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Introduction
What is the space complexity of the (Euclidean) 

Approximate Nearest Neighbor Problem?

(𝟏 + 𝝐)-Approximate Nearest Neighbor problem:

u Preprocess:

u Input: 𝐱𝟏, 𝐱𝟐, … , 𝐱𝒏 ∈ ℝ𝒅

u Output: small-size sketch

u Query:

u Input: New point 𝒚 ∈ ℝ𝒅

u Goal: Report from sketch 𝒊∗ ∈ {𝟏, … , 𝒏} such that

𝒚 − 𝒙𝒊∗ ≤ (𝟏 + 𝝐) 𝐦𝐢𝐧
𝒋∈{𝟏,…,𝒏}

‖𝒚 − 𝒙𝒋‖

ℝ𝒅

Sketch
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Context
u Nearest neighbor classifiers are fundamental in machine learning

u Eg. [Efros’17, NIPS 2017 workshop]

u Compression is useful:

u Fast linear scan

u Fit on GPU [Johnson-Douze-Jegou’17]

u Huge amount of empirical literature: Quantization, Learning-to-Hash

u Surveys and tutorials: [Li’15, Moran’16, Wang-Zhang-Son-Sebe-Shen’16]

u Partial sample of references: NIPS: [Weiss-Torralba-Fergus’08, Raginsky-
Lazebnik’09, Kulis-Darrel’09, Kong-Li’12, …] ICML: [Norouzi-Blei’11, Norouzi-
Fleet’11, Liu-Wang-Kumar-Chang’11, Gong-Kuma-Verma-Lazebnik’12, Li-Lin-Shen-
Hengel-Dick’13, Zhang-Du-Wang’14, …] CVPR: [Grauman-Darrel’07, Gong-
Lazebnik’11, Heo-Li-He-Chang-Yoon‘12, Norouzi-Fleet’13, Gong-Kumar-Rowley-
Lazebnik’13, He-Wen-Sun’13, Kalantidis-Avrithis’14, …] TPAMI: [Jegou-Douze-
Schmid’11, Ge-He-Ke-Sun’14, …] AAAI: [Kong-Li’12, Wang-Duan-Huang-Gao’16, …]
KDD: [He-Liu-Chang’10, …] IJCAI: [Xu-Bu-Lin-Chen-He-Cai’13, Wang-Duan-Lin-
Wang-Huang-Gao’15, …] SIGIR: [Moran-Lavrenko-Osborne’13, Moran’16, …]

u ...and in theory?
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Euclidean Metric Compression
Goal: Compress a dataset 𝒙𝟏, … , 𝒙𝒏 ∈ ℝ𝒅 with coordinates in {−𝚽,… ,𝚽}

u Dimension reduction: 𝒅 ⇢ 𝑶 𝝐>𝟐 𝐥𝐨𝐠𝒏 [Johnson-Lindenstrauss‘84]

u ⇒ Space:	𝒅 𝐥𝐨𝐠𝚽 ⇢ 𝑶(𝝐>𝟐 𝐥𝐨𝐠𝒏 ⋅ 𝐥𝐨𝐠 𝒅𝚽 ) bits per point  [Achlioptas‘03]

Can we do better?

u The [Johnson-Lindenstrauss’84] bound is tight [Larsen-Nelson’17, Alon‘03]                                              
… for dimension reduction

u What about space?

±𝚽 …
⋮ ⋱ ± 𝝐𝟐𝒅

𝐥𝐨𝐠 𝒏
� 𝚽 …

⋮ ⋱

Sketch
Data matrix Data

matrix

𝝐>𝟐 𝐥𝐨𝐠𝒏

𝒏

𝒅

𝒏
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Compression Beyond Dimension Reduction

Method B𝐢𝐭𝐬	𝐩𝐞𝐫	𝐩𝐨𝐢𝐧𝐭 Returns (𝟏 + 𝝐)-approximate…

No compression 𝒅 𝐥𝐨𝐠𝒏 Distances between 𝑿 and 𝑦 ∈ ℝP (exact)

Dimension reduction 𝐥𝐨𝐠𝟐 𝒏 Distances between 𝑿 and 𝑦 ∈ ℝP

[Kushilevitz-Ostrovski-
Rabani’00]

𝐥𝐨𝐠𝒏 ⋅ 𝐥𝐨𝐠𝐑 Distances between 𝑿 and 𝑦 ∈ ℝP
assuming 𝑥S − 𝑦 ∈ 𝑟, 𝑹𝑟

[Indyk-W’17,’18] 𝐥𝐨𝐠𝒏 , tight Distances within 𝑿
no out-of-sample queries

This work 𝐥𝐨𝐠𝒏 Nearest neighbor of 𝑦 ∈ ℝP in 𝑿

u Input: 𝑿 = {𝒙𝟏, … , 𝒙𝒏} ⊂ ℝ𝒅, coordinates in {−𝚽,… ,𝚽}, distortion 𝟏 + 𝝐

u For presentation: 𝚽 = 𝒏𝑶(𝟏), 𝝐 = 𝛀 𝟏
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[Indyk-W’17,’18] 𝐥𝐨𝐠𝒏 , tight Distances within 𝑿
no out-of-sample queries

This work 𝐥𝐨𝐠𝒏 Nearest neighbor of 𝑦 ∈ ℝP in 𝑿

u Input: 𝑿 = {𝒙𝟏, … , 𝒙𝒏} ⊂ ℝ𝒅, coordinates in {−𝚽,… ,𝚽}, distortion 𝟏 + 𝝐

u For presentation: 𝚽 = 𝒏𝑶(𝟏), 𝝐 = 𝛀 𝟏

Returns nearest 
neighbor ID, not 

distance

Return all 
distances
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[Indyk-W’17,’18] 𝐥𝐨𝐠𝒏 , tight Distances within 𝑿
no out-of-sample queries

This work 𝐥𝐨𝐠𝒏 Nearest neighbor of 𝑦 ∈ ℝP in 𝑿

[Molinaro-Woodruff-
Yaroslavtzev’13] 𝐥𝐨𝐠𝟐 𝒏 lower bound Distances between 𝑿 and 𝑦Y, … , 𝑦Z ∈ ℝP

𝒏 query points

u Input: 𝑿 = {𝒙𝟏, … , 𝒙𝒏} ⊂ ℝ𝒅, coordinates in {−𝚽,… ,𝚽}, distortion 𝟏 + 𝝐

u For presentation: 𝚽 = 𝒏𝑶(𝟏), 𝝐 = 𝛀 𝟏

Support up to 
𝒏𝑶(𝟏) queries

Tight if |dataset| ≅ |query set|

What if |dataset| ≫ |query set|? 11
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This work 𝐥𝐨𝐠𝒏 ⋅ 𝐥𝐨𝐠 𝒒 Distances between 𝑿 and 𝑦Y, … , 𝑦 ∈ ℝP

𝒒 ≤ 𝒏 query points

u Input: 𝑿 = {𝒙𝟏, … , 𝒙𝒏} ⊂ ℝ𝒅, coordinates in {−𝚽,… ,𝚽}, distortion 𝟏 + 𝝐
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Practical Variant

[Indyk-W’17]

Size: 𝐥𝐨𝐠𝒏
No query support

Impractical algorithm

This work

Size: 𝐥𝐨𝐠𝒏
Nearest neighbor query support

Impractical algorithm

[Indyk-Razenshteyn-W’17]

Size: 𝐥𝐨𝐠𝒏 ⋅ 𝐥𝐨𝐠 𝐥𝐨𝐠𝒏
No query support

Practical algorithm

This work

Size: 𝐥𝐨𝐠𝒏 ⋅ 𝐥𝐨𝐠 𝐥𝐨𝐠𝒏
Nearest neighbor query support

Practical algorithm
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Techniques

u Prior work:

Step 1: Hierarchical clustering

u Eg., quadtree

u Tree edges ↔ precision bits

Step 2: “Bottom-out compression”

u Stores most significant bits per cluster

𝑥Y 𝑥` 𝑥a

𝑥Y

𝑥`

𝑥a

bits removed 
from sketch



Techniques

“Bottom-out compression”:

u Preserves global cluster structure

u Recovers dataset distances
bits removed 
from sketch

True dataset Decompression

𝑥Y 𝑥Y

𝑥`

𝑥`𝑥a

𝑥a

y y
‖𝑥Y − 𝑥a‖

(1 ± 𝜖)‖𝑥Y − 𝑥a‖



Techniques

“Bottom-out compression”:

u Preserves global cluster structure

u Recovers dataset distances

u But not nearest neighbor queries

bits removed 
from sketch

True dataset Decompression

𝑥Y 𝑥Y

𝑥`

𝑥`𝑥a

𝑥a

y y



Techniques

This work: “Middle-out compression”:

u Stores most and least significant bits per cluster bits removed 
from sketch



Techniques

This work: “Middle-out compression”:

u Stores most and least significant bits per cluster

u Sketch is only twice as big

u Recovers global and local cluster structure

bits removed 
from sketch

True dataset Decompression

𝑥Y 𝑥Y

𝑥`

𝑥`𝑥a

𝑥a

y

y

Thank you
Questions?


