Practical Data-Dependent Metric Compression with Provable Guarantees

Introduction

Metric embedding:

Starting point of many algorithms

Real-world objects (images, text, etc.)

High-dimensional feature vectors (image descriptors, word2vec, etc.)

Goal: Compress vectors while approximately preserving distances.

- Many algorithms for data analysis and machine learning rely on distances
- **E.g.:** Nearest neighbor queries

Benefits of compression:

- **Time:** Speed-up linear scan of data \bullet
- **Space:** Fit on memory-limited devices like GPUs (Johnson, Douze, Jégou 2017)
- **Communication:** Facilitate distributed architectures

Contribution

Our algorithm:

- **Simple** to describe and implement
- **Provable** pointwise guarantees
- Matches or outperforms state-of-the-art in the highprecision regime

Previous work: Either *heuristic* or *impractical*.

Heuristic algorithms:

- Lack provable guarantees may be unsuitable for non-standard datasets
- Optimize for average accuracy may perform undesirably on individual queries
- Solve a global optimization problem on the dataset (e.g. k-means) -

slow or infeasible in high precision regime

Theoretical algorithms:

Unsuitable for implementation despite asymptotic guarantees, due to large hidden constants, underlying combinatorial complexity, etc.

Piotr Indyk MIT

Ilya Razenshteyn **Columbia University**

QuadSketch: **Algorithm Description**

Construction

• Step 1: Randomly shifted grids Enclose points in hypercube. Refine into sub-cubes by halving each dimension. Repeat refinement for *L* levels. Shift grids by a uniformly random vector.

• Step 2: Quadtree

Construct high-dimensional quadtree from grids:

- The root is the enclosing hypercube.
- For every non-empty sub-hypercube, add child node.

• Step 3: Pruning

For every tree path longer than Λ : Replace the path after the top Λ nodes with a long edge.

The compressed representation is the pruned quadtree.

Recovery

To recover the approximation \tilde{x} of a point x:

- Follow path from root to leaf containing $\boldsymbol{\chi}$.
- In each dimension, concatenate bits along edges in path.
- If long edge, concatenate zeros instead.

We compare:

- **QS:** Product QuadSketch Partition into blocks, QuadSketch in each
- **PQ:** Product Quantization (Jégou, Douze, Schmid 2011) Partition into blocks, k-means in each
- **Grid:** Uniform scalar quantization (baseline)

We report:

- **Accuracy** fraction of correct nearest neighbors
- **Size** bits per coordinate

Datasets:	n	d	Φ
SIFT	1M	128	≥ 83.2 *
MNIST	60K	784	≥ 9.2 *
NYC Taxi ridership	8,874	48	49.5
Diagonal (synthetic) **	10K	128	20,478,740.2

* Estimated on a random sample.

** Random points on a line, embedded in a 128-dimensional space.

Experiments

 $\tilde{z} = (11, 01)$

This work

Code available at: github.com/talwagner/quadsketch

Theoretical Results

- *n* num. points; *d* dimension; Φ ratio of maximum to minimum distance (captures numerical range)
 - $\Lambda = \log \left(\frac{16 \cdot d^{1.5} \cdot \log \Phi}{\epsilon \cdot \delta} \right) \text{ and } L = \Lambda + \log \Phi.$

QuadSketch guarantees: For every point *x*,

- $\Pr[\forall \mathbf{y} \| \widetilde{\mathbf{x}} \widetilde{\mathbf{y}} \| \in (1 \pm \epsilon) \| \mathbf{x} \mathbf{y} \|] > 1 \delta.$
- In particular, $(1 + \epsilon)$ -approximate nearest neighbors are preserved with probability $1 - \delta$. Compressed size: $O(nd\Lambda + n \log n)$ bits.

For $d = \Theta(\epsilon^{-2}\log n)$ by dimension reduction, and $\Phi = poly(n)$

Bits per coordinate	Construction time
$O(\log n)$	
$O(\log(1/\epsilon))$	$ \tilde{O}(n^{1+\alpha} + \epsilon^{-2}n) $ for $\alpha \in (0,1] $
$O(\log \log n + \log(1/\epsilon))$	$\tilde{O}(\epsilon^{-2}n)$