Learning Space Partitions for Nearest Neighbor Search

Yihe Dong	Piotr Indyk	Ilya Razenshteyn	Tal Wagner
MSR	MIT	MSR	MIT

Nearest Neighbor Search

- Given:
 - Dataset of points in \mathbb{R}^d .
- Query:
 - q in \mathbb{R}^d .
- Goal:
 - k-nearest neighbors from dataset.

Method: Space Partitions of \mathbb{R}^d

Advantages:

- Sublinear query time
 - Compute distance from query to a subset of candidate data points
- Distributed computation
 - Put each bin on different machine

Space Partition Desiderata

- Want a partition of \mathbb{R}^d that:
 - Returns accurate nearest neighbors
 - Approximately balanced
 - w.r.t. data points
 - Algorithmically simple

Methods for Space Partitions

- Data independent:
 - Classical Locality-sensitive hashing (LSH)
- Data dependent:
 - Data dependent LSH
 - Quantization (k-means)
 - Supervised hyperplane partitions
- Our goal: Use modern supervised learning (like neural networks) to learn better space partitions

Our Contribution

- New method to partition \mathbb{R}^d
- Two stage process:

- 1. Combinatorial graph partitioning
- 2. Supervised learning
- Empirically better than prior methods

for nearest neighbor search

0

Our Method: Preprocessing

- Create *k*-NN graph of dataset
- Find balanced partition of graph
- Train learning model to generalize partition from graph nodes to all of \mathbb{R}^d

Our Method: Query

- Run inference on query to classify into bin, or to get ranking of likely bins
- Search for nearest neighbors in highest ranking bins

Select Experimental Results

• Partition into 256 bins

Number of distance computations ("candidates")

Thank you