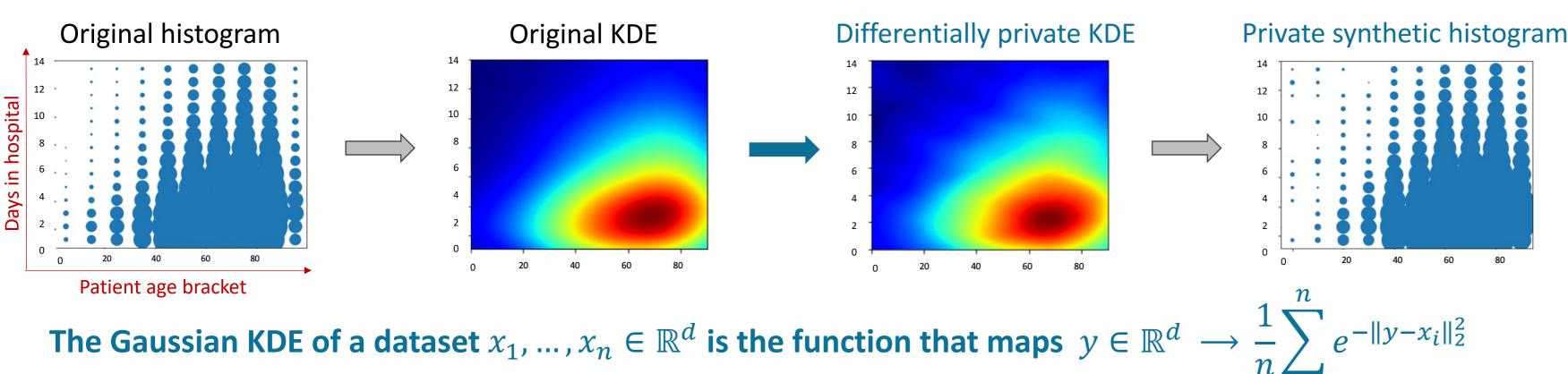
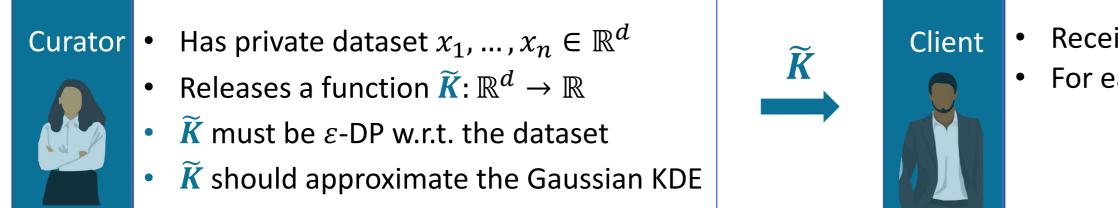
Private Kernel Density Estimation without the Curse of Dimensionality



Differentially private Gaussian KDE:



Our results:

- High dimensions: ε -DP, error $\sim 1/\sqrt{n}$, runtime linear in $d \rightarrow no$ curse of dimensionality
- Low dimensions: ε -DP, error ~ $(\log n)^{O(d)}/n$, runtime exp. in $d \rightarrow near$ -linear error decay if d = O(1)

ives
$$\widetilde{K}$$

each query $y \in \mathbb{R}^d$, w.h.p.:
 $\widetilde{K}(y) \approx \frac{1}{n} \sum_{i=1}^n e^{-\|y-x_i\|_2^2}$

Yes, this is a "#betterposter", for #better or worse

The Technical Stuff:

Fast Private Kernel Density Estimation via Locality Sensitive Quantization

What is LSQ? Expressing a kernel on \mathbb{R}^d with features that are *few*, *bounded*, and *sparse*.

Formally: k(x, y) is (Q, R, S)-LSQable if there is a distribution \mathcal{D} over pairs of functions $f, g: \mathbb{R}^d \to$ $[-R, R]^Q$, such that for all $x, y \in \mathbb{R}^d$:

- f(x) and g(y) have $\leq S$ non-zeros
- $k(x, y) \approx \mathbb{E}_{(f,g) \sim \mathcal{D}}[f(x)^T g(y)]$

Theorem: LSQ $\Rightarrow \varepsilon$ -DP KDE.

And, if Q, R, S are small, the mechanism has good utility and computational efficiency.

LSQ Constructions:

- Random Fourier Features (RFF) [Rahimi-Recht '07]
- Leads to our high-dimensional result
- Fast Gauss Transform (FGT) [Greengard-Strain '91]
- Leads to our low-dimensional result
- Locality Sensitive Hashing (LSH) [Indyk-Andoni '09]
- Recovers prior results of [Coleman-Shrivastava '21]
- LSQ extends LSH to more kernels (e.g., Gaussian)

Prior work:

		Method	Privacy	Error decay	Runtime in d	
	Prior	[Several]	ε-DP	$\sim 1/\sqrt{n}$	$\exp(d)$	
		[HRW'13]	(ε, δ) -DP	$\sim 1/n$	$\exp(d)$	Unless que known ahe
		[CS'21]	ε-DP	$\sim 1/\sqrt{n}$	<i>O</i> (<i>d</i>)	LSH kernels not Gaussia
	Ours	LSQ-RFF	ε-DP	$\sim 1/\sqrt{n}$	0(d)	
		LSQ-FGT	ε-DP	$\sim (\lg n)^{O(d)} / n$ ~ 1/n if d = O(1)	exp(d)	

Does it work for other kernels?

Yes, but fineprint, see paper.

Paper, code, etc.:

