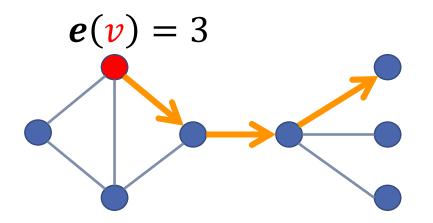
Eccentricity Heuristics through Sublinear Analysis Lenses

Tal Wagner MIT

Graph Eccentricities

- Let G(V, E) by a graph
- Shortest-path metric: $\Delta: V \times V \to \mathbb{R}$
- Eccentricities:

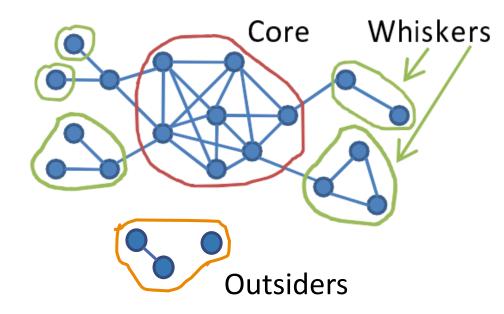
$$\boldsymbol{e}(v) = \max_{u \in V} \Delta(v, u)$$

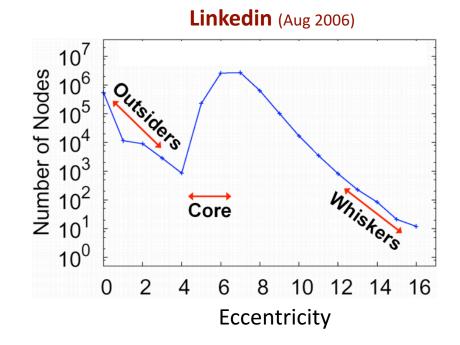


<u>Applications</u>: Network topology analysis (computers, social, biological), hardware verification, sparse linear system solving, ...

• Max e(v) = diameter; Min e(v) = radius90th percentile e(v) = "effective diameter" (excludes outliers)

Eccentricity Distribution of Large Graphs

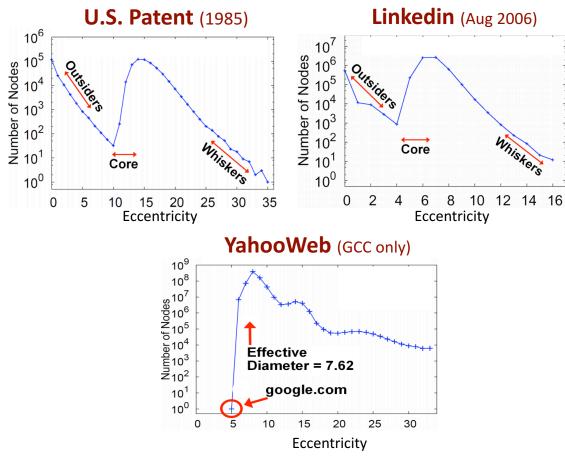




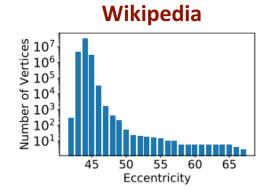
Leskovec et al. WWW 2008

Kang et al. TKDD 2011

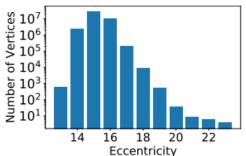
Eccentricity Distribution of Large Graphs



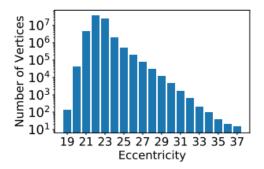
Kang et al. TKDD 2011



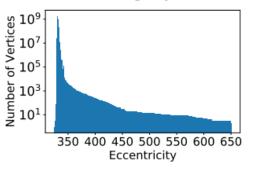
Twitter



com-Friendster



Webgraph



(GCCs only)

Iwabuchi et al. CLUSTER 2018

Computing All Eccentricities

- Exact computation: O(mn) (e.g. BFS from each node)
- Approximate algorithms
 - Theoretical:

4-approx.O(m) time[One BFS] $(2 + \delta)$ -approx. $\tilde{O}(m/\delta)$ time[Backurs-Roditty-Segal-V.Williams-Wein'18](5/3)-approx. $\tilde{O}(m^{1.5})$ time[Chechik-Larkin-Roditty-Schoenebeck-Tarjan-V.Williams'14]

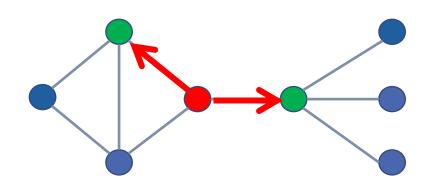
Tight under SETH

• Empirical: [Kang et al. '11], [Boldi et al. '11], [Takes & Kosters '13], [...], [Shun'15]

Parallel *k*-BFS Heuristics [Shun'15]

- *k*-BFS₁: $S_1 \leftarrow k$ random nodes
 - Compute BFS from each $u \in S_1$

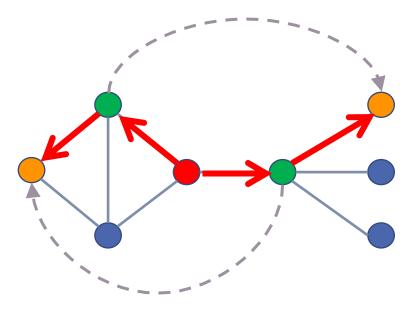
•
$$\hat{e}_1(v) \leftarrow \max \text{ distance from } S_1$$



Parallel *k*-BFS Heuristics [Shun'15]

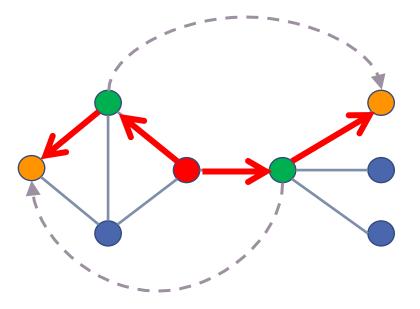
k-BFS₁: • $S_1 \leftarrow k$ random nodes

- Compute BFS from each $u \in S_1$
- $\hat{e}_1(v) \leftarrow \max \text{ distance from } S_1$
- *k*-BFS₂: $S_2 \leftarrow k$ furthest nodes from S_1
 - Compute BFS from each $u \in S_2$
 - $\hat{e}_2(v) \leftarrow \text{max distance from } S_1 \cup S_2$



Empirical Results in [Shun'15]

- *k*-**BFS**₁ performs reasonable well
 - E.g., median average relative error 7.55%
- *k*-BFS₂ beats all other methods by orders of magnitude
 - Often computes all eccentricities exactly

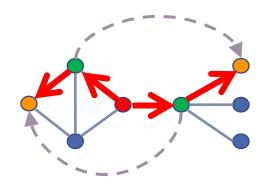


Reagan's Principle

"They're the sort of people who see something works in practice and wonder if it would work in theory."

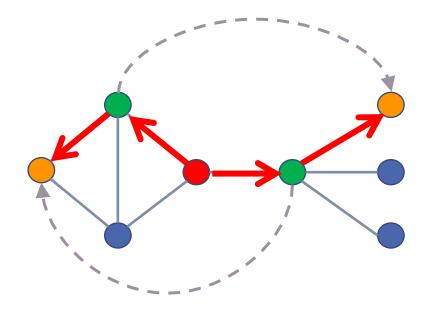
This Work

- Analyze heuristics in order to explain and improve
 - Will get provable variants with better empirical performance
 - Need to go beyond worst-case (due to SETH-hardness)
- *k*-BFS₂: Connection to Streaming Set Cover
 - [Demaine, Indyk, Mahabadi, Vakilian '14]
- *k*-BFS₁: Connection to Diameter Property Testing
 - [Parnas & Ron '02]

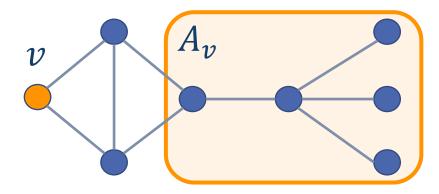


Empirical validation of theory-based algorithms

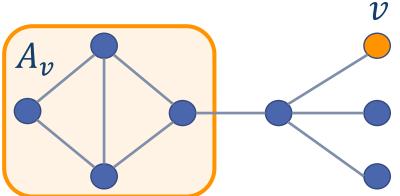
k-BFS₂ by Streaming Set Cover



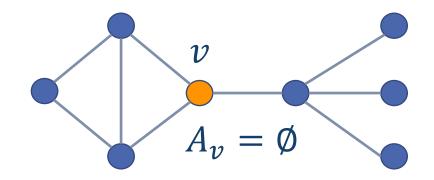
- <u>Set Cover</u>: Given elements V and subsets $S \subset 2^V$, find smallest cover $C \subset S$ of V.
- Eccentricities as Set Cover:
 - Nodes are elements
 - Nodes are sets: $S = \{A_v : v \in V\}$



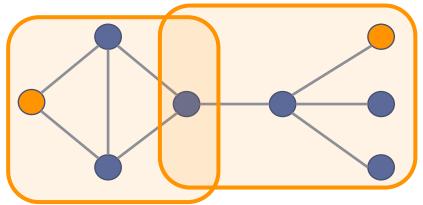
- <u>Set Cover</u>: Given elements V and subsets $S \subset 2^V$, find smallest cover $C \subset S$ of V.
- Eccentricities as Set Cover:
 - Nodes are elements
 - Nodes are sets: $S = \{A_v : v \in V\}$



- <u>Set Cover</u>: Given elements V and subsets $S \subset 2^V$, find smallest cover $C \subset S$ of V.
- Eccentricities as Set Cover:
 - Nodes are elements
 - Nodes are sets: $S = \{A_v : v \in V\}$

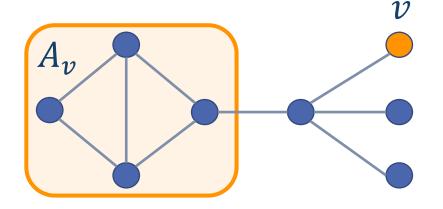


- <u>Set Cover</u>: Given elements V and subsets $S \subset 2^V$, find smallest cover $C \subset S$ of V.
- Eccentricities as Set Cover:
 - Nodes are elements
 - Nodes are sets: $S = \{A_v : v \in V\}$
- Cover computes all eccentricities
- Optimal cover = "eccentric cover", κ



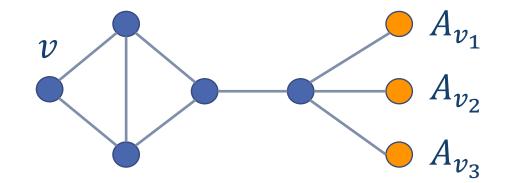
Computational Constraints

- Computing a set A_v is **prohibitive**
 - *O*(*mn*) work



- Computing which sets cover v is **expensive**
 - Single BFS, O(m) work

• Known Set Cover algorithms? Yes

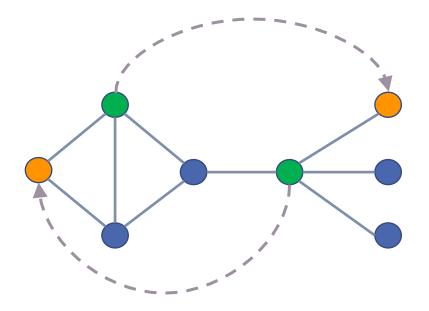


Streaming Set Cover [Demaine-Indyk-Mahabadi-Vakilian'14]

- $S_1 \leftarrow k$ random elements
- *C* ← Cover for sample (e.g. greedy)

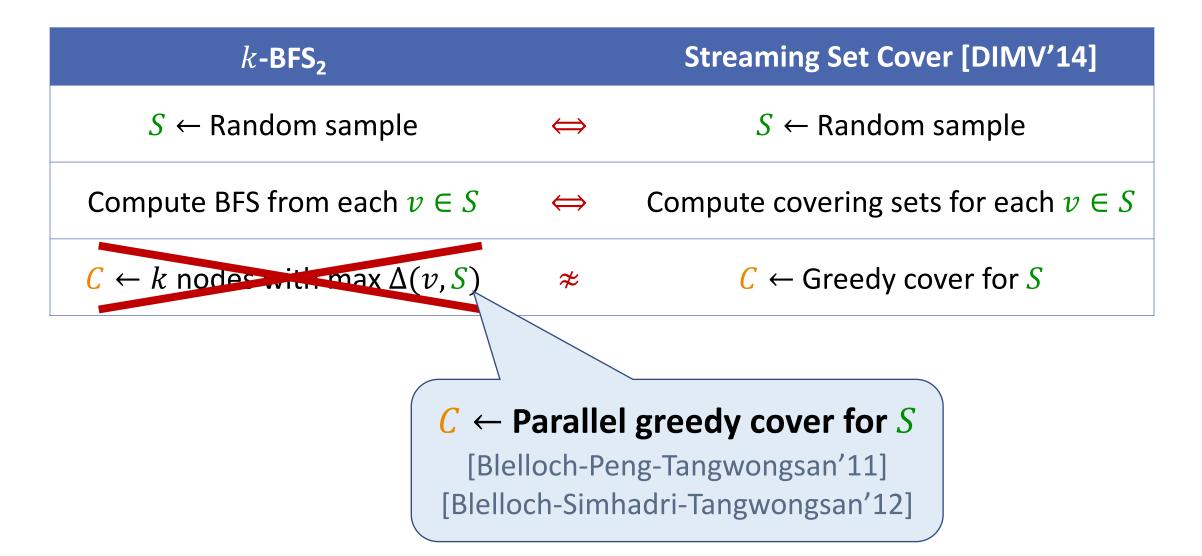
Element Sampling Lemma:

If global optimum is small, *C* covers almost all elements.



k-BFS₂ vs. DIMV

k-BFS ₂		Streaming Set Cover [DIMV'14]
$S \leftarrow \text{Random sample}$	\Leftrightarrow	$S \leftarrow Random\ sample$
Compute BFS from each $v \in S$	\Leftrightarrow	Compute covering sets for each $v \in S$
$\mathcal{C} \leftarrow k$ nodes with max $\Delta(v, S)$	*	C ← Greedy cover for S



Theorem:

Suppose G(V, E) has eccentric cover size κ .

k-BFS_{sc} with
$$k = \tilde{O}(\kappa \cdot \epsilon^{-1} \log n)$$
 satisfies:

- Expected work: O(km), expected depth: $\tilde{O}(\text{diam}(G))$
- Computes *exact eccentricities* of all but an ϵ -fraction of nodes w.h.p.

Eccentric Cover: Warm-Up

• Path, star, clique: $\kappa = 2$

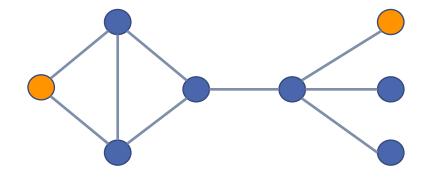
• Even cycle, hypercube: ${m \kappa}=n$

• Odd cycle:
$$\kappa = \frac{1}{2}(n+1)$$

Eccentric Cover in the Wild

- 8 real-world graphs in [Shun'15]
- 1M-4M nodes each
- Upper bounds on eccentric cover size:
 - 2 graphs: $\kappa \leq 128$
 - 5 graphs: $\kappa \lesssim 1,000$
 - 1 graph: $\kappa \lesssim 10,000$

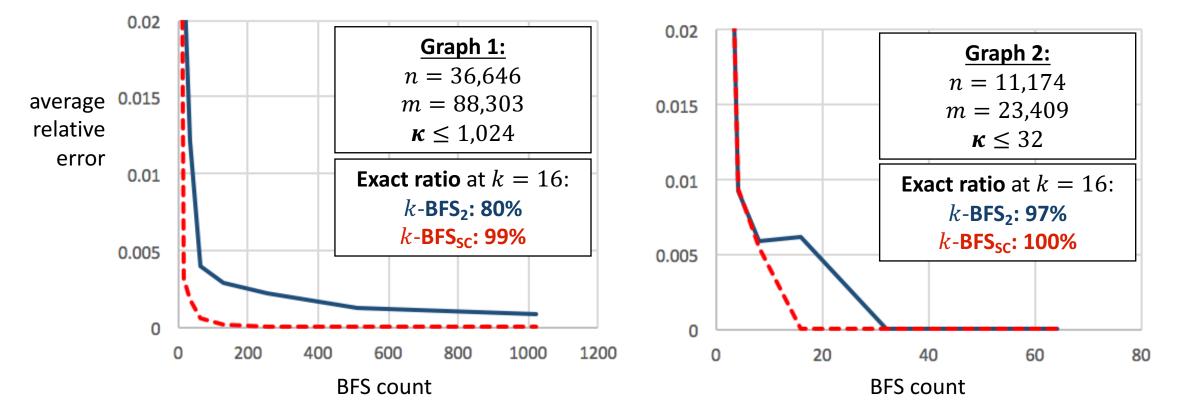
Real-world graphs have small eccentric covers



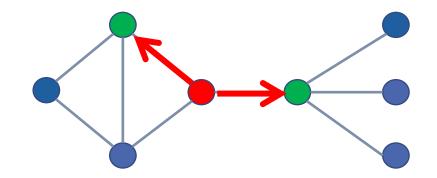
Experiments

k-BFS₂ vs. k-BFS_{SC}

(Real-world graphs from Stanford Network Analysis Project)

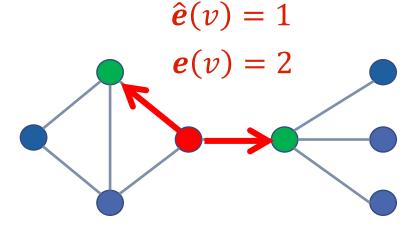


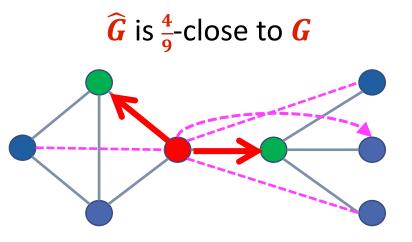
k-BFS₁ by Property Testing



Property Testing Approximation

- Usual approximation: $\hat{e}(v)$ is close to e(v)
- Property testing approximation: $\hat{e}(v)$ is exact on some \hat{G} close to G
 - Graphs are ϵ -close if up to $\epsilon \cdot m$ edges can be added/removed to get \widehat{G} from G
 - No sparsity/density assumption ("General Graph Model")
- Notation: $\hat{e}(v) \leq e(v) \leq_{\epsilon} \hat{e}(v)$





k-BFS₁ vs. Diameter Testing

k-BFS₁ with $k = O(\epsilon^{-1} \log n)$ satisfies $\hat{e}(v) \leq e(v) \leq \hat{e}(v)$ for all v.

- Work: $\tilde{O}(\epsilon^{-1}m)$, depth: $\tilde{O}(\operatorname{diam}(G))$ •
- Algorithm: Start BFS at k random nodes

<u>Theorem</u> [Parnas & Ron]: Given a graph G, compute a diameter estimate \widehat{D} such that $\widehat{D} \leq \text{diam}(G) \leq_{\epsilon} 2\widehat{D} + 2$.

- Time: $poly(\epsilon^{-1})$
- Algorithm: Start **truncated** BFS at k random nodes

Eccentricity Testing

<u>Aux. Theorem</u>: Given G and v, compute $\hat{e}(v)$ s.t. $\hat{e}(v) \leq e(v) \leq \hat{e}(v)$ in time $poly(\epsilon^{-1})$.

- Corollary Diameter testing: $\widehat{D} \leq \operatorname{diam}(G) \leq_{\epsilon} 2\widehat{D}$ (shaved off +2)
- Corollary Radius testing: $\widehat{R} \leq \operatorname{radius}(G) \leq_{\epsilon} \widehat{R} + 1$

Implies variant of k-BFS₁: k-BFS_{TST}

k-BFS_{TST}

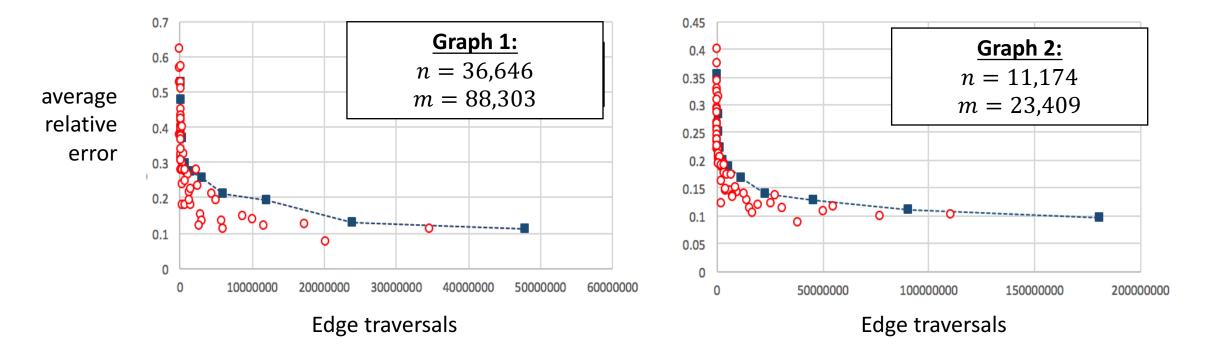
<u>Theorem</u>: k-BFS_{TST} satisfies $\hat{e}(v) \leq e(v) \leq \hat{e}(v)$ for all v.

- Work: $O(\epsilon^{-2}n)$, depth: $\tilde{O}(\epsilon^{-1}\log n)$
- Algorithm: truncated BFS
 - $S_1 \leftarrow k$ random nodes
 - From each $u \in S_1$, start a BFS up to first level ℓ_u where $\tilde{O}(\epsilon^{-1})$ nodes are seen. All unseen nodes are considered at "distance" $\ell_u + 1$ from u.
 - $\hat{e}_{TST}(v) \leftarrow \max$ "distance" from S_1

Same guarantee as k-BFS₁ but in sublinear work and depth, independent of graph.

Experiments

k-BFS₁ vs. k-BFS_{TST} (with different BFS cutoffs)



Conclusion

- Explain and improve high-performing heuristics
 - Practical algorithm -> "fit" analysis -> practical improvement with guarantees
- Inter-connections of parallel, streaming, sketching, and property

testing algorithms

• All "point to same direction"

