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Nearest Neighbor Search

* Given:
e Dataset of points in R%.
* Query:
* g in R4,
* Goal:
* k-nearest neighbors from dataset.
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Method: Space Partitions of R4

Advantages:

* Sublinear query time

 Compute distance from query to a

subset of candidate data points

* Distributed computation

e Put each bin on different machine




Space Partition Desiderata

* Want a partition of R? that:

e Returns accurate nearest neighbors

e Approximately balanced

* w.r.t. data points

 Algorithmically simple




Methods for Space Partitions

e Data independent:
 Classical Locality-sensitive hashing (LSH)

* Data dependent:
e Data dependent LSH
e Quantization (k-means)
* Supervised hyperplane partitions

* Our goal: Use modern supervised learning (like neural networks)
to learn better space partitions



Our Contribution

We use KaHIP

* New method to partition R% (Sanders and
Schultz 2013)

* Two stage process: ®

1. Combinatorial graph partitioning

2. Supervised learning .
O

* Empirically better than prior methods We use small

for nearest neighbor search AEUrAEREEWORKS
8 (“Neural LSH”)




Our Method: Preprocessing

e Create k-NN graph of dataset
* Find balanced partition of graph

e Train learning model to generalize partition from graph nodes to all of R¢



Our Method: Query
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Select Experimental Results

e Partition into 256 bins
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Code on Thank you
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