Sample-Optimal Low-Rank Approximation of Distance Matrices

Piotr Indyk MIT
Ali Vakilian
MIT
Tal Wagner
MIT
David Woodruff
CMU

Distance Matrices

Let $(\boldsymbol{X}, \mathbf{d})$ be a metric space

- $\boldsymbol{X}=\left\{x_{1}, \ldots, x_{n}\right\}$
- $\mathbf{d}: \boldsymbol{X} \times \boldsymbol{X} \rightarrow \mathbb{R}_{\geq 0}$
- Symmetric
- Triangle inequality

Result: Algorithm

Input: distance matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}, k$, and $\epsilon>0$.

- Sublinear runtime: $\tilde{O}(n) \cdot \operatorname{poly}\left(k, \epsilon^{-1}\right)$
- Approximation: returns $\boldsymbol{U}, \boldsymbol{V}^{\boldsymbol{T}} \in \mathbb{R}^{n \times k}$ s.t.

$$
\|\boldsymbol{A}-\boldsymbol{U} \boldsymbol{V}\|_{F}^{2} \leq \underbrace{\left\|\boldsymbol{A}-\boldsymbol{A}_{\boldsymbol{k}}\right\|_{F}^{2}}_{\begin{array}{c}
\text { Optimal } \\
\text { (SVD) error }
\end{array}}+\underbrace{\epsilon\|\boldsymbol{A}\|_{F}^{2}}_{\begin{array}{c}
\text { Additional } \\
\text { error }
\end{array}}
$$

- Simple and practical

Prior work [BW18]: $\widetilde{O}\left(n^{1+\gamma}\right) \cdot \operatorname{poly}\left(k, \epsilon^{-1}\right)$

Result: Lower Bound

Tight query complexity:

Our algorithm reads $O\left(n k \epsilon^{-1}\right)$ entries of \boldsymbol{A}.
Theorem: Any algorithm with the same guarantee must read $\Omega\left(n k \epsilon^{-1}\right)$ entries of \boldsymbol{A}.

Method

Theorem (Frieze, Kannan, Vempala 2004): For any matrix,

Sampling rows proportionally to ℓ_{2}-norms\RightarrowLow-rank approximation

Thus for distance matrices, our goal is, for all $x \in \boldsymbol{X}$:

$$
\text { Estimate }\left\|\boldsymbol{A}_{x,}\right\|_{2}^{2}=\sum_{y} \mathbf{d}(x, y)^{2}
$$

Our method:

- Pick $Z \sim X$ uniformly at random
- Estimate each distance by the detour through Z :

$$
\mathbf{d}(x, y)^{2} \approx \mathbf{d}(x, Z)^{2}+\mathbf{d}(Z, y)^{2}
$$

- Thus, $\sum_{y} \mathbf{d}(x, y)^{2} \approx n \cdot \mathbf{d}(x, Z)^{2}+\sum_{y} \mathbf{d}(Z, y)^{2}$

This involves only distances from Z-- hence, $\tilde{O}(n)$ time.

Experiment: MNIST with Euclidean Distance

