Practical Data-Dependent Metric Compression with Provable Guarantees

Introduction	
Metric embedding.	

Starting point of many algorithms

Real-world objects (images, text, etc.)

QuadSketch:

 Algorithm Description
Construction

- Step 1: Randomly shifted grids

Enclose points in hypercube
Refine into sub-cubes by halving each dimension.
Repeat refinement for L levels.
Shift grids by a uniformly random vector.

- Step 2: Quadtree

Construct high-dimensional quadtree from grids:

- The root is the enclosing hypercube.
- For every non-empty sub-hypercube, add child node.
- Step 3: Pruning

For every tree path longer than Λ :
Replace the path after the top Λ nodes with a long edge.

The compressed representation is the pruned quadtree.

Recovery

To recover the approximation \widetilde{x} of a point x :

- Follow path from root to leaf containing x
- In each dimension, concatenate bits along edges in path.
- If long edge, concatenate zeros instead.
$\tilde{\tilde{z}}=(11,01)$

Theoretical Results

Parameters:

n - num. points; d - dimension; Φ - ratio of maximum to minimum distance (captures numerical range)

Theorem: Given $\epsilon, \delta>0$, set

$$
\Lambda=\log \left(\frac{16 \cdot d^{1.5} \cdot \log \Phi}{\epsilon \cdot \delta}\right) \text { and } L=\Lambda+\log \Phi
$$

QuadSketch guarantees: For every point \boldsymbol{x},

$$
\operatorname{Pr}[\forall \boldsymbol{y}\|\widetilde{x}-\widetilde{y}\| \in(1 \pm \epsilon)\|\boldsymbol{x}-\boldsymbol{y}\|]>1-\delta
$$

- In particular, $(1+\epsilon)$-approximate nearest neighbors are preserved with probability $1-\delta$.
- Construction time: $\widetilde{O}(n d L)$.
- Compressed size: $O(n d \Lambda+n \log n)$ bits.

Comparison with prior work:
For $d=\Theta\left(\epsilon^{-2} \log n\right)$ by dimension reduction, and $\Phi=\operatorname{poly}(n)$

Reference	Bits per coordinate	Construction time					
Vanilla bound	$O(\log n)$	--					
(Indyk, Wagner 2017)	$O(\log (1 / \epsilon))$	$\tilde{O}\left(n^{1+\alpha}+\epsilon^{-2} n\right)$					
for $\alpha \in(0,1]$			$	$	This work	$O(\log \log n+\log (1 / \epsilon))$	$\tilde{O}\left(\epsilon^{-2} n\right)$
:---	:---	:---					

Our algorithm:

- Simple to describe and implement
- Provable pointwise guarantees
- Matches or outperforms state-of-the-art in the highprecision regime

Previous work: Either heuristic or impractical.

Heuristic algorithms:

- Lack provable guarantees -
may be unsuitable for non-standard datasets
- Optimize for average accuracy -
may perform undesirably on individual queries
- Solve a global optimization problem on the dataset (e.g. k-means) -
slow or infeasible in high precision regime

Theoretical algorithms:

Unsuitable for implementation despite asymptotic guarantees, due to large hidden constants, underlying combinatorial complexity, etc.

