t. data points
- Algorithmically simple

Methods for Space Partitions

- Data independent:
- Classical Locality-sensitive hashing (LSH)
- Data dependent:
- Data dependent LSH
- Quantization (k-means)
- Supervised hyperplane partitions
- Our goal: Use modern supervised learning (like neural networks) to learn better space partitions

Our Contribution

- New method to partition \mathbb{R}^{d}
- Two stage process:

1. Combinatorial graph partitioning
2. Supervised learning

- Empirically better than prior methods for nearest neighbor search

Our Method: Preprocessing

- Create k-NN graph of dataset
- Find balanced partition of graph
- Train learning model to generalize partition from graph nodes to all of \mathbb{R}^{d}

Our Method: Query

- Run inference on query to classify into bin, or to get ranking of likely bins
- Search for nearest neighbors in highest ranking bins

Select Experimental Results

- Partition into 256 bins

Number of distance computations ("candidates")

Code on GitHub

