
High-dimensional	feature	vectors
(image	descriptors,	word2vec,	etc.)

Metric	embedding:
Starting	point	of	many	algorithms

Goal: Compress	vectors	while	approximately	
preserving	distances.
• Many	algorithms	for	data	analysis	and	machine	

learning	rely	on	distances
• E.g.: Nearest	neighbor	queries

Benefits	of	compression:
• Time: Speed-up	linear	scan	of	data
• Space: Fit	on	memory-limited	devices	like	GPUs

(Johnson,	Douze,	Jégou 2017)
• Communication: Facilitate	distributed	architectures

Our	algorithm:
• Simple to	describe	and	implement
• Provable	pointwise	guarantees
• Matches	or	outperforms	state-of-the-art in	the	high-

precision	regime

Previous	work: Either	heuristic or	impractical.

Heuristic	algorithms:
• Lack	provable	guarantees	-

may	be	unsuitable	for	non-standard	datasets
• Optimize	for	average	accuracy	-

may	perform	undesirably	on	individual	queries
• Solve	a	global	optimization	problem	on	the	dataset	

(e.g.	k-means)	-
slow	or	infeasible	in	high	precision	regime

Theoretical	algorithms:
Unsuitable	for	implementation	despite	asymptotic	
guarantees,	due	to	large	hidden	constants,	underlying	
combinatorial	complexity,	etc.

Practical	Data-Dependent	Metric	Compression	with	Provable	Guarantees

Introduction QuadSketch:
Algorithm	Description

Construction
• Step	1:	Randomly	shifted	grids
Enclose	points	in	hypercube.
Refine	into	sub-cubes	by	halving	each	dimension.
Repeat	refinement	for	𝐿 levels.
Shift	grids	by	a	uniformly	random	vector.

• Step	2:	Quadtree
Construct	high-dimensional	quadtree from	grids:
• The	root	is	the	enclosing	hypercube.
• For	every	non-empty	sub-hypercube,	add	child	node.

• Step	3:	Pruning
For	every	tree	path	longer	than	Λ:
Replace	the	path	after	the	top	Λ nodes with	a	long	edge.

The	compressed	representation	is	the	pruned	quadtree.

Recovery
To	recover	the	approximation	𝒙$ of	a	point	𝒙:
• Follow	path	from	root	to	leaf	containing	𝒙.
• In	each	dimension,	concatenate	bits	along	edges	in	path.
• If	long	edge,	concatenate	zeros	instead.

Real-world	objects
(images,	text,	etc.)

Theoretical	Results

We	compare:
• QS: Product	QuadSketch

Partition	into	blocks,	QuadSketch in	each
• PQ: Product	Quantization	(Jégou,	Douze,	Schmid 2011)

Partition	into	blocks,	k-means	in	each
• Grid: Uniform	scalar	quantization	(baseline)

We	report:
• Accuracy - fraction	of	correct	nearest	neighbors
• Size - bits	per	coordinate

*	Estimated	on	a	random	sample.
**	Random	points	on	a	line,	embedded	in	a	128-dimensional	space.

Parameters:
𝑛 - num.	points;	𝑑 - dimension;	Φ - ratio	of	maximum	to	
minimum	distance	(captures	numerical	range)

Theorem: Given	𝜖, 𝛿 > 0,	set

Λ = log
16 ⋅ 𝑑4.6 ⋅ logΦ

𝜖 ⋅ 𝛿 		and			𝐿 = Λ + logΦ .

QuadSketch guarantees:	For	every	point	𝒙,

Pr ∀𝒚	 𝒙$ − 𝒚$ ∈ 1 ± 𝜖 𝒙 − 𝒚 > 1 − 𝛿.

• In	particular,	 1 + 𝜖 -approximate	nearest	neighbors	
are	preserved	with	probability	1 − 𝛿.

• Construction	time:	𝑂D 𝑛𝑑𝐿 .
• Compressed	size:	𝑂 𝑛𝑑Λ + 𝑛 log 𝑛 bits.

Comparison	with	prior	work:
For	𝑑 = Θ(𝜖GHlog 𝑛) by	dimension	reduction,	and	Φ = 𝑝𝑜𝑙𝑦 𝑛

𝒙$ = (00, 11)
𝒚$ = 10, 00
𝒛O = (11, 01)Contribution

Reference Bits per	coordinate Construction time
Vanilla	bound 𝑂 log 𝑛 --
(Indyk,	Wagner	
2017) 𝑂 log 1/𝜖 	 𝑂D 𝑛4QR + 𝜖GH𝑛

for	𝛼 ∈ (0,1]

This	work 𝑂 log log 𝑛 + log 1/𝜖 	 𝑂D 𝜖GH𝑛
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Datasets: 𝑛 𝑑 Φ
SIFT 1M 128 ≥ 83.2	*

MNIST 60K 784 ≥	9.2	*
NYC	Taxi	ridership 8,874 48 49.5

Diagonal	(synthetic) ** 10K 128 20,478,740.2
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Code	available	at:	
github.com/talwagner/quadsketch


