Approximate Nearest Neighbors in Limited Space

Piotr Indyk MIT Tal Wagner MIT

What is the space complexity of the (Euclidean) Approximate Nearest Neighbor Problem?

What is the space complexity of the (Euclidean) Approximate Nearest Neighbor Problem?

- $(1 + \epsilon)$ -Approximate Nearest Neighbor problem:
- Preprocess:
 - ▶ Input: $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n \in \mathbb{R}^d$
 - Output: small-size sketch

What is the space complexity of the (Euclidean) Approximate Nearest Neighbor Problem?

- $(1 + \epsilon)$ -Approximate Nearest Neighbor problem:
- Preprocess:
 - ▶ Input: $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n \in \mathbb{R}^d$
 - Output: small-size sketch
- Query:
 - ▶ Input: $y \in \mathbb{R}^d$
 - ▶ Output: *i*^{*} ∈ {1, ..., *n*}

s.t. $||y - x_{i^*}|| \le (1 + \epsilon) \min_{j \in \{1, ..., n\}} ||y - x_j||$

What is the space complexity of the (Euclidean) Approximate Nearest Neighbor Problem?

 $(1 + \epsilon)$ -Approximate Nearest Neighbor problem:

Preprocess:

- ▶ Input: $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n \in \mathbb{R}^d$
- Output: small-size sketch
- Query:
 - ▶ Input: $y \in \mathbb{R}^d$
 - ▶ Output: *i*^{*} ∈ {1, ..., *n*}

s.t. $||y - x_{i^*}|| \le (1 + \epsilon) \min_{j \in \{1, ..., n\}} ||y - x_j||$

This talk: Minimize sketch size

Context

- Nearest neighbor classifiers are fundamental in machine learning
 - ► Eg. [Efros'17, NIPS 2017 workshop]
- Compression is useful:
 - ► Fast linear scan
 - ► Fit on GPU [Johnson-Douze-Jegou'17]
- ► Huge amount of empirical literature: Quantization, Learning-to-Hash
 - Surveys and tutorials: [Li'15, Moran'16, Wang-Zhang-Son-Sebe-Shen'16]
 - Partial sample of references: NIPS: [Weiss-Torralba-Fergus'08, Raginsky-Lazebnik'09, Kulis-Darrel'09, Kong-Li'12, ...] ICML: [Norouzi-Blei'11, Norouzi-Fleet'11, Liu-Wang-Kumar-Chang'11, Gong-Kuma-Verma-Lazebnik'12, Li-Lin-Shen-Hengel-Dick'13, Zhang-Du-Wang'14, ...] CVPR: [Grauman-Darrel'07, Gong-Lazebnik'11, Heo-Li-He-Chang-Yoon'12, Norouzi-Fleet'13, Gong-Kumar-Rowley-Lazebnik'13, He-Wen-Sun'13, Kalantidis-Avrithis'14, ...] TPAMI: [Jegou-Douze-Schmid'11, Ge-He-Ke-Sun'14, ...] AAAI: [Kong-Li'12, Wang-Duan-Huang-Gao'16, ...] KDD: [He-Liu-Chang'10, ...] IJCAI: [Xu-Bu-Lin-Chen-He-Cai'13, Wang-Duan-Lin-Wang-Huang-Gao'15, ...] SIGIR: [Moran-Lavrenko-Osborne'13, Moran'16, ...]

6

…and in theory?

Euclidean Metric Compression

Goal: Compress a dataset $x_1, ..., x_n \in \mathbb{R}^d$ with coordinates in $\{-\Phi, ..., \Phi\}$

- ▶ Dimension reduction: $d \rightarrow O(\epsilon^{-2} \log n)$ [Johnson-Lindenstrauss'84]
- ► ⇒ Space: $d \log \Phi \rightarrow O(\epsilon^{-2} \log n \cdot \log(d\Phi))$ bits per point [Achlioptas'03]

Can we do better?

- The [Johnson-Lindenstrauss'84] bound is tight [Larsen-Nelson'17, Alon'03] ... for dimension reduction
- What about space?

- ▶ Input: $X = \{x_1, ..., x_n\} \subset \mathbb{R}^d$, coordinates in $\{-\Phi, ..., \Phi\}$, distortion $(1 + \epsilon)$
- For presentation: $\Phi = n^{0(1)}$, $\epsilon = \Omega(1)$

Method	Bits per point	Returns $(1 + \epsilon)$ -approximate
No compression	$d\log n$	Distances between X and $y \in \mathbb{R}^d$ (exact)
Dimension reduction	$\log^2 n$	Distances between X and $y \in \mathbb{R}^d$
[Kushilevitz-Ostrovski- Rabani'00]	$\log n \cdot \log R$	Distances between X and $y \in \mathbb{R}^d$ assuming $ x_i - y \in [r, \mathbf{R}r]$
[Indyk-W'17,'18]	log n , tight	Distances within <i>X</i> no out-of-sample queries
This work	logn	Nearest neighbor of $y \in \mathbb{R}^d$ in X

- ▶ Input: $X = \{x_1, ..., x_n\} \subset \mathbb{R}^d$, coordinates in $\{-\Phi, ..., \Phi\}$, distortion $(1 + \epsilon)$
- For presentation: $\Phi = n^{0(1)}$, $\epsilon = \Omega(1)$

Method	Bits per point	Returns $(1 + \epsilon)$ -approximate
No compression	d log n	Distances between X and $y \in \mathbb{R}^d$ (exact)
Dimension reduction	Return all	Distances between X and $y \in \mathbb{R}^d$
[Kushilevitz-Ostrovski- Rabani'00]	distances	Distances between X and $y \in \mathbb{R}^d$ assuming $ x - y \in [r, \mathbf{R}r]$
[Indyk-W'17,'18]	log n , tight	Distances within <i>X</i> Productor-sample queries
This work	Returns nearest neighbor ID, not distance	Nearest neighbor of $y \in \mathbb{R}^d$ in X

9

- ▶ Input: $X = \{x_1, ..., x_n\} \subset \mathbb{R}^d$, coordinates in $\{-\Phi, ..., \Phi\}$, distortion $(1 + \epsilon)$
- For presentation: $\Phi = n^{0(1)}$, $\epsilon = \Omega(1)$

Method	Bits per point	Returns $(1 + \epsilon)$ -approximate
No compression	d log n	Distances between X and $y \in \mathbb{R}^d$ (exact)
Dimension reduction	$\log^2 n$	Distances between X and $y \in \mathbb{R}^d$
[Kushilevitz-Ostrovski- Rabani'00]	$\log n \cdot \log R$	Distances between X and $y \in \mathbb{R}^d$ assuming $ x_i - y \in [r, \mathbf{R}r]$
[Indyk-W'17,'18]	log n , tight	Distances within <i>X</i> no out-of-sample queries
This work	logn	Nearest neighbor of $y \in \mathbb{R}^d$ in X
[Molinaro-Woodruff- Yaroslavtzev'13]	$\log^2 n$ lower bound	Distances between X and $y_1, \dots, y_n \in \mathbb{R}^d$

- ▶ Input: $X = \{x_1, ..., x_n\} \subset \mathbb{R}^d$, coordinates in $\{-\Phi, ..., \Phi\}$, distortion $(1 + \epsilon)$
- For presentation: $\Phi = n^{0(1)}$, $\epsilon = \Omega(1)$

	Method	Bits per point	Returns $(1 + \epsilon)$ -approximate			
	No compression		Distances between X and $y \in \mathbb{R}^d$ (exact)			
	Dimension reduction		Distances between X and $y \in \mathbb{R}^d$			
	[Kushilevitz-Ostrovs Rabani'00]	Support up to $n^{O(1)}$ queries	Distances between X and $y \in \mathbb{R}^d$ assuming $ x_i - y \in [r, \mathbf{R}r]$			
	[Indyk-W'17,'18]		Distances within <i>X</i> no out-of-sample queries			
	This work	100 H	Nearest neighbor of $y \in \mathbb{R}^d$ in X			
	[Molinaro-Woodruff- Yaroslavtzev'13]	$\log^2 n$ lower bound	Distances between X and $y_1, \dots, y_n \in \mathbb{R}^d$ n query points			
Tight if $ dataset \cong query set $						
	What if $ dataset \gg query set $?					

- ▶ Input: $X = \{x_1, ..., x_n\} \subset \mathbb{R}^d$, coordinates in $\{-\Phi, ..., \Phi\}$, distortion $(1 + \epsilon)$
- For presentation: $\Phi = n^{0(1)}$, $\epsilon = \Omega(1)$

Method	Bits per point	Returns $(1 + \epsilon)$ -approximate
No compression	d log n	Distances between X and $y \in \mathbb{R}^d$ (exact)
Dimension reduction	$\log^2 n$	Distances between X and $y \in \mathbb{R}^d$
[Kushilevitz-Ostrovski- Rabani'00]	$\log n \cdot \log R$	Distances between X and $y \in \mathbb{R}^d$ assuming $ x_i - y \in [r, \mathbf{R}r]$
[Indyk-W'17,'18]	log n , tight	Distances within <i>X</i> no out-of-sample queries
This work	logn	Nearest neighbor of $y \in \mathbb{R}^d$ in X
[Molinaro-Woodruff- Yaroslavtzev'13]	$\log^2 n$ lower bound	Distances between X and $y_1, \dots, y_n \in \mathbb{R}^d$ <i>n</i> query points
This work	$\log n \cdot \log q$	Distances between X and $y_1, \dots, y_q \in \mathbb{R}^d$ $q \leq n$ query points

Practical Variant

[Indyk-Razenshteyn-W'17] Size: $\log n \cdot \log \log n$

No query support

Practical algorithm

- Prior work:
 - Step 1: Hierarchical clustering
 - ► Eg., quadtree
 - ► Tree edges ↔ precision bits

- Step 2: "Bottom-out compression"
 - Stores most significant bits per cluster

"Bottom-out compression":

- Preserves global cluster structure
- Recovers dataset distances

"Bottom-out compression":

- Preserves global cluster structure
- Recovers dataset distances
- But not nearest neighbor queries

Decompression

This work: "Middle-out compression":

Stores most and least significant bits per cluster

This work: "Middle-out compression":

- Stores most and least significant bits per cluster
 - Sketch is only twice as big
- Recovers global and local cluster structure

