Approximate Nearest Neighbors in Limited Space

Piotr Indyk

MIT

Tal Wagner

MIT

Introduction

What is the space complexity of the (Euclidean) Approximate Nearest Neighbor problem?

Problem: Compress a dataset $X = \{x_1, ..., x_n\} \subset \mathbb{R}^d$ into a small size data structure (sketch) that can answer $(1 + \epsilon)$ -approximate nearest neighbor queries:

Given $y \in \mathbb{R}^d$, *return* $i^* \in \{1, ..., n\}$ *s.t.* $\|y - x_{i^*}\| \le (1 + \epsilon) \cdot \min_{i \in \{1, ..., n\}} \|y - x_i\|$.

Benefits of compression:

- Time: Speed-up linear scan of data.
- Space: Fit on memory-limited devices like GPUs (Johnson, Douze, Jégou (2017)).
- **Communication:** Facilitate distributed architectures.

For this poster, we use a simplified sketch due to Indyk, Razenshteyn, Wagner (2017).

Overview of Techniques

 \succ Lossier than Indyk & Wagner (2017) by $O(\log \log n)$, but simpler and captures main ideas.

 $x_2 \bigcirc$

 $x_3 \bigcirc$

 $x_2 \bigcirc$

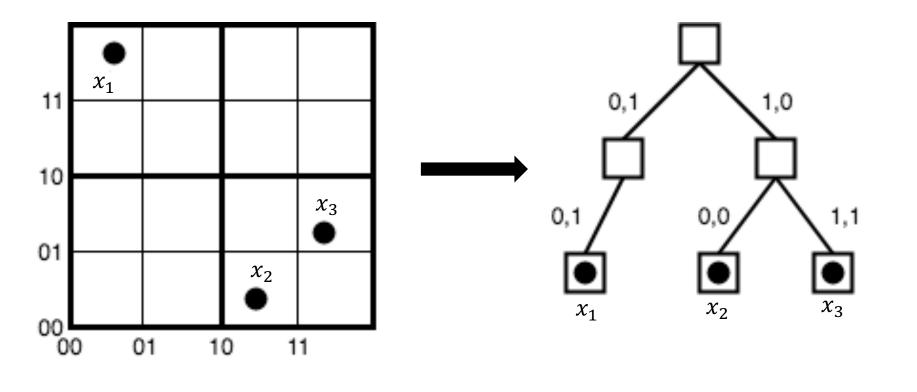
 $x_3 \bigcirc y$

The dataset X is represented by a hierarchical clustering tree.

Tree edges are annotated with binary precision bits of point coordinates in *X*.

How to compress the tree?

Prior work: "Bottom-out Compression"



Context:

- Nearest neighbor classifiers are popular in Machine Learning (eg. *Efros (2017)*).
- Large body of **empirical** work on the above problem (see survey at *Wang et al. (2016)*).
- Yet, no better theoretical bounds than the dimension reduction theorem due to Johnson & Lindenstrauss (1984) were previously known.

Our Results

Problem 1 – Approximate Nearest Neighbor: Answer query with success probability $1 - 1/n^{O(1)}$.

Method	Size in bits per point*	What can it approximate?
No compression	$O(d\log n)$	Distances between any y and all $x \in X$
Johnson & Lindenstrauss (1984)	$O\left(\frac{\log^2 n}{\epsilon^2}\right)$	Distances between any y and all $x \in X$
Kushilevitz, Ostrovski, Rabani (2000)	$O\left(\frac{\log n}{\epsilon^2} \cdot \log R\right)$	Distances between any y and all $x \in X$, assuming $ x - y \in [r, Rr]$
Indyk & Wagner (2017; 2018)	$O\left(\frac{\log n}{\epsilon^2}\right)$	Distances between all $x, y \in X$, no out-of-sample query support

Remove every non-branching path from the tree, except its **top** edges.

Stores most significant bits of each cluster.
Preserves global cluster structure.

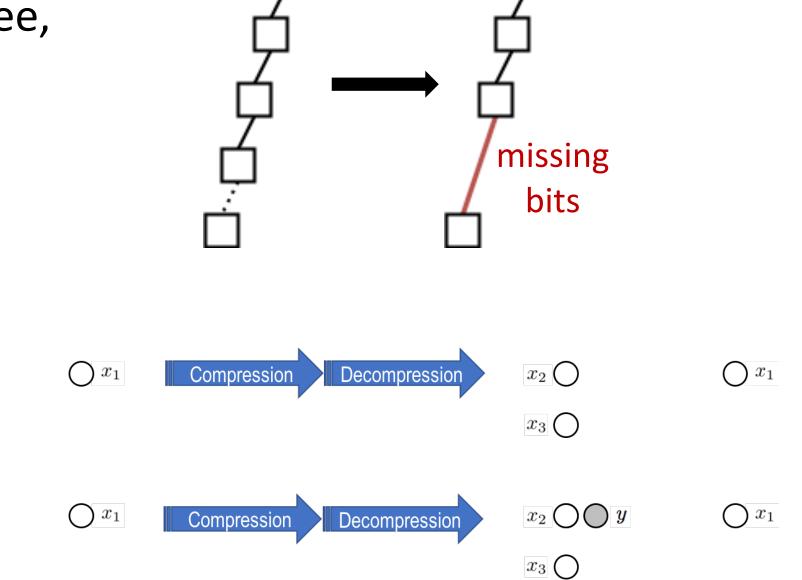
This preserves distances within X:

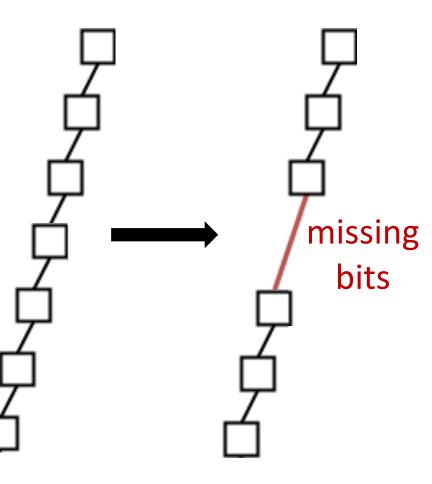
but not the nearest neighbor of a new query point y:

This work: "Middle-Out Compression"

Remove every non-branching path from the tree, except its **top and bottom** edges.

Also stores least significant bits of each cluster.
Also preserves local cluster structure.





Overview of Analysis

This work

$1/\epsilon$) Nearest neighbor of any y in X

Problem 2 – Approximate Distance Queries:

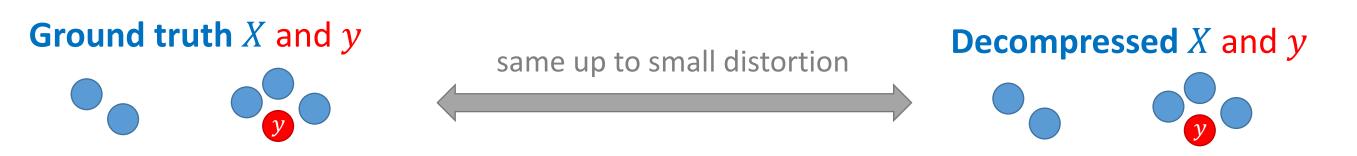
Compress X such that for any query set $Y \subset \mathbb{R}^d$ with q query points, the sketch can estimate all distances ||x - y|| for $x \in X$ and $y \in Y$, up to distortion $(1 \pm \epsilon)$.

Reference	# queries	Size in bits per point*
Molinaro, Woodruff, Yaroslavtsev (2013)	$q \ge n$	$\Omega\left(\frac{\log^2 n}{\epsilon^2}\right) \text{matches the Johnson-Lindnestrauss} $ (1984) upper bound for $q = n^{O(1)}$.
This work	$1 \le q \le n$	$O\left(\frac{\log n}{\epsilon^2}(\log q + \log(1/\epsilon))\right)$
		$\Omega\left(\frac{\log n}{\epsilon^2}\cdot\log q\right)$

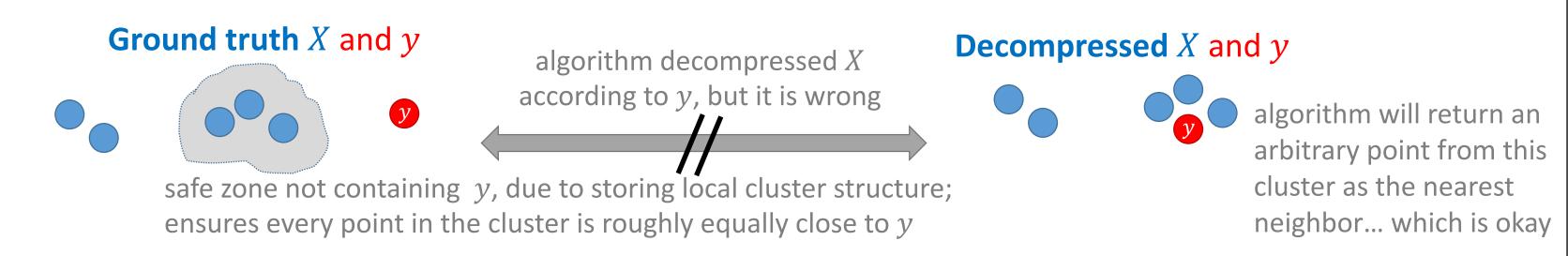
* For simplicity, the bounds stated in this poster assume that all points coordinates in X are represented by $O(\log n)$ bits. See the paper for the full dependence on all parameters.

Approximate nearest neighbor algorithm for a query point $y \in \mathbb{R}^d$:

- Search for y down the tree, by the bits on the tree edges, until reaching a leaf.
- Return the point in X represented by that leaf.
- How to handle missing bits in the tree? Guess they are the same as y.
- **Guessed right? Yay!** The algorithm learned the right absolute location of X from y.



• **Guessed wrong? It's okay.** The algorithm doesn't know it learned X wrong, but any point from now on is a good approximate nearest neighbor.



References

A Efros, How to stop worrying and learn to love Nearest Neighbors. Talk at NIPS workshop, 2017. P Indyk, I Razenshteyn, T Wagner, Practical data-dependent metric compression with provable guarantees. NIPS 2017. P Indyk, T Wagner, Near-optimal (Euclidean) metric compression. SODA 2017.

- J Johnson, M Douze, H Jégou, Billion-scale similarity search with GPUs. ArXiv preprint, 2017.
- W Johnson, J Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space. Contemporary Mathematics, 1984.
- E Kushilevitz, R Ostrovsky, Y Rabani, Efficient search for approximate nearest neighbor in high dimensional spaces. SIAM Journal on Computing, 2000.
- M Molinaro, DP Woodruff, G Yaroslavtsev. Beating the direct sum theorem in communication complexity with implications for sketching. SODA 2013.

/log n

