Approximate Nearest Neighbors in Limited Space

Piotr Indyk
MIT

Tal Wagner
MIT

Introduction

What is the space complexity of the (Euclidean) Approximate Nearest Neighbor Problem?

Introduction

What is the space complexity of the (Euclidean) Approximate Nearest Neighbor Problem?
$(1+\epsilon)$-Approximate Nearest Neighbor problem:

- Preprocess:
- Input: $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{n} \in \mathbb{R}^{d}$
- Output: small-size sketch

Introduction

What is the space complexity of the (Euclidean) Approximate Nearest Neighbor Problem?
$(1+\epsilon)$-Approximate Nearest Neighbor problem:

- Preprocess:
- Input: $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{n} \in \mathbb{R}^{d}$
- Output: small-size sketch
- Query:
- Input: $y \in \mathbb{R}^{d}$
- Output: $\boldsymbol{i}^{*} \in\{1, \ldots, n\}$
s.t. $\left\|y-x_{i^{*}}\right\| \leq(1+\epsilon) \min _{j \in\{1, \ldots, n\}}\left\|y-x_{j}\right\|$

($1+\epsilon$)-approximate nearest neighbor

Introduction

What is the space complexity of the (Euclidean) Approximate Nearest Neighbor Problem?
$(1+\epsilon)$-Approximate Nearest Neighbor problem:

- Preprocess:
- Input: $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{n} \in \mathbb{R}^{d}$
- Output: small-size sketch
- Query:
- Input: $y \in \mathbb{R}^{d}$
- Output: $\boldsymbol{i}^{*} \in\{\mathbf{1}, \ldots, \boldsymbol{n}\}$
s.t. $\left\|y-x_{i^{*}}\right\| \leq(1+\epsilon) \min _{j \in\{1, \ldots, n\}}\left\|y-x_{j}\right\|$

This talk: Minimize sketch size

Context

- Nearest neighbor classifiers are fundamental in machine learning
- Eg. [Efros'17, NIPS 2017 workshop]
- Compression is useful:
- Fast linear scan
- Fit on GPU [Johnson-Douze-Jegou'17]
- Huge amount of empirical literature: Quantization, Learning-to-Hash
- Surveys and tutorials: [Li'15, Moran'16, Wang-Zhang-Son-Sebe-Shen'16]
- Partial sample of references: NIPS: [Weiss-Torralba-Fergus’08, RaginskyLazebnik'09, Kulis-Darrel'09, Kong-Li'12, ...] ICML: [Norouzi-Blei'11, NorouziFleet'11, Liu-Wang-Kumar-Chang'11, Gong-Kuma-Verma-Lazebnik'12, Li-Lin-Shen-Hengel-Dick'13, Zhang-Du-Wang'14, ...] CVPR: [Grauman-Darrel'07, GongLazebnik'11, Heo-Li-He-Chang-Yoon'12, Norouzi-Fleet'13, Gong-Kumar-RowleyLazebnik'13, He-Wen-Sun'13, Kalantidis-Avrithis'14, ...] TPAMI: [Jegou-DouzeSchmid'11, Ge-He-Ke-Sun'14, ...] AAAI: [Kong-Li'12, Wang-Duan-Huang-Gao'16, ...] KDD: [He-Liu-Chang'10, ...] IJCAI: [Xu-Bu-Lin-Chen-He-Cai'13, Wang-Duan-Lin-Wang-Huang-Gao'15, ...] SIGIR: [Moran-Lavrenko-Osborne'13, Moran'16, ...]
- ... and in theory?

Euclidean Metric Compression

Goal: Compress a dataset $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\boldsymbol{n}} \in \mathbb{R}^{\boldsymbol{d}}$ with coordinates in $\{-\boldsymbol{\Phi}, \ldots, \boldsymbol{\Phi}\}$

- Dimension reduction: $\boldsymbol{d} \rightarrow \boldsymbol{O}\left(\boldsymbol{\epsilon}^{-2} \log n\right)$ [Johnson-Lindenstrauss‘84]
$\rightarrow \Rightarrow$ Space: $d \log \boldsymbol{\Phi} \rightarrow \boldsymbol{O}\left(\epsilon^{-2} \log \boldsymbol{n} \cdot \log (\boldsymbol{d} \Phi)\right)$ bits per point [Achlioptas‘03]
Can we do better?
- The [Johnson-Lindenstrauss'84] bound is tight [Larsen-Nelson'17, Alon‘03] ... for dimension reduction
- What about space?

Compression Beyond Dimension Reduction

- Input: $X=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$, coordinates in $\{-\Phi, \ldots, \Phi\}$, distortion $(1+\epsilon)$
- For presentation: $\boldsymbol{\Phi}=\boldsymbol{n}^{\boldsymbol{0}(\mathbf{1})}, \boldsymbol{\epsilon}=\boldsymbol{\Omega}(\mathbf{1})$

Method	Bits per point	Returns $(1+\boldsymbol{\epsilon})$-approximate...		
No compression	$\boldsymbol{d} \log n$	Distances between X and $y \in \mathbb{R}^{d}$ (exact)		
Dimension reduction	$\log ^{2} n$	Distances between X and $y \in \mathbb{R}^{d}$		
[Kushilevitz-Ostrovski- Rabani'00]	$\log \boldsymbol{n} \cdot \log \mathbf{R}$	Distances between X and $y \in \mathbb{R}^{d}$ assuming $\left\\|x_{i}-y\right\\| \in[r, R r]$		
[Indyk-W'17,'18]	$\log n$, tight	Distances within X no out-of-sample queries		
This work	$\log n$	Nearest neighbor of $y \in \mathbb{R}^{d}$ in X		

Compression Beyond Dimension Reduction

- Input: $X=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$, coordinates in $\{-\Phi, \ldots, \Phi\}$, distortion $(1+\epsilon)$
- For presentation: $\boldsymbol{\Phi}=\boldsymbol{n}^{\boldsymbol{0 (1)}}, \boldsymbol{\epsilon}=\boldsymbol{\Omega}(\mathbf{1})$

Method	Bits per point	Retu. $\mathrm{ns}(1+\epsilon)$-approximate...		
No compression	$d \log n$	Distances between X and $y \in \mathbb{R}^{d}$ (exact)		
Dimension reduction	Return all distances	Distances bet ween X and $y \in \mathbb{R}^{d}$		
[Kushilevitz-OstrovskiRabani’00]		Distances bet ween X and $y \in \mathbb{R}^{d}$ assuming $\\|x-y\\| \in[r, \boldsymbol{R} r]$		
[Indyk-W'17,'18]	$\log n$, tight	Distances y thin X		
This work	Returns nearest neighbor ID, not distance	Nearest neighbor of $y \in \mathbb{R}^{d}$ in X		

Compression Beyond Dimension Reduction

- Input: $X=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$, coordinates in $\{-\Phi, \ldots, \Phi\}$, distortion $(1+\epsilon)$
- For presentation: $\boldsymbol{\Phi}=\boldsymbol{n}^{\boldsymbol{0}(\mathbf{1})}, \boldsymbol{\epsilon}=\boldsymbol{\Omega}(\mathbf{1})$

Method	Bits per point	Returns (1+ $\boldsymbol{\epsilon}$)-approximate...		
No compression	$\boldsymbol{d} \log \boldsymbol{n}$	Distances between \boldsymbol{X} and $y \in \mathbb{R}^{d}$ (exact)		
Dimension reduction	$\log ^{2} \boldsymbol{n}$	Distances between \boldsymbol{X} and $y \in \mathbb{R}^{d}$		
[Kushilevitz-Ostrovski- Rabani'00]	$\log \boldsymbol{n} \cdot \log \mathbf{R}$	Distances between \boldsymbol{X} and $y \in \mathbb{R}^{d}$ assuming $\left\\|x_{i}-y\right\\| \in[r, \boldsymbol{R} r]$		
[Indyk-W'17,'18]	$\log \boldsymbol{n}$, tight	Distances within \boldsymbol{X} no out-of-sample queries		
This work	$\log \boldsymbol{n}$	Nearest neighbor of $y \in \mathbb{R}^{d}$ in \boldsymbol{X}		
[Molinaro-Woodruff- Yaroslavtzev'13]	$\log ^{2} \boldsymbol{n}$ lower bound	Distances between \boldsymbol{X} and $y_{1}, \ldots, y_{n} \in \mathbb{R}^{d}$		

Compression Beyond Dimension Reduction

- Input: $X=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$, coordinates in $\{-\Phi, \ldots, \Phi\}$, distortion $(1+\epsilon)$
- For presentation: $\boldsymbol{\Phi}=\boldsymbol{n}^{\boldsymbol{0}(\mathbf{1})}, \boldsymbol{\epsilon}=\boldsymbol{\Omega}(\mathbf{1})$

Tight if |dataset $\mid \cong$ | query set \mid
What if |dataset| > |query set|?

Compression Beyond Dimension Reduction

- Input: $X=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$, coordinates in $\{-\Phi, \ldots, \Phi\}$, distortion $(1+\epsilon)$
- For presentation: $\boldsymbol{\Phi}=\boldsymbol{n}^{\boldsymbol{0 (1)}}, \boldsymbol{\epsilon}=\boldsymbol{\Omega}(\mathbf{1})$

Method	Bits per point	Returns ($1+\epsilon$-approximate...		
No compression	$d \log n$	Distances between X and $y \in \mathbb{R}^{d}$ (exact)		
Dimension reduction	$\log ^{2} n$	Distances between X and $y \in \mathbb{R}^{d}$		
[Kushilevitz-OstrovskiRabani'00]	$\log n \cdot \log R$	Distances between X and $y \in \mathbb{R}^{d}$ assuming $\left\\|x_{i}-y\right\\| \in[r, \boldsymbol{R} r]$		
[Indyk-W'17,'18]	$\log n$, tight	Distances within X no out-of-sample queries		
This work	$\log n$	Nearest neighbor of $y \in \mathbb{R}^{d}$ in X		
[Molinaro-WoodruffYaroslavtzev’13]	$\log ^{2} n$ lower bound	Distances between X and $y_{1}, \ldots, y_{n} \in \mathbb{R}^{d}$ n query points		
This work	$\log n \cdot \log q$	Distances between \boldsymbol{X} and $y_{1}, \ldots, y_{q} \in \mathbb{R}^{d}$ $q \leq n$ query points		

Practical Variant

[Indyk-W'17]	This work	
Size: $\log n$		Size: $\log n$
No query support		Nearest neighbor query support
Impractical algorithm		Impractical algorithm

[Indyk-Razenshteyn-W'17]	This work	
Size: $\log \boldsymbol{n} \cdot \log \log \boldsymbol{n}$		
No query support		Size: $\log \boldsymbol{n} \cdot \log \log \boldsymbol{n}$
Practical algorithm		Nearest neighbor query support
		Practical algorithm

Techniques

- Prior work:

Step 1: Hierarchical clustering

- Eg., quadtree
- Tree edges \leftrightarrow precision bits

Step 2: "Bottom-out compression"

- Stores most significant bits per cluster

Techniques

"Bottom-out compression":

- Preserves global cluster structure
- Recovers dataset distances

Techniques

"Bottom-out compression":

- Preserves global cluster structure
- Recovers dataset distances
- But not nearest neighbor queries

Techniques

This work: "Middle-out compression":

- Stores most and least significant bits per cluster

Techniques

This work: "Middle-out compression":

- Stores most and least significant bits per cluster
- Sketch is only twice as big
- Recovers global and local cluster structure

Thank you

