
High-dimensional	feature	vectors
(image	descriptors,	word2vec,	etc.)

Metric	embedding:
Starting	point	of	many	algorithms

Goal: Compress	vectors	while	approximately	
preserving	distances.
• Many	algorithms	for	data	analysis	and	machine	

learning	rely	on	distances
• E.g.: Nearest	neighbor	queries

Benefits	of	compression:
• Time: Speed-up	linear	scan	of	data
• Space: Fit	on	memory-limited	devices	like	GPUs

(Johnson,	Douze,	Jégou 2017)
• Communication: Facilitate	distributed	architectures

Our	algorithm:
• Simple to	describe	and	implement
• Provable	pointwise	guarantees
• Matches	or	outperforms	state-of-the-art in	the	high-

precision	regime

Previous	work: Either	heuristic or	impractical.

Heuristic	algorithms:
• Lack	provable	guarantees	-

may	be	unsuitable	for	non-standard	datasets
• Optimize	for	average	accuracy	-

may	perform	undesirably	on	individual	queries
• Solve	a	global	optimization	problem	on	the	dataset	

(e.g.	k-means)	-
slow	or	infeasible	in	high	precision	regime

Theoretical	algorithms:
Unsuitable	for	implementation	despite	asymptotic	
guarantees,	due	to	large	hidden	constants,	underlying	
combinatorial	complexity,	etc.

Practical	Data-Dependent	Metric	Compression	with	Provable	Guarantees

Introduction QuadSketch:
Algorithm	Description

Construction
• Step	1:	Randomly	shifted	grids
Enclose	points	in	hypercube.
Refine	into	sub-cubes	by	halving	each	dimension.
Repeat	refinement	for	𝐿 levels.
Shift	grids	by	a	uniformly	random	vector.

• Step	2:	Quadtree
Construct	high-dimensional	quadtree from	grids:
• The	root	is	the	enclosing	hypercube.
• For	every	non-empty	sub-hypercube,	add	child	node.

• Step	3:	Pruning
For	every	tree	path	longer	than	Λ:
Replace	the	path	after	the	top	Λ nodes with	a	long	edge.

The	compressed	representation	is	the	pruned	quadtree.

Recovery
To	recover	the	approximation	𝒙$ of	a	point	𝒙:
• Follow	path	from	root	to	leaf	containing	𝒙.
• In	each	dimension,	concatenate	bits	along	edges	in	path.
• If	long	edge,	concatenate	zeros	instead.

Real-world	objects
(images,	text,	etc.)

Theoretical	Results

We	compare:
• QS: Product	QuadSketch

Partition	into	blocks,	QuadSketch in	each
• PQ: Product	Quantization	(Jégou,	Douze,	Schmid 2011)

Partition	into	blocks,	k-means	in	each
• Grid: Uniform	scalar	quantization	(baseline)

We	report:
• Accuracy - fraction	of	correct	nearest	neighbors
• Size - bits	per	coordinate

*	Estimated	on	a	random	sample.
**	Random	points	on	a	line,	embedded	in	a	128-dimensional	space.

Parameters:
𝑛 - num.	points;	𝑑 - dimension;	Φ - ratio	of	maximum	to	
minimum	distance	(captures	numerical	range)

Theorem: Given	𝜖, 𝛿 > 0,	set

Λ = log
16 ⋅ 𝑑4.6 ⋅ logΦ

𝜖 ⋅ 𝛿 		and			𝐿 = Λ + logΦ .

QuadSketch guarantees:	For	every	point	𝒙,

Pr ∀𝒚	 𝒙$ − 𝒚$ ∈ 1 ± 𝜖 𝒙 − 𝒚 > 1 − 𝛿.

• In	particular,	 1 + 𝜖 -approximate	nearest	neighbors	
are	preserved	with	probability	1 − 𝛿.

• Construction	time:	𝑂D 𝑛𝑑𝐿 .
• Compressed	size:	𝑂 𝑛𝑑Λ + 𝑛 log 𝑛 bits.

Comparison	with	prior	work:
For	𝑑 = Θ(𝜖GHlog 𝑛) by	dimension	reduction,	and	Φ = 𝑝𝑜𝑙𝑦 𝑛

𝒙$ = (00, 11)
𝒚$ = 10, 00
𝒛O = (11, 01)Contribution

Reference Bits per	coordinate Construction time
Vanilla	bound 𝑂 log 𝑛 --
(Indyk,	Wagner	
2017) 𝑂 log 1/𝜖 	 𝑂D 𝑛4QR + 𝜖GH𝑛

for	𝛼 ∈ (0,1]

This	work 𝑂 log log 𝑛 + log 1/𝜖 	 𝑂D 𝜖GH𝑛

Experiments References:

P.	Indyk, T.	Wagner,	
Near-optimal	
(Euclidean)	metric	
compression.
ACM-SIAM	
Symposium	on	
Discrete	Algorithms,	
2017.

H.	Jégou,	M.	Douze,	C.	
Schmid,
Product	quantization	
for	nearest	neighbor	
search.
IEEE	transactions	on	
pattern	analysis	and	
machine	intelligence,	
2011.

J.	Johnson,	M.	Douze,	
H.	Jégou,
Billion-scale	similarity	
search	with	GPUs.	
ArXiv preprint,	2017.

Datasets: 𝑛 𝑑 Φ
SIFT 1M 128 ≥ 83.2	*

MNIST 60K 784 ≥	9.2	*
NYC	Taxi	ridership 8,874 48 49.5

Diagonal	(synthetic) ** 10K 128 20,478,740.2

SIFT MNIST

NYC	Taxi Diagonal

Λ Λ

Long	
edge

Piotr	Indyk Ilya	Razenshteyn Tal	Wagner
MIT Columbia	University MIT

Code	available	at:	
github.com/talwagner/quadsketch

