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Abstract
Contemporary datasets are often represented as points in a high-dimensional metric space.
To deal with increasingly larger datasets, many algorithms rely on efficient or compressed
representations of the induced metric. In this thesis, we study several fundamental aspects
of efficient metric representations. Our results include:

∙ Fully determining the minimal number of bits required to represent all distances, up
to a given precision, in a finite Euclidean or Manhattan metric space.

∙ A space-efficient data structure for Euclidean approximate nearest neighbor search in
high dimensions.

∙ A sublinear time algorithm for low-rank approximation of distance matrices, which is
optimal in the number of entries it reads of the input matrix.

∙ A fast algorithm for nearest neighbor search in the Optimal Transport distance.

Previous bounds on Euclidean metric compression have been restricted to discretizing a
classical dimensionality reduction theorem of Johnson and Lindenstrauss (1984). Our re-
sults improve over those bounds, thereby establishing an asymptotic advantage of generic
sketching over dimension reduction. All of our algorithms are both proven analytically and
implemented and validated empirically.

Thesis Supervisor: Piotr Indyk
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

From big data to high-dimensional metric spaces. The dominant paradigm in data

analysis and machine learning is to represent large collections of real-world objects — like

images, videos, or text — as vectors of many numerical features, viewed as points in a high-

dimensional space. This allows us to quantify distances between those objects, forming the

basis for subsequent learning and processing. Examples include:

∙ Similarity search: Given a new data object, we can search for the nearest objects to

it in the dataset, and use what is known of them to infer knowledge on the new object.

∙ Density estimation: Given a new data object, we can estimate whether it is typical

or anomalous by the density of objects around it, i.e., how many near objects we have

seen in the past.

∙ Clustering: Given a large set of objects, we can group them into clusters such that

objects in the same cluster are within small distance of each other.

This decades-old approach has seen dramatic developments in the last few years, due to

the discovery that neural networks are capable of producing excellent high-dimensional em-

beddings of complex data domains. Still, while the particular means of generating those

embeddings are now substantially different, the high-dimensional embedding paradigm re-

mains prevalent and de-facto standard.

Along with its many benefits, this paradigm presents formidable computational chal-

lenges. Contemporary datasets become increasingly larger, and their embeddings require

17



a large number of numerical features (i.e., high dimension) in order to obtain good results.

Datasets with billions of points and hundreds of features are now common, posing significant

requirements on processing time and memory.

Efficient metric representations. An overarching theme in tackling these challenges

is efficient representations of the data. This approach is used across all areas of computing,

under various nomenclatures — compression, sketching, hashing, quantization, and sparsifi-

cation, to name a few — with far-reaching applications from fundamental theory to cutting-

edge systems. In essence, the approach is to represent the data in a more compact way,

that occupies less memory, and is often also simpler in a structural sense. Some benefits of

efficient representations are the following:

∙ Specialized hardware: Accelerated computing devices, like graphical processing

units (GPUs), are key to contemporary machine learning efforts, but have limited

memory.

∙ Edge devices: End user devices, like handheld devices, are required to perform in-

creasingly complex computations, while being limited in memory.

∙ Communication: In distributed and cloud architectures, the amount of data trans-

ferred between machines often poses a bottleneck.

∙ Faster algorithms: Efficient data representations often lead to faster running times,

due to either their smaller size or their simplified structural form.

Beyond dimension reduction. The theory of metric compression is deeply rooted in the

phenomenon of Euclidean dimension reduction, discovered in the seminal work of Johnson

and Lindenstrauss [JL84]. They showed that all distances in a dataset can be captured in

a logarithmic dimension, with arbitrarily good accuracy. This discovery has had a revolu-

tionary impact on algorithms for big data, where dimensionality reduction techniques are by

now standard and widely used. A major theme of this thesis is exploring the possibility to

go beyond dimension reduction, and compress the data in more general ways.
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1.1 Thesis Contributions

1.1.1 Overview

Metric compression and nearest neighbor search. Perhaps the most fundamental

question on metric data compression is: What is the minimal amount of space required to

represent all distances between data points, up to a given precision? Apart from its inherent

mathematical interest, this question lies at the basis of a string of empirical successes in the

applied fields of machine learning.

Our treatment of this question occupies the majority of this thesis. We resolve it fully for

several important classes of metrics: Euclidean distances, Manhattan distances, and general

metric spaces. We extend our results to support distances to new query points, resulting

in the smallest known data structure for approximate nearest neighbor search. Our results

mark the first improvement in storage size over techniques based on classical dimensionality

reduction. As the latter techniques are known to be sharp, our work establishes that com-

pression is possible beyond dimension reduction.

We proceed to implement a practical variant of our algorithm, which retains the asymp-

totic improvement over dimension reduction, while empirically matching or improving over

the performance of state of the art heuristics.

Low-rank approximation of distance matrices. Distances can be naturally repre-

sented in tabular or matrix form, where each entry contains the distance between two points

corresponding to its row and column. We present an algorithm for computing a low-rank

approximation of such matrix, which is both faster and simpler than previous work, and

performs better empirically. We also show that the algorithm is optimal in terms of the

number of entries it reads of the input matrix.

Scalable nearest neighbor search for Optimal Transport. Learning in complex data

domains, like text or images, often requires richer notions of distance. The Optimal Transport

(OT) distance is an increasingly popular tool in these cases. However, its expressiveness

comes at a high computational cost, hindering scalability. To alleviate this difficulty, we
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present a fast approximation algorithm for nearest neighbor search in the OT distance,

based on an efficient random tree representation of the metric. It leads to significant speed

up over state of the art search pipelines.

1.1.2 Metric Compression and Nearest Neighbor Search

Given a large dataset of a high-dimensional points in R𝑑, many algorithms are based on

the distances between the points. A prototypical example is nearest neighbor search (NNS),

where given a query point, the goal is to return the closest point to it in the dataset. NNS is

a cornerstone of machine learning, owing to its simplicity, accuracy and robustness [SDI06,

AI17, Efr17].

To speed up NNS, a popular approach is to compute a compressed representation of the

data. This approach has had remarkable success and spurred a long line of research, e.g.,

[Bro97, IM98, KOR00, SH09, WTF09, JDS11, WLKC16, WZS+18]. In a recent striking

example [JDJ17a, JDJ17b], it has been demonstrated that compressing the data to fit on a

GPU can lead to accurate NNS over billions of images.

This approach is tightly related to the phenomenon of Euclidean dimension reduction, dis-

covered in the seminal work of Johnson and Lindenstrauss [JL84]. It states that, while exact

distances between 𝑛 points may require up to 𝑛−1 dimensions to represent, approximate dis-

tances require only 𝑂(log 𝑛) dimensions. This fundamental fact has far-reaching implications

in theory [IM98, Mat08, AC09] and is manifestly useful in practice [Fod02, SVM14, CG15].

In particular, it lays formal foundations for metric compression, by proving that dramatic

compression is possible with almost no loss in the accuracy of distance computation.

However, the most empirically successful compression algorithms go beyond dimension

reduction: rather than representing points as points of lower dimension, they design more

general and sophisticated bit representations, tailored to the dataset. These are often called

“hashes” or “codes” [WLKC16, WZS+18]. This evident practical success raises the question:

is there a rigorous advantage to metric compression beyond dimension reduction?

Optimal (Euclidean) metric compression. In Chapter 2, we study the problem in

its basic form: given a dataset of 𝑛 points in R𝑑, with minimal distance 1 and maximal
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Bits per point No. query points Query type

Prior work
𝑂(log2 𝑛) any 𝑞 distances
Ω(log2 𝑛) 𝑞 ≥ 𝑛 distances

This thesis
Θ(log 𝑛) — none
Θ(log 𝑛 · log 𝑞) 𝑞 ≤ 𝑛 distances
𝑂(log 𝑛 + log 𝑞) any 𝑞 nearest neighbor

Table 1.1: Bound on metric compression with 𝑛 data points and 𝑞 query points, in a typical
regime with relative error 𝜖 = Ω(1), ambient dimension 𝑑 = 𝑛𝑂(1) and diameter Φ = 𝑛𝑂(1).

distance Φ, the goal is to represent all distances up to a relative error of 𝜖 in as little space as

possible. The model is illustrated in Figure 1-1. For Euclidean metrics, a line of work based

on discretization of the dimension reduction theorem of [JL84] has shown an upper bound

of 𝑂(𝜖−2 log(𝑛) log Φ) bits per point [Ach03, AMS99, CCFC02, KOR00]. We prove a better

bound, of Θ(𝜖−2 log 𝑛 + log log Φ) amortized bits per point, which is tight in all parameters.

Our technique also leads to tight bounds for compression of ℓ1 (Manhattan) metric spaces

and of general metric spaces.

New query points and nearest neighbor search. In Chapter 3 we extend our compres-

sion technique to handle new query points that were known during the computation of the

compressed representation. This is required, in particular, for nearest neighbor search. The

query model is illustrated in Figure 1-2. Here too we obtain nearly tight bounds, improving

over discretized dimension reduction. Our results are summarized in Table 1.1.

Practical and provable metric compression. In Chapter 4, we bridge the gap between

the theory and practice of the above metric compression problem, by presenting a practical

variant of our compression algorithm. On one hand, it attains nearly tight provable com-

pression. On the other hand, we implement it and show it either matches or improves over

state-of-the-art heuristics from the applied literature mentioned above.

These chapters are based on the following papers:
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Figure 1-1: Metric compression

Figure 1-2: Metric compression with query points

∙ [IW17]: Near-optimal (Euclidean) metric compression, joint with Piotr Indyk. Ap-

peared in the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA

2017).

∙ [IRW17]: Practical data-dependent metric compression with provable guarantees, joint

with Piotr Indyk and Ilya Razenshteyn. Appeared in the 31st Conference on Neural

Information Processing Systems (NeurIPS 2017).

∙ [IW18]: Approximate nearest neighbors in limited space, joint with Piotr Indyk. Ap-

peared in the 31st Annual Conference on Learning Theory (COLT 2018).

∙ [IW20]: Optimal (Euclidean) metric compression, joint with Piotr Indyk. In prepara-

tion (2020).
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1.1.3 Low-Rank Approximation of Distance Matrices

Given a matrix 𝐴 ∈ R𝑚×𝑛, a low-rank approximation of 𝐴 is a matrix 𝐴′ ∈ R𝑚×𝑛 of rank

𝑘 ≪ min{𝑛, 𝑚} which is close to 𝐴. The most well-studied notion of closeness between

matrices is the Frobenius norm error, ‖𝐴−𝐴′‖𝐹 . Low-rank approximations are widely used

to speed up matrix-based algorithms: for example, while 𝐴 takes Ω(𝑚𝑛) space to store and

Ω(𝑚𝑛) time to multiply by a vector, 𝐴′ requires only Ω(𝑘(𝑚 + 𝑛)) space and time. An

optimal low-rank approximation can be computed in polynomial time using the Singular

Value Decomposition (SVD), albeit of degree prohibitively high for large matrices. A long

line of research (see the surveys [Mah11, Woo14]) has developed approximate algorithms

that run in near-linear time in the matrix size. In particular, they output a matrix 𝐴′ of

rank 𝑘 that satisfies the following guarantee:

‖𝐴− 𝐴′‖2
𝐹 ≤ min

𝐴𝑘 of rank 𝑘
‖𝐴− 𝐴𝑘‖2

𝐹 + 𝜖‖𝐴‖2
𝐹 .

While linear time is necessary for general matrices, sublinear time algorithms are possible

for certain specialized classes of matrices. This includes distance matrices, where each entry

𝑖, 𝑗 contains the distance between point 𝑖 and point 𝑗 in an associated metric space. Distance

matrices are a natural notion that arises in various applications (see the survey [DPRV15]).

In Chapter 5, we give an algorithm for low-rank approximation of distance matrices that

runs in time �̃�(𝑚 + 𝑛) · poly(𝑘, 1/𝜖) and achieves the above guarantee. The algorithm is

both simpler and faster asymptotically than previous work, and is shown to perform well

empirically. Furthermore, it reads 𝑂((𝑚 + 𝑛)𝑘/𝜖) entries of the input matrix, which we

prove is tight in all parameters – that is, any algorithm that achieves the above guarantee

for distance matrices must read Ω((𝑚 + 𝑛)𝑘/𝜖) entries of the input matrix.

This chapter is based on the paper:

∙ [IVWW19]: Sample-optimal low rank approximation of distance matrices, joint with

Piotr Indyk, Ali Vakilian and David Woodruff, with contributions to implementation

by Ainesh Bakshi. Appeared in the 32nd Annual Conference on Learning Theory

(COLT 2019).
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1.1.4 Scalable Nearest Neighbor Search for Optimal Transport

The Optimal Transport (OT) distance, also known as the Earth Mover Distance (EMD)

or the Wasserstein-1 distance, is a prominent notion of distance between sets of points or

between distributions. In the discrete setting, the distance between two finitely supported

distrbutions 𝜇, 𝜈 over R𝑑 is defined as the cost of the minimum-cost flow between their

supports, where the cost of transport between every pair of points is equal to their Euclidean

distance.

Machine learning applications of OT include classification of images and text documents.

These applications rely on nearest neighbor search (NNS) with respect to the OT distance.

Since computing even a single OT distance is a costly operation, which entails solving an

optimization problem, large scale NNS has been a major challenge, and much work has

focused on developing approximation algorithms. Existing algorithms largely fall into two

categories: some return a rather crude approximation in linear time in the support size,

while others return a very accurate approximation, albeit in quadratic time.

In Chapter 6, we give a linear time algorithm that generally achieves the same accuracy

as quadratic time methods. It capitalizes on long line of research on approximating general

metric spaces by random tree metrics. The latter metrics have a simplified form that renders

many computational problems much more tractable. This approach had been applied to OT

before, with good results. Nonetheless, we modify it in a crucial way that dramatically

improves its accuracy, both in terms of its worst-case NNS approximation factor, and in

terms of its empirical performance.

Specifically, the classical Quadtree algorithm finds an 𝑂(log(𝑛𝑠) log(𝑑Φ))-approximate

nearest neighbor, where 𝑛 is the dataset size, 𝑠 is an upper bound on the support sizes, 𝑑 is the

dimension of the supported points, and Φ is their coordinate range. Our algorithm, Flowtree,

finds an 𝑂(log 𝑠 · log(𝑑Φ))-approximate nearest neighbor — dispensing with the dependence

on 𝑛, which is provably necessary for Quadtree. Furthermore, for uniform distributions,

we can improve the analysis to show that Flowtree finds an 𝑂(log2 𝑠)-approximate nearest

neighbor. Our extensive experiments show that Flowtree speed-up state-of-the-art NNS

systems for the OT distance by a large factor.
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This chapter is based on the paper:

∙ [BDI+20]: Scalable nearest neighbor search for Optimal Transport, joint with Arturs

Backurs, Yihe Dong, Piotr Indyk and Ilya Razenshteyn. Appeared in the 37th Inter-

national Conference on Machine Learning (ICML 2020).

1.1.5 Other Results

This thesis encompasses a partial set of the results produced as part of the author’s Ph.D. stud-

ies, in the interest of producing a concise and conherent document. Other results in the same

vein include applications of efficient metric representations to streaming semi-supervised

learning [WGKM18], kernel density estimation [BIW19], fair clustering [BIO+19], and near-

est neighbor search assisted by neural networks [DIRW20], as well as compact representations

of graph distances [DKW15, Wag20].

1.2 Preliminaries and Notation

Generally, notation and preliminaries will be introduced as we need them along the thesis.

In this section we review some basic notions that will be used throughout.

General notation.

∙ For an integer 𝑘 > 0, we use [𝑘] to denote the set {1, . . . , 𝑘}.

∙ �̃�(𝑓) denotes 𝑂(𝑓 · polylog(𝑓)).

∙ All logs are in base 2.

1.2.1 Metric Spaces

A metric space is a pair (𝑋, d), where 𝑋 is any set and d : 𝑋×𝑋 → R is a distance function

that satisfies:

∙ d(𝑥, 𝑥) = 0 for every 𝑥 ∈ 𝑋;
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∙ d(𝑥, 𝑦) > 0 for every 𝑥, 𝑦 ∈ 𝑋 such that 𝑥 ̸= 𝑦;

∙ d(𝑥, 𝑦) = d(𝑦, 𝑥) for every 𝑥, 𝑦 ∈ 𝑋;

∙ (triangle inequality:) d(𝑥, 𝑦) ≤ d(𝑥, 𝑧) + d(𝑧, 𝑦) for every 𝑥, 𝑦, 𝑧 ∈ 𝑋.

The aspect ratio of a metric space is the ratio of largest to smallest distance:

Φ = max𝑥,𝑦∈𝑋 d(𝑥, 𝑦)
min𝑥,𝑦∈𝑋:𝑥 ̸=𝑦 d(𝑥, 𝑦) .

Often it will be convenient to normalize the smallest distance to 1, and have Φ coincide with

the diameter of the metric space.

Embedding and distortion. An embedding of a metric space (𝑋, d) into a metric space

(𝑋 ′, d′) is a map 𝑓 : 𝑋 → 𝑋 ′. We say that 𝑓 has distortion 𝜑 ≥ 1 if there is 𝑟 > 0 such that

for every 𝑥, 𝑦 ∈ 𝑋,

𝑟 · d(𝑥, 𝑦) ≤ d′(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝜑 · 𝑟 · d(𝑥, 𝑦).

If the distortion is 𝜑 = 1 then (𝑋, d) embeds isometrically in (𝑋 ′, d′).

More generally, for any estimate ̃︀𝐸𝑥𝑦 of the distance d(𝑥, 𝑦), we say it has distortion 𝜑 if

𝑟 · d(𝑥, 𝑦) ≤ ̃︀𝐸𝑥𝑦 ≤ 𝜑 · 𝑟 · d(𝑥, 𝑦).

By “distortion 1± 𝜖” we mean the special case where

(1− 𝜖) · d(𝑥, 𝑦) ≤ ̃︀𝐸𝑥𝑦 ≤ (1 + 𝜖) · d(𝑥, 𝑦).

ℓ𝑝-Metrics. For every 𝑝 ∈ [1,∞), the ℓ𝑝-norm of 𝑥 ∈ R𝑑 is defined as

‖𝑥‖𝑝 =
(︃

𝑑∑︁
𝑖=1

𝑥𝑖

)︃1/𝑝

.

The ℓ∞-norm is defined as

‖𝑥‖∞ = max
𝑖∈[𝑑]
|𝑥𝑖|.
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It is a standard fact that d(𝑥, 𝑦) = ‖𝑥−𝑦‖𝑝 is a distance function on R𝑑 for every 1 ≤ 𝑝 ≤ ∞

and dimension 𝑑 > 0. The ℓ2-distance is the Euclidean distance. The ℓ1-distance is sometimes

called the Manhattan distance, and in the special case where the point coordinates are in

{0, 1}, it is called the Hamming distance.

We say that (𝑋, 𝑑) is an ℓ𝑝-metric space if it embeds isometrically into R𝑑 with the

ℓ𝑝-distance and some dimension 𝑑. That is, if there is a map 𝑓 : 𝑋 → R𝑑 such that

d(𝑥, 𝑦) = ‖𝑓(𝑥)− 𝑓(𝑦)‖𝑝 for every 𝑥, 𝑦 ∈ 𝑋.

If 𝑋 is any finite set of size 𝑛, we can identify it with the set [𝑛] and denote 𝑥𝑖 = 𝑓(𝑖). Thus,

the ℓ𝑝-metric space is given by 𝑥1, . . . , 𝑥𝑛 ∈ R𝑑, with distances d(𝑖, 𝑗) = ‖𝑥𝑖 − 𝑥𝑗‖𝑝 for every

𝑖, 𝑗 ∈ [𝑛].

1.2.2 Johnson-Lindenstrauss Dimension Reduction

We now state the classical Euclidean dimension reduction theorem of Johnson and Lin-

denstrauss (often abbreviated as JL). In the next theorems, 𝑁(0, 1) denotes the standard

Gaussian (normal) distribution, whose probability density function is 𝜙(𝑥) = 1√
2𝜋

𝑒−𝑥2/2.

Theorem 1.2.1 ([JL84]). Let 𝑥1, . . . , 𝑥𝑛 ∈ R𝑑, 𝜖, 𝛿 ∈ (0, 1), and 𝑑′ ≥ 𝑐𝜖−2 log(𝑛/𝛿) for

a sufficiently large constant 𝑐 > 0. There is a distribution over matrices 𝑀 ∈ R𝑑′×𝑑 (for

example, i.i.d. entries from 1√
𝑑′ ·𝑁(0, 1)) such that with probability 1− 𝛿, for all 𝑖, 𝑗 ∈ [𝑛],

(1− 𝜖)‖𝑥𝑖 − 𝑥𝑗‖2 ≤ ‖𝑀𝑥𝑖 −𝑀𝑥𝑗‖2 ≤ (1 + 𝜖)‖𝑥𝑖 − 𝑥𝑗‖2.

A similar statement can be made for embedding ℓ2 into ℓ1:

Theorem 1.2.2 (ℓ2 → ℓ1 JL). Let 𝑥1, . . . , 𝑥𝑛 ∈ R𝑑, 𝜖, 𝛿 ∈ (0, 1), and 𝑑′ ≥ 𝑐𝜖−2 log(𝑛/𝛿) for

a sufficiently large constant 𝑐 > 0. There is a distribution over matrices 𝑀 ∈ R𝑑′×𝑑 (for

example, i.i.d. entries from 1
𝑑′ ·𝑁(0, 1)) such that with probability 1− 𝛿, for all 𝑖, 𝑗 ∈ [𝑛],

(1− 𝜖)‖𝑥𝑖 − 𝑥𝑗‖2 ≤ ‖𝑀𝑥𝑖 −𝑀𝑥𝑗‖1 ≤ (1 + 𝜖)‖𝑥𝑖 − 𝑥𝑗‖2.
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The above theorem can be found, in various forms, in [Ind06, Mat08, AC09, MWY13].

Distributional variants. The JL theorem can also be stated in the following form, some-

times called distributional JL.

Theorem 1.2.3 (distributional JL). Let 𝜖, 𝛿 ∈ (0, 1), and 𝑑′ ≥ 𝑐𝜖−2 log(1/𝛿) for a suffi-

ciently large constant 𝑐 > 0. There is a distribution over matrices 𝑀 ∈ R𝑑′×𝑑 (for example,

i.i.d. entries from 1√
𝑑′ ·𝑁(0, 1)) such that for every 𝑥 ∈ R𝑑,

Pr[(1− 𝜖)‖𝑥‖2 ≤ ‖𝑀𝑥‖2 ≤ (1 + 𝜖)‖𝑥‖2] ≥ 1− 𝛿.

Theorem 1.2.4 (distributional ℓ2 → ℓ1 JL). Let 𝜖, 𝛿 ∈ (0, 1), and 𝑑′ ≥ 𝑐𝜖−2 log(1/𝛿) for

a sufficiently large constant 𝑐 > 0. There is a distribution over matrices 𝑀 ∈ R𝑑′×𝑑 (for

example, i.i.d. entries from 1
𝑑′ ·𝑁(0, 1)) such that for every 𝑥 ∈ R𝑑,

Pr[(1− 𝜖)‖𝑥‖2 ≤ ‖𝑀𝑥‖1 ≤ (1 + 𝜖)‖𝑥‖2] ≥ 1− 𝛿.

Note that Theorems 1.2.1 and 1.2.2 follow from Theorems 1.2.3 and 1.2.4, respectively,

by scaling 𝛿 down by
(︁

𝑛
2

)︁
and taking a union bound over all vectors 𝑥𝑖 − 𝑥𝑗. Many known

proofs of the JL theorem (e.g., [FM88, IM98, DG03, Ach03]) indeed take this approach and

prove the distributional variant to derive the JL theorem.

1.2.3 Probabilistic Concentration

The following are standard concentration inequalities.

Fact 1.2.5 (Markov’s inequality). Let 𝑋 be a non-negative random variable. For every

𝑐 > 0,

Pr[𝑋 ≥ 𝑐 · E[𝑋]] ≤ 1/𝑐.

Lemma 1.2.6 (Hoeffding’s inequality). Let 𝑋1, . . . , 𝑋𝑛 be random variables such that 𝑋𝑖 is

supported on the interval [𝑎𝑖, 𝑏𝑖]. Let 𝑋 = ∑︀𝑛
𝑖=1 𝑋𝑖. For every 𝑡 > 0,

Pr[|𝑋 − E[𝑋]| ≥ 𝑡] ≤ 2 exp
(︃
− 2𝑡2∑︀𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖)2

)︃
.
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1.2.4 Universal Hashing

We review some standard notions and results on universal hashing.

Definition 1.2.7 (universal hash family). Let 𝑈 be a an arbitrary set, and 𝑚 > 0 an

integer. A distribution over functions 𝐻 : 𝑈 → [𝑚] is called a universal hash family if for

all 𝑢, 𝑢′ ∈ 𝑈 ,

Pr
𝐻

[𝐻(𝑢) = 𝐻(𝑢′) ≤ |𝑈 |
𝑚

.

Claim 1.2.8. Suppose 𝐻 : 𝑈 → [𝑚] is sampled from a universal hash family. Let 𝑘 > 0 be

an integer, and let 𝜂 > 0 be such that 𝑚 ≥ 10𝑘/𝜂. Let 𝑆 ⊂ 𝑈 be of size at most 𝑘, and let

𝑢 ∈ 𝑆. Then, with probability at least 1 − 𝜂, 𝑢 has no collisions with other elements in 𝑆,

i.e.,

Pr
𝐻

[∃𝑢′∈𝑆 𝑠.𝑡. 𝐻(𝑢) = 𝐻(𝑢′)] < 𝜂.

Proof. By Definition 1.2.7, the expected number of collisions with 𝑢 from 𝑆 is at most 𝑘/𝑚,

which by hypothesis is at most 𝜂/10. By Markov’s inequality, with probability at least 1− 𝜂

there are at most 1/10 collisions, which means no collisions.

Theorem 1.2.9 ([CW79]). There is an explicit universal family of hash functions 𝐻 : 𝑈 →

[𝑚] such that each function can be described by 𝑂(log |𝑈 |) bits.
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Chapter 2

Optimal (Euclidean) Metric

Compression

We study the problem of representing all distances between 𝑛 points in R𝑑, with arbitrarily

small distortion, using as few bits as possible. We settle it fully, up to constants, for Euclidean

distances and for ℓ1 (a.k.a. Manhattan) distances. Our bounds mark the first improvement

over compression schemes based on the classical dimensionality reduction theorem of Johnson

and Lindenstrauss [JL84], and settle an open problem from [AK16]. Since it is known that no

better dimension reduction bound than [JL84] is possible, our results establish that metric

compression is possible beyond dimension reduction.

2.1 Introduction

The metric sketching problem is defined as follows:

Definition 2.1.1 (metric sketching). Let 1 ≤ 𝑝 ≤ ∞ and 0 < 𝜖 < 1. In the ℓ𝑝-metric

sketching problem, we are given a set of 𝑛 points 𝑥1, . . . , 𝑥𝑛 ∈ R𝑑 with ℓ𝑝-distances in the

range [1, Φ]. We need to design a pair of algorithms:

∙ Sketching algorithm: given 𝑥1, . . . , 𝑥𝑛, it computes a bitstring called a sketch.

∙ Estimation algorithm: given the sketch, it can report for every 𝑖, 𝑗 ∈ [𝑛] a distance
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estimate ̃︀𝐸𝑖𝑗 such that

(1− 𝜖)‖𝑥𝑖 − 𝑥𝑗‖𝑝 ≤ ̃︀𝐸𝑖𝑗 ≤ (1 + 𝜖)‖𝑥𝑖 − 𝑥𝑗‖𝑝.

The goal is to minimize the bit length of the sketch.

Put simply, the goal is to represent all distances between 𝑥1, . . . , 𝑥𝑛, up to distortion 1±𝜖,

using as few bits as possible. The sketching algorithm can be randomized. In that case, we

require that with probability 1− 1/poly(𝑛) it returns a sketch such that the requirement of

the estimation algorithm is satisfied for all pairs 𝑖, 𝑗 ∈ [𝑛] simultaneously. The estimation

algorithm is generally deterministic.

We remark that the assumption on the distances being in [1, Φ] is essentially without loss

of generality, by scaling. If min𝑖 ̸=𝑗‖𝑥𝑖−𝑥𝑗‖ = 𝑀 , we can store in the sketch a 2-approximation

𝑀 ′ of 𝑀 and scale all distances down by 𝑀 ′. This costs 𝑂(log log 𝑀) additional bits globally.

Then, in all bounds below, Φ becomes the aspect ratio, which is the ratio of largest to smallest

distance in the given point set.

Euclidean metrics. The most notable case is Euclidean metrics, or 𝑝 = 2. For this

case, the Johnson-Lindenstrauss dimensionality reduction theorem [JL84] enables reducing

the dimension of the input point set to 𝑑′ = 𝑂(𝜖−2 log 𝑛). This leads to a sketch of size

𝑂(𝜖−2 log 𝑛) machine words per point. The bit size of the sketch generally depends on

the numerical range of distances, encompassed by Φ (a typical setting to consider below is

Φ = 𝑛𝑂(1)).

For example, if the coordinates of the input points are integers in the range [−Φ, Φ]

(note that in this case the diameter is 𝑂(
√

𝑑Φ)), then the discretized variant of [JL84]

due to Achlioptas [Ach03], and related algorithms like AMS sketch [AMS99] and CountS-

ketch [CCFC02, TZ12], yield a sketch size of 𝑂(𝜖−2 log(𝑛) log(𝑑Φ)) bits per point. More

generally, for any point set with diameter Φ (regardless of coordinate representation), the

distance sketches of Kushilevitz, Ostrovsky and Rabani [KOR00] yield a sketch size of

𝑂(𝜖−2 log(𝑛) log Φ) bits per point. In a closely related model, Alon and Klartag [AK16]

studied approximating squared Euclidean distances between points of norm at most 1, up
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to an additive error of 𝜖 (whereas distortion 1± 𝜖 is equivalent to relative error 𝜖). For that

problem, they proved a tight sketching bound of 𝑂(𝜖−2 log 𝑛) bits per point.

Larsen and Nelson [LN17] recently showed that the dimension upper bound of [JL84] is

tight. Previously, it had been known to be tight up to log(1/𝜖) [Alo03]. However, these lower

bounds do not apply to metric sketching, since a sketch does not have to be in the form of

lower-dimensional points. Perhaps surprisingly, prior to our work, it had not been known

whether the above “discretized JL” upper bound of 𝑂(𝜖−2 log(𝑛) log Φ) is tight for metric

sketching, or can be improved much further. We show it is indeed not tight, by proving

an improved and optimal bound of 𝑂(𝜖−2 log 𝑛 + log log Φ) amortized bits per points. In

light of the foregoing dimension reduction lower bound, our result establishes that sketching

techniques can go beyond dimension reduction in compressing Euclidean metric spaces.

General metrics. The above formulation also captures sketching of general metric spaces

— that is, the input is any metric space ([𝑛], d) with distances between 1 and Φ — since

they embed isometrically into ℓ∞ with dimension 𝑑 = 𝑛. Specificially, for every 𝑖 ∈ [𝑛], one

defines 𝑥𝑖 = (d(𝑖, 1), . . . , d(𝑖, 𝑛)) ∈ R𝑛. It is not hard to see that d(𝑖, 𝑗) = ‖𝑥𝑖−𝑥𝑗‖∞ for every

𝑖, 𝑗 ∈ [𝑛]. General metric sketching has been studied extensively, under the name distance

oracles [TZ05], in larger distortion regimes than 1 ± 𝜖, see Section 2.1.2. We provide tight

bounds for distortion 1± 𝜖.

2.1.1 Our Results

We resolve the optimal sketching size with distortion 1 ± 𝜖 for several important classes of

metrics: Euclidean metrics, ℓ1 (a.k.a. Manhattan) metrics, and general metrics.

Theorem 2.1.2 (Euclidean metric compression). For ℓ2-metric sketching with 𝑛 points (of

arbitrary dimension) and distances in [1, Φ], Θ(𝜖−2𝑛 log 𝑛+𝑛 log log Φ) bits are both sufficient

and necessary.

The sketching algorithm is randomized and runs in time 𝑂(𝑛1+𝛼 log Φ + 𝑛𝑑 log 𝑑 + 𝜖−2𝑛 ·

min{𝑑 log 𝑛, log3 𝑛}), where 𝑑 is the ambient dimension of the input metric, and 𝛼 > 0 is an

arbitrarily small constant. The estimation algorithm runs in time 𝑂(𝜖−2 log(𝑛) log(𝜖−1Φ log 𝑛)).
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Theorem 2.1.2 improves over the best previous bound of 𝑂(𝜖−2𝑛 log(𝑛) log Φ), mentioned

earlier.1 It also strengthens the above mentioned upper bound of [AK16] for sketching with

additive error, and resolves an open problem posed by them.

By known embedding results, both the upper and lower bound in Theorem 2.1.2 in fact

holds for ℓ𝑝-metrics for every 1 ≤ 𝑝 ≤ 2, including the notable case ℓ1. See Section 2.5.

We note that the sketching algorithm in the above theorem is randomized. This means

that with probility 1/poly(𝑛), it may output a sketch that distorts the distances by more than

a (1± 𝜖) factor. However, this does not effect the sketch size nor the running time. We also

remark that by “arbitrary dimension” we mean that the sketching scheme does not restrict

the dimension of the input points. The lower bound generally holds for 𝑑 = Ω(𝜖−2 log 𝑛).

General metrics. For general metric spaces, we give the following tight bounds.

Theorem 2.1.3 (General metric compression). For general metric sketching with 𝑛 points

and distances in [1, Φ], Θ(𝑛2 log(1/𝜖) + 𝑛 log log Φ) bits are both sufficient and necessary.

Note that storing all exact distances in a general metric takes at least 𝑂(𝑛2 log Φ) bits.

Naïvely, one could round each distance to its nearest power of (1+𝜖), which yields a sketch of

size 𝑂(𝑛2 log(1/𝜖)+𝑛2 log log Φ) bits. Theorem 2.1.3 improves the second term to 𝑛 log log Φ.

ℓ𝑝-metrics. Both of the theorems above are based on a more general upper bound, that

holds for all ℓ𝑝-metrics.

Theorem 2.1.4 (ℓ𝑝-metric compression). Let 1 ≤ 𝑝 ≤ ∞. For ℓ𝑝-metric sketching with 𝑛

points in dimension 𝑑 and distances in [1, Φ], 𝑂(𝑛(𝑑+log 𝑛) log(1/𝜖)+𝑛 log log Φ) bits are suf-

ficient. The sketching algorithm is deterministic and runs in time 𝑂(𝑛2 log Φ + 𝑛𝑑 log(1/𝜖)).

The estimation algorithm runs in time 𝑂(𝑑 log(𝑑Φ)) for 𝑝 <∞, and 𝑂(𝑑 log Φ) for 𝑝 =∞.

The upper bound of Theorem 2.1.3 follows immediately from Theorem 2.1.4, since as

mentioned earlier, general metric spaces with 𝑛 points embed isometrically into ℓ∞ with
1We remark that naïvely rounding each coordinate of the dimension-reduced points to its nearest power

of (1 + 𝜖) does not yield a valid sketch. For example, consider two coordinates with values 𝑡 and 𝑡 + 1, where
𝑡 = (1 + 𝜖)𝑖 for some integer 𝑖. The squared different between them is 1, whereas after rounding it becomes
0, and the distortion is unbounded.
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dimension 𝑑 = 𝑛. Similarly, for Euclidean metrics, one can apply the Johnson-Lindenstrauss

transform as a preprocessing step in order to reduce the dimension of the input points to

𝑂(𝜖−2 log 𝑛), and then apply Theorem 2.1.4. This gives an upper bound looser than that

of Theorem 2.1.2 by 𝑂(log(1/𝜖)). To obtain the tight bound, we will use additional properties

special to Euclidean metrics.

2.1.2 Additional Related Work

Distance oracles. The distance oracle problem [TZ05] is equivalent to sketching of general

metrics, and has been studied in a different distortion regime. A long line of work (includ-

ing [PS89, ADD+93, Mat96, TZ05, WN12, Che15] and more) has shown that for every integer

𝑘 ≥ 1, it is possible to compute a sketch of size �̃�(𝑛1+1/𝑘) with distortion 2𝑘 − 1, which is

tight up to logarithmic factors under the Erdős Girth Conjecture. Notably, for distortion 3

and above, the sketch size is 𝑜(𝑛2). (However, note that in order to achieve a near-linear

sketch size, the distortion must be almost logarithmic.) On the other hand, for any distor-

tion less than 3, it is not hard to show (by considering all shortest-path metrics induced by

bipartite simple graphs) that a sketch size of Ω(𝑛2) is necessary. For distortion 1 ± 𝜖, to

our knowledge, the best upper bound prior to our work had been 𝑂(𝑛2(log log Φ + log(1/𝜖)))

bits, which follows from naïve rounding as mentioned above.

Lower bounds. The papers [JW13, MWY13] prove lower bounds for metric sketching in a

related but different model (that we consider in the next chapter of this thesis). In particular,

they show that Ω(𝜖−2𝑛 log(𝑛/𝛿) log Φ) bits are needed in order to sketch the ℓ1 or ℓ2 distances

between two sets of 𝑛 points with probability 1−𝛿. This lower bound matches the “discretized

Johnson-Lindenstrauss” upper bound mentioned above [Ach03, AMS99, CCFC02, KOR00].

However, their model is different in that the sketching algorithm only sees half of the 𝑛 input

point set while computing the sketch, whereas the other half are only seen by the estimation

algorithm. In our model, the sketching algorithm sees the whole input point set. We consider

the unseen point model in Chapter 3.
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2.1.3 Technical Overview

The basic strategy in the sketch is to store each point by its relative location to a nearby

point which had already been (approximately) stored. More precisely, let 𝑋 = {𝑥1, . . . , 𝑥𝑛}

be the point set we wish to sketch. For every point 𝑥 ∈ 𝑋, we aim to define a surrogate

𝑠*(𝑥) ∈ R𝑑, which is an approximation of 𝑥 that can be efficiently stored in the sketch. To

this end, we choose an ingress point 𝑖𝑛(𝑥) ∈ 𝑋 near 𝑥, and define 𝑠*(𝑥) inductively by its

location relative to 𝑠*(𝑖𝑛(𝑥)), namely 𝑠*(𝑥) = 𝑠*(𝑖𝑛(𝑥))+[𝑥−𝑠*(𝑖𝑛(𝑥))]𝛾, where [𝑦]𝛾 denotes

rounding 𝑦 to a 𝛾-net, with an appropriate precision 𝛾. We then hope to use the distance

between the surrogates, ‖𝑠*(𝑥𝑖) − 𝑠*(𝑥𝑗)‖, as an estimate for the distance ‖𝑥𝑖 − 𝑥𝑗‖ for all

pairs 𝑖, 𝑗 ∈ [𝑛]. The challenge is to choose the ingresses and the precisions in a way that on

one hand ensures a small relative error estimate for each pair, while on the other hand does

not occupy too many storage bits.

In order to ensure a relative error approximation of every distance, we need to consider all

possible distance scales. To this end we construct a hierarchical clustering tree of the metric

space, and define the ingresses and surrogates for clusters (or tree nodes) instead of individual

points. Here, it may seem natural to use separating decomposition trees such as [Bar96,

CCG+98, FRT04], which provide both a separating property (far points are in different

clusters) and a packing property (close points are often in the same cluster). However, such

trees are bound to incur a super-constant gap between the two properties [Bar96, Nao17],

which would lead to suboptimal sketch size. Instead, our tree transitively merges any two

clusters within a sufficiently small distance. This yields a perfect separation property, but

no packing property — the diameter of each cluster may be unbounded. We replace it by a

global bound on all cluster diameters in the tree (Lemma 2.3.2).

The tree size is first reduced to linear by compressing long non-branching paths. From a

distance estimation point of view, this means that if a cluster is very well separated from the

rest of the metric, then we can replace it entirely with one representative point (called center)

for the purpose of estimating the distances between internal and external points. Then, the

crucial step is a careful choice of the ingresses, that ensures that if we set the precisions so

as to get correct estimates between all pairs, the total sketch occupies sufficiently few bits.
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This completes the description of the data structure, which we call relative location tree.

In order to estimate the distance ‖𝑥𝑖 − 𝑥𝑗‖ for a given pair 𝑖, 𝑗 ∈ [𝑛], we can identify

in the tree two nodes 𝑣𝑖, 𝑣𝑗, such that (i) the center of 𝑣𝑖 is a sufficiently good proxy for 𝑥𝑖

from the point of view of 𝑥𝑗, and vice-versa, (ii) the error between the center of 𝑣𝑖 and its

surrogate is proportional to 𝜖 · ‖𝑥𝑖 − 𝑥𝑗‖, and the same holds for 𝑣𝑗, and (iii) the surrogates

of 𝑣𝑖 and 𝑣𝑗 can be recovered from the sketch (by following ingresses along the tree) up to a

shift, which while unknown, is the same for both. Then we may return the distance between

the shifted surrogates as the output distance estimate.

Euclidean metrics. The above outline describes our upper bound for sketching ℓ𝑝-metrics.

However, for Euclidean metrics, the resulting sketch size is suboptimal in the dependence on

𝜖. To achieve the optimal bound we further develop the above sketch.

The obstacle is that in order to get optimal dependence on 𝜖, we cannot afford to deter-

ministically round a point to an 𝜖-near point. In the relative location tree, this comes up

in two places: in rounding the displacement (i.e., the location relative to an ingress) to an

𝜖-net when defining a surrogate, and in clumping a well-separated cluster, from the point of

view of external points, to one representative point.

Alon and Klartag [AK16] showed that in order to achieve the optimal dependence on

𝜖 as an additive error, one can use randomized rounding to a grid that acts as a Ω(1)-net

rather than an 𝜖-net, and rely on probabilistic concentration to achieve 𝜖-closeness with high

probability. To use this approach toward relative error, we incorporate it into our techniques

described above. We build a relative location tree with 𝜖 = Ω(1); this does not exceed the

optimal sketch size for Euclidean metrics, but does not provide the desired approximation of

distances. We then augment it with randomized rounding of displacement vectors between

some nodes to their surrogates, and between each representative point of a well-separated

cluster to some other points in the cluster. This allows us to recover a notion of probabilistic

surrogates from the sketch. Specifically, in order to estimate the distance ‖𝑥𝑖−𝑥𝑗‖ for a given

pair 𝑖, 𝑗 ∈ [𝑛], we sum an appropriate subset of those roundings for 𝑖 and for 𝑗. This yields

two random variables 𝑋𝑖, 𝑋𝑗, each supported on a hypercube with side length proportional

to 1√
𝑑
‖𝑥𝑖 − 𝑥𝑗‖, with respective expected values 𝑥𝑖, 𝑥𝑗, up to an unknown but similar shift.
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For technical reasons related to probabilistic independence, we return a proxy of the distance

‖𝑋𝑖−𝑋𝑗‖ rather than the distance itself, and the result is tightly concentrated at the correct

value ‖𝑥𝑖 − 𝑥𝑗‖.

2.2 Preliminaries: Grid Nets

Let 1 ≤ 𝑝 ≤ ∞. Let ℬ𝑑
𝑝 = {𝑥 ∈ R𝑑 : ‖𝑥‖𝑝 ≤ 1} denote the 𝑑-dimensional ℓ𝑝-unit ball. Let

𝛾 > 0. A subset 𝑁 ⊂ R𝑑 is called a 𝛾-net of ℬ𝑑
𝑝 if for every 𝑥 ∈ ℬ𝑑

𝑝 there is 𝑦 ∈ 𝑁 such that

‖𝑥− 𝑦‖𝑝 ≤ 𝛾. It is a well-known fact that ℬ𝑑
𝑝 has a 𝛾-net of size (𝑐/𝛾)𝑑 for a constant 𝑐 > 0,

and that the size bound is tight up to the constant 𝑐.

We will use a specific net, given by the intersection of the ball with an appropriately

scaled grid. For 𝜌 > 0, let 𝒢𝑑[𝜌] ⊂ R𝑑 denote the uniform 𝑑-dimensional grid with cell side

length 𝜌, which is the set of points R𝑑 that each of their coordinate is an integer multiple of

𝜌.

The net we use is 𝒩𝛾 = 2 · ℬ𝑑
𝑝 ∩ 𝒢𝑑[𝛾/𝑑1/𝑝] (where 2 · ℬ𝑑

𝑝 is the origin-centered ball of

radius 2) . We drop the dependence on 𝑑 and 𝑝 from the notation 𝒩𝛾 for simplicity. Also,

in the case 𝑝 =∞, we use 𝑑1/𝑝 = 1 as a convention.

It is easily seen that each cell of 𝒩𝛾 is a hypercube of diameter 𝛾, and it is indeed a

𝛾-net of ℬ𝑑
𝑝. It is also well-known that it has asymptotically optimal size, meaning that

|𝒩𝛾| = (𝑐′/𝛾)𝑑 for a constant 𝑐′ > 0 (see, e.g., [HPIM12] or [AK16]). Finally, given 𝑥 ∈ ℬ𝑑
𝑝,

we can find 𝑦 ∈ 𝒩𝛾 such that ‖𝑥−𝑦‖𝑝 ≤ 𝛾 by dividing each coordinate by 𝛾/𝑑1/𝑝, rounding it

to the largest smaller integer, and multiplying it by 𝛾/𝑑1/𝑝. We call this operation rounding

𝑥 to 𝒩𝛾. In summary,

Lemma 2.2.1. For every 𝑥 ∈ ℬ𝑑
𝑝, we can round it to 𝒩𝛾 in time 𝑂(𝑑), and store the resulting

point of 𝒩𝛾 with 𝑂(𝑑 log(1/𝛾)) bits.

We also record another variant of the above lemma.

Fact 2.2.2. Let 𝑥 ∈ R𝑑 and 𝛾 > 0. The number of points in 𝒢𝑑[𝛾/𝑑1/𝑝] which are at distance

at most 2𝛾 from 𝑥 (in the ℓ𝑝-norm distance) is 𝑂(1)𝑑.
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2.3 The Relative Location Tree

In this section we prove Theorem 2.1.4, which implies the upper bound in Theorem 2.1.3,

and will also serve as a stepping stone toward Theorem 2.1.2. The sketching scheme is based

on a new data structure that we call relative location tree.

Let 𝑋 = {𝑥1, . . . , 𝑥𝑛} ⊂ R𝑑 be a given point set endowed with the ℓ𝑝-metric for a fixed

1 ≤ 𝑝 ≤ ∞, with minimal distance 1 and diameter Φ. We assume w.l.o.g. that Φ is an

integer. To simplify notation, we drop the subscript 𝑝 from ℓ𝑝-norms (that is, we write

‖𝑥− 𝑦‖ for ‖𝑥− 𝑦‖𝑝).

2.3.1 Hierarchical Tree Construction

We start by building a hierarchical clustering tree 𝑇 * over the points 𝑋, by the following

bottom-up process. In the bottom level, numbered 0, every point 𝑥𝑖 forms a singleton cluster

{𝑥𝑖}. Level ℓ > 0 is generated from level ℓ− 1 by merging any clusters at distance less than

2ℓ, until no such pair remains. (The distance between two clusters 𝐶, 𝐶 ′ ⊂ 𝑋 is defined

as dist(𝐶, 𝐶 ′) = min𝑥∈𝐶,𝑥′∈𝐶′‖𝑥 − 𝑥′‖.) By level Φ, the pointset has been merged into one

cluster, which forms the root of the tree.

For every tree node 𝑣 in 𝑇 *, we denote its level by ℓ(𝑣), its associated cluster by 𝐶(𝑣) ⊂ 𝑋,

its cluster diameter by Δ(𝑣), and its degree (number of children) by deg(𝑣). For every 𝑥𝑖 ∈ 𝑋,

let leaf(𝑥𝑖) denote the tree leaf whose associated cluster is {𝑥𝑖}.

Note that the nodes at each level of 𝑇 * form a partition of 𝑋. On one hand, we have the

following separation property.

Claim 2.3.1. If 𝑥𝑖, 𝑥𝑗 are at different clusters of the partition induced by level ℓ, then

‖𝑥𝑖 − 𝑥𝑗‖ ≥ 2ℓ.

On the other hand, we have the following global bound on the cluster diameters.

Lemma 2.3.2. ∑︀𝑣∈𝑇 * 2−ℓ(𝑣)Δ(𝑣) ≤ 4𝑛.

Proof. We write 𝑢𝑣 to denote an edge from a parent 𝑢 to a child 𝑣. We call it a 1-edge if

deg(𝑢) = 1, and a non-1-edge otherwise. Note that since 𝑇 * has 𝑛 leaves, it has at most

2𝑛 non-1-edges. We define edge weights and node weights in 𝑇 * as follows. The weight
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of an edge 𝑢𝑣 is wt(𝑢𝑣) = 0 if 𝑢𝑣 is a 1-edge, and wt(𝑢𝑣) = 2ℓ(𝑢) otherwise. The weight

of a node 𝑣, denoted wt(𝑣), is the sum of all edge weights in the tree under 𝑣 (that is,

wt(𝑣) = ∑︀
𝑢𝑢′ wt(𝑢𝑢′) where the sum is over all edges 𝑢𝑢′ such that 𝑢 is reachable from 𝑣 by

a downward path in 𝑇 *).

We argue that Δ(𝑣) ≤ wt(𝑣) for every node 𝑣. This is seen by bottom-up induction on

𝑇 *. In the base case 𝑣 is a leaf, and then Δ(𝑣) = wt(𝑣) = 0. For the induction step, fix a

node 𝑢 and consider two cases. In the first case, 𝑢 has degree 1 and a single outgoing 1-edge

𝑢𝑣. Then 𝐶(𝑢) = 𝐶(𝑣) by the tree construction, and wt(𝑢) = wt(𝑣) since wt(𝑢𝑣) = 0,

thus the claim follows by induction. In the second case 𝑢 has multiple outgoing edges

{𝑢𝑣𝑖 : 𝑖 = 1, . . . , 𝑘}. Since {𝐶(𝑣𝑖) : 𝑖 = 1, . . . , 𝑘} is a partition of 𝐶(𝑢), the diameter Δ(𝑢)

is upper-bounded by ∑︀𝑘
𝑖=1(Δ(𝑣𝑖) + dist(𝐶(𝑣𝑖), 𝐶(𝑢) ∖ 𝐶(𝑣𝑖)). By induction, Δ(𝑣𝑖) ≤ wt(𝑣𝑖)

for every 𝑖. By the tree construction, dist(𝐶(𝑣𝑖), 𝐶(𝑢) ∖ 𝐶(𝑣𝑖)) ≤ 2ℓ(𝑢) = wt(𝑢𝑣𝑖). Together,

Δ(𝑢) ≤ ∑︀𝑘
𝑖=1(wt(𝑣𝑖) + wt(𝑢𝑣𝑖)) = wt(𝑢), as needed.

Consequently, it now suffices to prove the bound ∑︀𝑣∈𝑇 2−ℓ(𝑣)wt(𝑣) ≤ 4𝑛. To this end we

count the contribution of each edge to the sum. A 1-edge has no contribution since its weight

is 0. For a non-1-edge 𝑢𝑣, let 𝑢0 = 𝑢, and let 𝑢𝑖 be the parent of 𝑢𝑖−1 for all 𝑖 > 0 until the

root is reached. Then 𝑢𝑣 contributes its weight 2ℓ(𝑢) to wt(𝑢𝑖) for every 𝑖 ≥ 0, and its total

contribution is ∑︀𝑖≥0 2−ℓ(𝑢𝑖) · 2ℓ(𝑢). Since ℓ(𝑢𝑖) = ℓ(𝑢) + 𝑖, the latter sum equals ∑︀𝑖≥0 2−𝑖 < 2.

Since 𝑇 * has at most 2𝑛 non-1-edges, the desired bound follows.

Path compression. Next, we compress long non-branching paths in 𝑇 *. A 1-path in 𝑇 * is

a downward path 𝑣0, 𝑣1, . . . , 𝑣𝑘 such that 𝑣1, . . . , 𝑣𝑘−1 are degree-1 nodes. It is called maximal

if 𝑣0 and 𝑣𝑘 are not degree-1 nodes (𝑣𝑘 may be a leaf). For every such path in 𝑇 *, if

𝑘 > log(2−ℓ(𝑣𝑘)Δ(𝑣𝑘)/𝜖), we replace the path from 𝑣1 to 𝑣𝑘 with a long edge directly connecting

𝑣1 to 𝑣𝑘. We mark it as long and annotate it with the original path length, 𝑘. The rest of

the edges are called short edges. The tree after path compression will be denoted by 𝑇 . We

note that ℓ(𝑣) will continue to denote the original level of 𝑣 in 𝑇 * (or equivalently, the level

in 𝑇 if the long edges are counted according to their lengths).

Lemma 2.3.3. ∑︀𝑣∈𝑇 log
(︁
2−ℓ(𝑣)Δ(𝑣)

)︁
≤ 4𝑛.

Proof. Follow from Lemma 2.3.2 since every node 𝑣 in 𝑇 is also present in 𝑇 * (with the same
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level ℓ(𝑣) and associated cluster diameter Δ(𝑣)), and since log(𝑧) < 𝑧 for all 𝑧 ∈ R.

Lemma 2.3.4. 𝑇 has at most 2𝑛(2 + log(1/𝜖)) nodes.

Proof. We charge the degree-1 nodes on every maximal 1-path in 𝑇 to the bottom node of

the path. The total number of nodes in 𝑇 can then be written as ∑︀𝑣:deg(𝑣) ̸=1 𝑘(𝑣), where 𝑘(𝑣)

is the length of the maximal 1-path whose bottom node is 𝑣. Due to path compression, we

have 𝑘(𝑣) ≤ log(2−ℓ(𝑣)Δ(𝑣)) + log(1/𝜖). Since 𝑇 has 𝑛 leaves, it has at most 2𝑛 nodes whose

degree is not 1, so the total contribution of the second term is at most 2𝑛 log(1/𝜖). For the

total contribution of the first term, we need to show ∑︀
𝑣:deg(𝑣)̸=1 log

(︁
2−ℓ(𝑣)Δ(𝑣)

)︁
≤ 4𝑛. This

is given by Lemma 2.3.3.

Subtrees. We partition 𝑇 into subtrees by removing the long edges. Let ℱ(𝑇 ) denote the

set of resulting subtrees. Furthermore let ℒ(𝑇 ) denote the set of nodes of 𝑇 which are leaves

of subtrees in ℱ(𝑇 ). Note that a node in ℒ(𝑇 ) is either a leaf in 𝑇 or the top node of a long

edge in 𝑇 . These nodes are special in that they represent clusters whose diameter can be

bounded individually.

Lemma 2.3.5. For every 𝑢 ∈ ℒ(𝑇 ), Δ(𝑢) ≤ 2ℓ(𝑢)𝜖.

Proof. If 𝑢 is a leaf in 𝑇 then 𝐶(𝑢) contains a single point, thus Δ(𝑣) = 0, and the lemma

holds. Otherwise, 𝑢 is the top node of a long edge in 𝑇 . Let 𝑣 be the bottom node of that edge.

By path compression, the long edge represents a 1-path of length at least log(2−ℓ(𝑣)Δ(𝑣)/𝜖),

hence ℓ(𝑢) ≥ ℓ(𝑣)+log(2−ℓ(𝑣)Δ(𝑣)/𝜖), and hence 2ℓ(𝑢) ≥ 2ℓ(𝑣)+log(2−ℓ(𝑣)Δ(𝑣)/𝜖) = 𝜖−1Δ(𝑣). Since

no clusters are merged along a 1-path, we have 𝐶(𝑢) = 𝐶(𝑣), hence Δ(𝑢) = Δ(𝑣), and the

lemma follows.

2.3.2 Tree Annotations: Centers, Ingresses, and Surrogates

We now augment 𝑇 with annotations that would efficiently encode information on the loca-

tion of its clusters.
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Centers. For every node 𝑣 in 𝑇 we choose a center from the points in its cluster 𝐶(𝑣), in

a bottom-up manner, as follows. For a leaf 𝑣 = leaf(𝑥𝑖), let 𝑐(𝑣) = 𝑖. For a non-leaf 𝑣 with

children 𝑢1, . . . , 𝑢𝑘, let 𝑐(𝑣) = min{𝑐(𝑢𝑖) : 𝑖 ∈ [𝑘]}. The point 𝑥𝑐(𝑣) is the center of 𝑣.

Ingresses. Next, for every node 𝑣 in 𝑇 we assign an ingress node, denoted 𝑖𝑛(𝑣). Intu-

itively, the ingress is a node in 𝑇 such that 𝑥𝑐(𝑖𝑛(𝑢)) is close to 𝑥𝑐(𝑢), and our eventual purpose

is to store the latter by its location relative to the former.

The ingresses are defined in each subtree 𝑇 ′ ∈ ℱ(𝑇 ) separately. For the root 𝑟 of 𝑇 ′,

we set 𝑖𝑛(𝑟) = 𝑟 for convenience (as we will not require ingresses for subtree roots). Now

we assign ingresses to all children of every node 𝑣 in 𝑇 ′, and this would take care of the

rest of the nodes in 𝑇 ′. Let 𝑢1, . . . , 𝑢𝑘 be the children of 𝑣, such that w.l.o.g. 𝑐(𝑣) = 𝑐(𝑢1).

Consider the simple graph 𝐻𝑣 whose nodes are 𝑢1, . . . , 𝑢𝑘, where 𝑢𝑖, 𝑢𝑗 are neighbors iff

dist(𝐶(𝑢𝑖), 𝐶(𝑢𝑗)) ≤ 2ℓ(𝑣). The fact that 𝐶(𝑢1), . . . , 𝐶(𝑢𝑘) have been merged into 𝐶(𝑣) in

the tree construction means that 𝐻𝑣 is a connected graph. Fix an arbitrary spanning tree

𝜏𝑣 of 𝐻𝑣 and root it at 𝑢1. For 𝑢1, the ingress is 𝑖𝑛(𝑢1) = 𝑣. For 𝑢𝑖 with 𝑖 > 1, let

𝑢𝑗 be its parent node in 𝜏𝑣. Let 𝑥 ∈ 𝐶(𝑢𝑗) be the closest point to 𝐶(𝑢𝑖) in 𝐶(𝑢𝑗) (i.e.,

𝑥 = argmin𝑥′∈𝐶(𝑢𝑗) min𝑥′′∈𝐶(𝑢𝑖)‖𝑥′ − 𝑥′′‖). Let 𝑢𝑥 ∈ ℒ(𝑇 ) be the leaf of 𝑇 ′ whose cluster

contains 𝑥. The ingress of 𝑢𝑖 is in(𝑢𝑖) = 𝑢𝑥. See Figure 2-1 for illustration.

(Note that there is a downward path in 𝑇 from 𝑢𝑗 to leaf(𝑥), and 𝑢𝑥 is the bottom node

on that path that belongs to 𝑇 ′. Equivalently, 𝑢𝑥 is the bottom node on the path that is

reachable from 𝑢 without traversing a long edge.)

The following lemma bounds the distance between a node center and its ingress center.

Lemma 2.3.6. For every node 𝑢 in 𝑇 , ‖𝑥𝑐(𝑢) − 𝑥𝑐(𝑖𝑛(𝑢))‖ ≤ 3 · 2ℓ(𝑢) + Δ(𝑢).

Proof. Fix a subtree 𝑇 ′ ∈ ℱ(𝑇 ). If 𝑢 is the root of 𝑇 ′, the claim is obvious since 𝑢 = 𝑖𝑛(𝑢).

Next, using the same notation as above, we prove the claim for all children 𝑢1, . . . , 𝑢𝑘 of a

given node 𝑣 in 𝑇 ′. For 𝑢1 we have 𝑐(𝑖𝑛(𝑢1)) = 𝑐(𝑣) = 𝑐(𝑢1), and the claim holds. For 𝑢𝑖

with 𝑖 > 1, recall that 𝑢𝑗 denotes its ancestor in 𝜏𝑣, and that 𝑥 is a point in 𝐶(𝑢𝑗) that

realizes the distance dist(𝐶(𝑢𝑖), 𝐶(𝑢𝑗)), which is upper-bounded by 2ℓ(𝑣). Therefore,

‖𝑥𝑐(𝑢𝑖) − 𝑥‖ ≤ dist({𝑥}, 𝐶(𝑢𝑖)) + Δ(𝑢𝑖) ≤ 2ℓ(𝑣) + Δ(𝑢𝑖).
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Figure 2-1: Choice of ingresses. Left: The black tree is a subtree 𝑇 ′ ∈ ℱ(𝑇 ), rooted at 𝑣,
with 𝑐(𝑣) = 𝑐(𝑢1) = 𝑐(𝑤1). The dashed red arrows form a spanning tree 𝜏𝑣 on the children
of 𝑣. Right: The blue dotted arrows denote the ingresses in 𝑇 ′ (each arrow source is the
ingress of the arrow destination), in the case that 𝐶(𝑤1) contains the point closest to 𝑥𝑐(𝑢4)
in 𝐶(𝑢1) (thus 𝑤1 is chosen as the ingress of 𝑢4), and that 𝐶(𝑤2) contains the point closest
to 𝑥𝑐(𝑢2) in 𝐶(𝑢1) and the point closest to 𝑥𝑐(𝑢3) in 𝐶(𝑢1) (thus 𝑤2 is chosen as the ingress of
𝑢2 and 𝑢3).

Noting that ℓ(𝑣) = ℓ(𝑢𝑖) + 1, we find

‖𝑥𝑐(𝑢𝑖) − 𝑥‖ ≤ 2 · 2ℓ(𝑢𝑖) + Δ(𝑢𝑖). (2.1)

Recall that 𝑖𝑛(𝑢𝑖) was chosen as the leaf in 𝑇 ′ whose cluster contains 𝑥. In particular, 𝑥𝑐(𝑖𝑛(𝑢𝑖))

and 𝑥 are both contained in 𝐶(𝑖𝑛(𝑢𝑖)). By Lemma 2.3.5, ‖𝑥𝑐(𝑖𝑛(𝑢𝑖)) − 𝑥‖ ≤ 2ℓ(𝑖𝑛(𝑢𝑖)). Since

𝑖𝑛(𝑢𝑖) is a descendant of a sibling of 𝑢𝑖, we have ℓ(𝑖𝑛(𝑢𝑖)) ≤ ℓ(𝑢𝑖), hence ‖𝑥𝑐(𝑖𝑛(𝑢𝑖)) − 𝑥‖ ≤

2ℓ(𝑢𝑖). Combined with Equation (2.1), this implies the lemma by the triangle inequality.

We also record the following fact.

Claim 2.3.7. For every node 𝑢 in 𝑇 , ℓ(𝑖𝑛(𝑢)) ≤ ℓ(𝑢) + 1.

Proof. The ingress is either 𝑢 itself, the parent of 𝑢 in 𝑇 , or a descendant of the parent.

Ingress ordering. The nodes in every subtree 𝑇 ′ ∈ ℱ(𝑇 ) can be ordered such that every

node appears after its ingress (except the root, which is its own ingress, and would be first in

the ordering). Such ordering is given by a depth-first scan (DFS) on 𝑇 ′, in which additionally,

the children of every node 𝑣 are traversed in a DFS order on 𝜏𝑣. Since the ingress of every

non-root node is either its parent in 𝑇 ′, or a descendant of the sibling in 𝑇 ′ which is its
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predecessor in 𝜏𝑣, this ordering has the desired property. This will be important since the

rest of the proof utilizes induction on the ingresses.

Surrogates. Now we can define the surrogates. We start by defining a coarse surrogate

𝑠*(𝑣) for every node 𝑣 in 𝑇 . They are defined in every subtree 𝑇 ′ ∈ ℱ(𝑇 ) separately, by

induction on the ingress order in 𝑇 ′. For the root 𝑣 of 𝑇 ′, we let 𝑠*(𝑣) = 𝑥𝑐(𝑣). For a non-root

𝑣 in 𝑇 ′, we denote

𝛾(𝑣) :=
(︃

5 +
⌈︂Δ(𝑣)

2ℓ(𝑣)

⌉︂)︃−1

, (2.2)

and

𝜂*(𝑣) = 𝛾(𝑣)
2ℓ(𝑣) · (𝑥𝑐(𝑣) − 𝑠*(𝑖𝑛(𝑣))). (2.3)

Let 𝜂(𝑣) be the rounding of 𝜂*(𝑣) to the grid net 𝒩𝛾(𝑣) (see Section 2.2). By this we mean

that 𝜂(𝑣) is obtained by rounding each coordinate of 𝜂*(𝑣) to the largest smaller integer

multiple of 𝛾(𝑣). We define 𝑠*(𝑣), by induction on 𝑠*(𝑖𝑛(𝑣)), as

𝑠*(𝑣) = 𝑠*(𝑖𝑛(𝑣)) + 2ℓ(𝑣)

𝛾(𝑣) · 𝜂(𝑣). (2.4)

The following lemma bounds the distance between a node center and its surrogate.

Lemma 2.3.8. For every 𝑣 in 𝑇 , ‖𝑥𝑐(𝑣) − 𝑠*(𝑣)‖ ≤ 2ℓ(𝑣).

Proof. By induction on the ingress ordering in the subtree 𝑇 ′ ∈ ℱ(𝑇 ) that contains 𝑣. In the

base case, 𝑣 is the root and the claim holds trivially since 𝑠*(𝑣) = 𝑥𝑐(𝑣). For a non-root 𝑣, we

have ‖𝑥𝑐(𝑖𝑛(𝑣)) − 𝑠*(𝑖𝑛(𝑣))‖ ≤ 2ℓ(𝑖𝑛(𝑣)) ≤ 2 · 2ℓ(𝑣), where the first inequality is by induction on

the ingress and the second is by Claim 2.3.7. By Lemma 2.3.6 we have ‖𝑥𝑐(𝑣) − 𝑥𝑐(𝑖𝑛(𝑣))‖ ≤

3 · 2ℓ(𝑣) + Δ(𝑣), and together, by the triangle inequality, ‖𝑥𝑐(𝑣)− 𝑠*(𝑖𝑛(𝑣))‖ ≤ 5 · 2ℓ(𝑣) + Δ(𝑣).

By Equations (2.2) and (2.3), this implies ‖𝜂*(𝑣)‖ ≤ 1. Now, since 𝒩𝛾(𝑣) is a 𝛾(𝑣)-net for
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the unit ball, we have ‖𝜂*(𝑣)− 𝜂(𝑣)‖ ≤ 𝛾(𝑣). Finally,

‖𝑥𝑐(𝑣) − 𝑠*(𝑣)‖ = ‖𝑥𝑐(𝑣) − 𝑠*(𝑖𝑛(𝑣))− 2ℓ(𝑣)

𝛾(𝑣) · 𝜂(𝑣)‖ Equation (2.4)

= ‖𝑥𝑐(𝑣) − 𝑠*(𝑖𝑛(𝑣))− 2ℓ(𝑣)

𝛾(𝑣) · (𝜂
*(𝑣)− 𝜂*(𝑣) + 𝜂(𝑣))‖

= ‖2ℓ(𝑣)

𝛾(𝑣) · (𝜂(𝑣)− 𝜂*(𝑣))‖ Equation (2.3)

≤ 2ℓ(𝑣).

Leaf surrogates. For every subtree leaf 𝑣 ∈ ℒ(𝑇 ) we also use a finer surrogate 𝑠*
𝜖(𝑣),

called leaf surrogate. To this end, let 𝜂𝜖(𝑣) be the rounding of 𝜂*(𝑣) to the grid net 𝒩𝛾(𝑣)·𝜖,

where 𝛾(𝑣) and 𝜂*(𝑣) are the same as before. The leaf surrogate is defined as

𝑠*
𝜖(𝑣) = 𝑠*(𝑖𝑛(𝑣)) + 2ℓ(𝑣)

𝛾(𝑣) · 𝜂𝜖(𝑣). (2.5)

Note that 𝑠*(𝑖𝑛(𝑣)) is the surrogate of 𝑖𝑛(𝑣) defined earlier (the definition of 𝑠*
𝜖(𝑣) is not

inductive.)

Lemma 2.3.9. For every 𝑣 ∈ ℒ(𝑇 ), ‖𝑥𝑐(𝑣) − 𝑠*
𝜖(𝑣)‖ ≤ 2ℓ(𝑣) · 𝜖.

Proof. The proof of Lemma 2.3.8 showed that ‖𝜂*(𝑣)‖ ≤ 1. Hence, as 𝒩𝛾(𝑣)·𝜖 is a (𝛾(𝑣)·𝜖)-net

for the unit ball, we have ‖𝜂*(𝑣)− 𝜂𝜖(𝑣)‖ ≤ 𝛾(𝑣) · 𝜖. Thus,

‖𝑥𝑐(𝑣) − 𝑠*
𝜖(𝑣)‖ = ‖𝑥𝑐(𝑣) − 𝑠*(𝑖𝑛(𝑣))− 2ℓ(𝑣)

𝛾(𝑣) · 𝜂𝜖(𝑣)‖ Equation (2.5)

= ‖𝑥𝑐(𝑣) − 𝑠*(𝑖𝑛(𝑣))− 2ℓ(𝑣)

𝛾(𝑣) · (𝜂
*(𝑣)− 𝜂*(𝑣) + 𝜂𝜖(𝑣))‖

= ‖2ℓ(𝑣)

𝛾(𝑣) · (𝜂𝜖(𝑣)− 𝜂*(𝑣))‖ Equation (2.3)

≤ 2ℓ(𝑣)𝜖.

2.3.3 Sketch Size

The sketch stores the tree 𝑇 , with the following annotations. For each edge we store whether

it is long or short, and for the long edges we store their original lengths. For each node 𝑣

we store the center label 𝑐(𝑣), the ingress label 𝑖𝑛(𝑣), the precision 𝛾(𝑣), and the element

𝜂(𝑣) of the 𝛾(𝑣)-net 𝒩𝛾(𝑣). For every node 𝑣 in ℒ(𝑇 ) we also store 𝜂𝜖(𝑣), which is an element
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of the (𝛾(𝑣) · 𝜖)-net 𝒩𝛾(𝑣)·𝜖. This completes the description of the relative location tree. We

now bound the total size of the sketch.

Claim 2.3.10. (𝑖) 𝑇 has at most 2𝑛 long edges. (𝑖𝑖) |ℒ(𝑇 )| ≤ 3𝑛.

Proof. For part (𝑖), recall that the bottom node of every long edge has degree different than

1. Since 𝑇 has 𝑛 leaves, it may have at most 2𝑛 such nodes. Part (𝑖𝑖) follows from (𝑖) since

every leaf of a subtree in ℱ(𝑇 ) is either a leaf of 𝑇 or the top node of a long edge.

Lemma 2.3.11. The total sketch size is 𝑂(𝑛(𝑑 + log 𝑛) log(1/𝜖) + 𝑛 log log Φ) bits.

Proof. By Lemma 2.3.4 we have |𝑇 | = 𝑂(𝑛 log(1/𝜖)). The tree structure of 𝑇 can be stored

with 𝑂(|𝑇 |) bits by the Eulerian Tour Technique. The length of every long edge is bounded

by the number of levels in 𝑇 , which is 𝑂(log Φ), and hence by Claim 2.3.10(i) their total

storage cost is 𝑂(𝑛 log log Φ) bits. The center of each node is an integer in [𝑛], and can be

encoded by log 𝑛 bits. The ingress of each node is either itself, its parent, or a leaf of a

subtree in ℱ(𝑇 ), hence by Claim 2.3.10(ii) it is one of 𝑂(𝑛) nodes, and can be encoded by

𝑂(log 𝑛) bits. Together, the total storage cost of the centers and ingresses is 𝑂(|𝑇 | log 𝑛).

The total number of bits required to store the 𝛾(𝑣)’s is

∑︁
𝑣∈𝑇

log
(︃

1
𝛾(𝑣)

)︃
=
∑︁
𝑣∈𝑇

log
(︃

5 +
⌈︂Δ(𝑣)

2ℓ(𝑣)

⌉︂)︃

≤ 𝑂(|𝑇 |) +
∑︁
𝑣∈𝑇

log
(︃

Δ(𝑣)
2ℓ(𝑣)

)︃

≤ 𝑂(𝑛 log(1/𝜖)), (2.6)

having used Lemmas 2.3.3 and 2.3.4 for the last inequality. Finally, for every node 𝑣, 𝜂(𝑣) is

encoded as an element of 𝒩𝛾(𝑣), which by Lemma 2.2.1 takes 𝑂(𝑑 log(1/𝛾(𝑣))) storage bits.

Hence by eq. (2.6), their total storage size is 𝑂(𝑑) ·∑︀𝑣∈𝑇 log
(︁

1
𝛾(𝑣)

)︁
= 𝑂(𝑑𝑛 log(1/𝜖)) bits. For

nodes in ℒ(𝑇 ) we also store 𝜂𝜖(𝑣), which is an element in a (𝛾(𝑣) · 𝜖)-net. By Lemma 2.2.1,

this adds 𝑂(𝑑 log(1/𝜖)) per node, and by Claim 2.3.10(ii) there are 𝑂(𝑛) such node, hence

the total additional cost is 𝑂(𝑛𝑑 log(1/𝜖)) bits. Adding up all of the sketch components, the

total sketch size is 𝑂(𝑛(𝑑 + log 𝑛) log(1/𝜖) + 𝑛 log log Φ) bits.
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2.3.4 Distance Estimation

We now show how to use the relative location tree to approximate the distance ‖𝑥𝑖−𝑥𝑗‖ for

every pair 𝑖, 𝑗 ∈ [𝑛]. This proves the sketch size bound in Theorem 2.1.4 (running times are

analyzed in the next section). The key point is that within each subtree in ℱ(𝑇 ), we can

recover the surrogates up to a fixed (unknown) shift from the sketch.

Shifted surrogates. Let 𝑇 ′ ∈ ℱ(𝑇 ) be a subtree. For every node 𝑣 in 𝑇 ′, we define

a shifted surrogate 𝑠(𝑣) ∈ R𝑑 by induction on the ingress order in 𝑇 ′, as follows. For the root

𝑣 of 𝑇 ′, let 𝑠(𝑣) = 0 (the origin in R𝑑). For a non-root 𝑣 in 𝑇 ′, let 𝑠(𝑣) = 𝑠(𝑖𝑛(𝑣))+ 2ℓ(𝑣)

𝛾(𝑣) ·𝜂(𝑣).

For 𝑣 ∈ ℒ(𝑇 ), let the shifted leaf surrogate be 𝑠𝜖(𝑣) = 𝑠(𝑖𝑛(𝑣)) + 2ℓ(𝑣)

𝛾(𝑣) · 𝜂𝜖(𝑣).

Note that we can compute the shifted surrogates from the sketch, since it stores 𝑖𝑛(𝑣),

𝛾(𝑣) and 𝜂(𝑣) for every node, and it also stores the lengths of the long edges, which allow

us to recover ℓ(𝑣). For 𝑣 ∈ ℒ(𝑇 ) we can compute the shifted leaf surrogate, since the sketch

stores 𝜂𝜖(𝑣). Furthermore, observe that the induction step that defines the shifted surrogates

is identical to the one defining the surrogates (Equation (2.4)), and they differ only in the

induction base. This implies,

Claim 2.3.12. Let 𝑣 be a node in a subtree 𝑇 ′ ∈ ℱ(𝑇 ) whose root is 𝑟. Then 𝑠(𝑣) =

𝑠*(𝑣)− 𝑥𝑐(𝑟). Furthermore, if 𝑣 is a leaf of 𝑇 ′, then 𝑠𝜖(𝑣) = 𝑠*
𝜖(𝑣)− 𝑥𝑐(𝑟).

We remark that 𝑥𝑐(𝑟) cannot be recovered for the sketch. Indeed, there can be as many

as Ω(𝑛) subtrees in ℱ(𝑇 ), and thus storing all of their root centers could amount to fully

(or at least approximately) storing Ω(𝑛) points — the same problem we are trying to solve.

Estimation algorithm. Given 𝑖, 𝑗 ∈ [𝑛], we show how to return a (1± 𝜖)-approximation

of ‖𝑥𝑖 − 𝑥𝑗‖. Let 𝑢𝑖𝑗 be the lowest common ancestor of leaf(𝑥𝑖) and leaf(𝑥𝑗) in 𝑇 . Let

𝑇 ′ ∈ ℱ(𝑇 ) be the subtree that contains 𝑢𝑖𝑗. Let 𝑣𝑖 be the leaf of 𝑇 ′ whose cluster contains

𝑥𝑖, and similarly define 𝑣𝑗 for 𝑥𝑗. See Figure 2-2 for illustration. The estimate we return is

‖𝑠𝜖(𝑣𝑖)− 𝑠𝜖(𝑣𝑗)‖.

Lemma 2.3.13. ‖𝑠𝜖(𝑣𝑖)− 𝑠𝜖(𝑣𝑗)‖ = (1± 4𝜖) · ‖𝑥𝑖 − 𝑥𝑗‖.
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Figure 2-2: Distance estimation for ‖𝑥𝑖 − 𝑥𝑗‖. The external shaded triangle is the tree 𝑇 .
The white regions are subtrees. The dashed arrows are downward paths in 𝑇 . The thick
arcs are long edges. The output estimate is ‖𝑠𝜖(𝑣𝑖)− 𝑠𝜖(𝑣𝑗)‖.

Proof. By Claim 2.3.12, ‖𝑠𝜖(𝑣𝑖)− 𝑠𝜖(𝑣𝑗)‖ = ‖𝑠*
𝜖(𝑣𝑖)− 𝑠*

𝜖(𝑣𝑗)‖. By the triangle inequality,

‖𝑠*
𝜖(𝑣𝑖)− 𝑠*

𝜖(𝑣𝑗)‖ = ‖𝑥𝑖 − 𝑥𝑗‖ ± (‖𝑥𝑖 − 𝑠*
𝜖(𝑣𝑖)‖+ ‖𝑥𝑗 − 𝑠*

𝜖(𝑣𝑗)‖) . (2.7)

Since 𝑣𝑖 ∈ ℒ(𝑇 ) and 𝑥𝑖, 𝑥𝑐(𝑣𝑖) ∈ 𝐶(𝑣𝑖), we have ‖𝑥𝑖 − 𝑥𝑐(𝑣𝑖)‖ ≤ 2ℓ(𝑣𝑖)𝜖 by Lemma 2.3.5.

Combining this with Lemma 2.3.9 yields ‖𝑥𝑖− 𝑠*
𝜖(𝑣𝑖)‖ ≤ 2 · 2ℓ(𝑣𝑖)𝜖 by the triangle inequality.

Since 𝑢𝑖𝑗 cannot be a leaf in its subtree 𝑇 ′ (since then its degree would be either 0 or 1,

contradicting its choice as the lowest common ancestor of leaf(𝑥𝑖) and leaf(𝑥𝑗)), we have

ℓ(𝑣𝑖) ≤ ℓ(𝑢𝑖𝑗) − 1, and thus ‖𝑥𝑖 − 𝑠*(𝑣𝑖)‖ ≤ 2ℓ(𝑢𝑖𝑗)𝜖. The same holds for 𝑥𝑗, and summing

these together, ‖𝑥𝑖−𝑠*
𝜖(𝑣𝑖)‖+‖𝑥𝑗−𝑠*

𝜖(𝑣𝑗)‖ ≤ 2 ·2ℓ(𝑢𝑖𝑗)𝜖. By Claim 2.3.1 2ℓ(𝑢𝑖𝑗)−1 ≤ ‖𝑥𝑖−𝑥𝑗‖,

and hence ‖𝑥𝑖 − 𝑠*
𝜖(𝑣𝑖)‖+ ‖𝑥𝑗 − 𝑠*

𝜖(𝑣𝑗)‖ ≤ ‖𝑥𝑖 − 𝑥𝑗‖ · 4𝜖. Plugging this into eq. (2.7). proves

the lemma.

Scaling 𝜖 by a constant, this concludes the proof of the sketch size bound in Theorem 2.1.4.
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2.3.5 Running Times

Sketching time. We spend 𝑂(𝑛2 log Φ) constructing 𝑇 *. Path compression takes linear

time in the size of 𝑇 *, which is 𝑂(𝑛 log Φ). To define the ingresses, we need to construct

the graph 𝐻𝑣 over the children of every node 𝑣, and find a spanning tree in it. This takes

𝑂(𝑘2
𝑣) time if 𝑣 has 𝑘𝑣 children. Since in every level ℓ there are up to 𝑛 nodes, we have∑︀

𝑣:ℓ(𝑣)=ℓ 𝑘𝑣 ≤ 𝑛, and therefore the total time for level ℓ is 𝑂(∑︀𝑣:ℓ(𝑣)=ℓ 𝑘2
𝑣) ≤ 𝑂(𝑛2). Over

𝑂(log Φ) levels in the tree, this too takes 𝑂(𝑛2 log Φ) time. Then, for every node 𝑣 we

need to compute 𝛾(𝑣), 𝜂*(𝑣) and 𝜂(𝑣) in order to define the surrogates. This is involves

arithmetic operations on 𝑑-dimensional vectors in 𝑂(𝑑) time each, as well as rounding 𝜂*(𝑣)

to a grid net, which by Lemma 2.2.1 takes 𝑂(𝑑) time. Since there are 𝑂(𝑛 log(1/𝜖)) nodes

(Lemma 2.3.4), this takes 𝑂(𝑛𝑑 log(1/𝜖)) time overall.

Estimation Time. Since the height of the tree is 𝑂(log Φ), we spend that much time

finding the lowest common ancestor of leaf(𝑥𝑖), leaf(𝑥𝑗) and finding 𝑣𝑖, 𝑣𝑗. Then we need

to compute the shifted leaf surrogates 𝑠𝜖(𝑣𝑖), 𝑠𝜖(𝑣𝑗). Due to the inductive definition of the

surrogates, this might require traversing the ingress ordering on the subtree backward all

the way to the root. In the worst case we might traverse all nodes in 𝑇 , which could take

Ω(𝑛) time.

To avoid this, we can augment the sketch with additional information that improves the

query time without asymptotically increasing the sketch size. In particular, we explicitly

store the shifted surrogates for some nodes in 𝑇 , called landmark nodes. Let 𝐾 = ⌈log(2Φ ·

𝑑1/𝑝)⌉. We choose landmark nodes in each subtree 𝑇 ′ ∈ ℱ(𝑇 ) separately, as follows: Let 𝑇 ′
𝑖𝑛

be the tree that describes the ingress ordering in 𝑇 ′ (this is a tree on the nodes in 𝑇 ′ with

the same root, where the parent of each node 𝑣 is 𝑖𝑛(𝑣)). Start with a lowest node 𝑣 ∈ 𝑇 ′
𝑖𝑛;

climb upward 𝐾 steps (or less if the root is reached), to a node 𝑣; declare 𝑣 a landmark node,

remove it from 𝑇 ′
𝑖𝑛 with all its decendants; iterate. Since every iteration but the last removes

at least 𝐾 nodes from 𝑇 ′
𝑖𝑛, we finish with at most 𝑂(|𝑇 ′

𝑖𝑛|/𝐾) landmark nodes. Summing

over all subtrees, we have 𝑂(|𝑇 |/𝐾) landmark nodes in total.

For every landmark node, we explicitly store the shifted surrogate in the sketch. Note

that choosing landmark nodes and computing their shifted surrogates require the same time
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as computing the (non-shifted) surrogates (both involve tracing the ingress ordering in each

subtree and processing each node in 𝑂(𝑑) time), so they do not asymptotically change the

sketching time. Furthermore, computing the shifted surrogate of a given non-landmark node

can now be done in 𝑂(𝑑𝐾) time. Thus, the total estimation time for 𝑝 <∞ is 𝑂(𝑑 log(𝑑Φ)),

and for 𝑝 =∞ (where 𝑑1/𝑝 = 1) it is 𝑂(𝑑 log Φ).

It remains to see that storing the shifted surrogates for landmark nodes does not asymp-

totically increase the sketch size. To this end, note that the shifted surrogates are defined

recursively, starting at 0, and in each step adding a vector of the form 𝛾(𝑣)−1 · 2ℓ(𝑣) · 𝜂(𝑣).

Since 𝜂(𝑣) is an element in 𝒩𝛾(𝑣) — the grid net with cell side length 𝛾(𝑣)/𝑑1/𝑝 — every

coordinate of a shifted surrogate is an integer multiple of 𝑑−1/𝑝. On the other hand, we have

the following:

Claim 2.3.14. For every node 𝑣 in 𝑇 , ‖𝑠(𝑣)‖ ≤ 2Φ.

Proof. Let 𝑟 be the root of the subtree 𝑇 ′ ∈ ℱ(𝑇 ) that contains 𝑣. By Claim 2.3.12, ‖𝑠(𝑣)‖ =

‖𝑠*(𝑣) − 𝑥𝑐(𝑟)‖. By triangle inequality, ‖𝑠*(𝑣) − 𝑥𝑐(𝑟)‖ ≤ ‖𝑠*(𝑣) − 𝑥𝑐(𝑣)‖ + ‖𝑥𝑐(𝑣) − 𝑥𝑐(𝑟)‖.

By Lemma 2.3.8, ‖𝑠*(𝑣) − 𝑥𝑐(𝑟)‖ ≤ Φ. Since Φ is an upper bound on the diameter of the

input point set 𝑋, ‖𝑥𝑐(𝑣) − 𝑥𝑐(𝑟)‖ ≤ Φ. Together, ‖𝑠(𝑣)‖ ≤ 2Φ.

The claim implies in particular that each coordinate of a shifted surrogate is at most 2Φ.

Being also an integer multiple of 𝑑−1/𝑝, it can be represented by ⌈log(2Φ · 𝑑1/𝑝)⌉ = 𝐾 bits.

Thus each shifted surrogates is stored by 𝑂(𝑑𝐾) bits, and since we store this for 𝑂(|𝑇 |/𝐾)

landmark nodes, the overall additional cost is 𝑂(𝑑|𝑇 |) = 𝑂(𝑛𝑑 log(1/𝜖)) (Lemma 2.3.4),

which does not asymptotically increase the sketch size.

2.4 Euclidean Metrics

In this section we prove the upper bound in Theorem 2.1.2. We start with Johnson-

Lindenstrauss dimension reduction, Theorem 1.2.1. By applying the theorem as a prepro-

cessing step before our sketching algorithm, we may henceforth assume that 𝑑 = 𝑂(𝜖−2 log 𝑛).

Since we may arbitrarily increase the dimension (by adding zero coordinates), we will also

assume w.l.o.g. that 𝑑 ≥ 3𝜖−2 log 𝑛.
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2.4.1 Sketch Augmentations

In this section we describe the sketch. First, we compute the sketch from Section 2.3, with,

say, 1/2 instead of 𝜖 (the choice of constant does not matter). Next we describe some

augmentations to the sketch. To this end, we choose 2𝑑 i.i.d. random variables uniformly

over [0, 1], and arrange them into two vectors 𝜎′, 𝜎′′ ∈ R𝑑 that will serve as random shifts.

(They will be not stored in the sketch, so there is no concern about the precision of their

representation.) We will use uniform grids as defined in Section 2.2. By the “bottom-left”

corner of a grid cell, we mean the point in the cell (considered as a closed set of R𝑑) in

which each coordinate is minimized. That is, the bottom-left corner of the 𝑑-dimensional

hypercube [𝑎1, 𝑏1]× . . .× [𝑎𝑑, 𝑏𝑑] is (𝑎1, . . . , 𝑎𝑑).

Below, let 𝜎 ∈ {𝜎′, 𝜎′′}. Note that ‖ 1√
𝑑
𝜎‖ ≤ 1 for all supported 𝜎. We now describe

additional information that we store in the sketch for every subtree leaf 𝑣 ∈ ℒ(𝑇 ).

Augmentation I: Surrogate grid quantization. By Lemma 2.3.8 we have ‖𝑥𝑐(𝑣) −

𝑠*(𝑣)‖ ≤ 2ℓ(𝑣). By the triangle inequality, ‖𝑥𝑐(𝑣) + 1√
𝑑
2ℓ(𝑣)𝜎− 𝑠*(𝑣)‖ ≤ 2 ·2ℓ(𝑣). By Fact 2.2.2,

the grid with cell side 1√
𝑑
2ℓ(𝑣) has exp(𝑑) cells intersecting the origin-centered ball of radius 2·

2ℓ(𝑣). Therefore, with 𝑂(𝑑) bits we can store the bottom-left corner of the grid cell containing

𝑥𝑐(𝑣) + 1√
𝑑
2ℓ(𝑣)𝜎−𝑠*(𝑣). Since 𝜎 is random, this bottom-left corner is a 𝑑-dimensional random

variable, which we denote by 𝐴𝑣 = (𝐴1
𝑣, . . . , 𝐴𝑑

𝑣).

Augmentation II: Long-edge grid quantization. If the subtree 𝑇 ′ ∈ ℱ(𝑇 ) that con-

tains 𝑣 also contains the root of 𝑇 , we do not need to store additional information for 𝑣.

Otherwise, the root of 𝑇 ′ is the bottom node of a long edge. Let 𝑢 be the top node of that

long edge, and note that 𝑢 ∈ ℒ(𝑇 ). See Figure 2-3 for illustration.

Since 𝑣 is a descendant of 𝑢 in 𝑇 we have 𝑥𝑐(𝑣) ∈ 𝐶(𝑢), and therefore by Lemma 2.3.5,

‖𝑥𝑐(𝑣) − 𝑥𝑐(𝑢)‖ ≤ 2ℓ(𝑢). (Recall that we use a relative location tree with 𝜖 = Ω(1).) By the

triangle inequality, ‖𝑥𝑐(𝑣) + 1√
𝑑
2ℓ(𝑢)𝜎−𝑥𝑐(𝑢)‖ ≤ 2 · 2ℓ(𝑢). By Fact 2.2.2, the grid with cell side

1√
𝑑
2ℓ(𝑢) has exp(𝑑) cells intersecting the origin-centered ball of radius 2 ·2ℓ(𝑢). Therefore, with

𝑂(𝑑) bits we can store the bottom-left corner of the grid cell containing 𝑥𝑐(𝑣)+ 1√
𝑑
2ℓ(𝑢)𝜎−𝑥𝑐(𝑢).

Since 𝜎 is random, this corner is a 𝑑-dimensional random variable, which we denote by
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Figure 2-3: Augmentation to the Euclidean sketch. The external shaded triangle is the tree
𝑇 . The white regions are subtrees. The thick arc is a long edge. For every subtree leaf 𝑣 and
𝜎 ∈ {𝜎′𝜎′′}, the sketch encodes 𝑥𝑐(𝑣) + 1√

𝑑
2ℓ(𝑣)𝜎− 𝑠*(𝑣) in Augmentation I. If 𝑢 is defined for

𝑣, then the sketch also encodes 𝑥𝑐(𝑣) + 1√
𝑑
2ℓ(𝑢)𝜎 − 𝑥𝑐(𝑢) in Augmentation II.

𝐵𝑣 = (𝐵1
𝑣 , . . . , 𝐵𝑑

𝑣).

Remark. Note that we store each of the above augmentations twice — once with the

random shift 𝜎′ and once with 𝜎′′. To ease notation, let us not denote them separately, and

simply keep in mind that we have two independent copies of each 𝐴𝑣 and 𝐵𝑣.

Total sketch size. By Lemma 2.3.11, the relative location tree with 𝜖 = Ω(1) is stored

in 𝑂(𝑛(log 𝑛 + 𝑑 + log log Φ)) bits. The above augmentations store 𝑂(𝑑) additional bits per

node in ℒ(𝑇 ), of which there are 𝑂(𝑛) (Claim 2.3.10), and this does not increase the sketch

size asymptotically. Since 𝑑 = 𝑂(𝜖−2 log 𝑛) by the preceding dimension reduction step, the

total sketch size is 𝑂(𝜖−2𝑛 log 𝑛 + 𝑛 log log Φ) bits.

2.4.2 Probabilistic Surrogates

We now show how to recover, for every point 𝑥 ∈ 𝑋, a random variable that would serve

as a probabilistic (shifted) surrogate. For the two next lemmas, fix a subtree 𝑇 ′ ∈ ℱ(𝑇 )

with root 𝑟. For every 𝑖 ∈ [𝑛] such that 𝑥𝑖 ∈ 𝐶(𝑟), denote by 𝑣𝑖 the leaf of 𝑇 ′ whose cluster

contains 𝑥. That is, 𝑣𝑖 is the lowest node on the downward path from 𝑟 to leaf(𝑥𝑖) that does

not traverse a long edge.
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Lemma 2.4.1. Let 𝑖 ∈ [𝑛] be such that 𝑥𝑖 ∈ 𝐶(𝑟). We can recover from the sketch a

𝑑-dimensional random variable 𝑋𝑖 = (𝑋1
𝑖 , . . . , 𝑋𝑑

𝑖 ) ∈ R𝑑, such that:

∙ Its coordinates are independent.

∙ Each coordinate is supported on an interval of length at most 1√
𝑑
3 · 2ℓ(𝑣𝑖).

∙ E[𝑋𝑖] = 𝑥𝑖 − 𝑥𝑐(𝑟), coordinate-wise.

We prove this by proving a somewhat more general claim by induction.

Lemma 2.4.2. Let 𝑖 ∈ [𝑛] be such that 𝑥𝑖 ∈ 𝐶(𝑟). For every subtree leaf 𝑣 ∈ ℒ(𝑇 ) which

is a descendant of 𝑣𝑖 in 𝑇 (note that 𝑣 is not in 𝑇 ′ unless 𝑣 = 𝑣𝑖), we can recover from the

sketch a 𝑑-dimensional random variable 𝑌𝑣 = (𝑌 1
𝑣 , . . . , 𝑌 𝑑

𝑣 ) ∈ R𝑑, such that:

∙ Its coordinates are independent.

∙ Each coordinate is supported on an interval of length at most 1√
𝑑
(3 · 2ℓ(𝑣𝑖) − 2 · 2ℓ(𝑣)).

∙ E[𝑌𝑣] = 𝑥𝑐(𝑣) − 𝑥𝑐(𝑟), coordinate-wise.

Lemma 2.4.2 clearly implies Lemma 2.4.1 in the special case 𝑣 = leaf(𝑥𝑖).

Proof of Lemma 2.4.2. The proof is by induction on the subtree leaves (nodes in ℒ(𝑇 )) that

lie on the downward path from 𝑣𝑖 to leaf(𝑥𝑖).

Induction base. In the base case, 𝑣 = 𝑣𝑖. We take 𝑌𝑣 = 𝐴𝑣 + 𝑠(𝑣). Note that 𝐴𝑣 is stored

by Augmentation I, and 𝑠(𝑣) is a shifted surrogate, so both can be recovered from the sketch.

We show that 𝑌𝑣 satisfies the required properties.

Let us simplify some notation for convenience. Let 𝐿 = 1√
𝑑
2ℓ(𝑣). Let 𝒢[𝐿] be origin-

centered uniform grid with cell side length 𝐿. Let 𝑦 = 𝑥𝑐(𝑣) − 𝑠*(𝑣), with coordinates

𝑦 = (𝑦1, . . . , 𝑦𝑑). Let 𝐻 = [𝑎1, 𝑎1 + 𝐿]× . . .× [𝑎𝑑, 𝑎𝑑 + 𝐿] ⊂ R𝑑 be the hypercube cell of 𝒢[𝐿]

that contains 𝑦. Fix 𝜎 ∈ {𝜎′, 𝜎′′}, and let (𝜎1, . . . , 𝜎𝑑) denote its coordinates.

In Augmentation I, 𝐴𝑣 is the bottom-left corner of the cell of 𝒢[𝐿] that contains 𝑦 + 𝐿𝜎,

where each coordinate of 𝜎 is an i.i.d. uniformly random shift in [0, 1]. This means that each

coordinate 𝑗 ∈ [𝑑] of 𝐴𝑣 is set to 𝐴𝑗
𝑣 = 𝑎𝑗 if 𝑦𝑗 + 𝐿𝜎𝑗 < 𝑎𝑗 + 𝐿, and to 𝐴𝑗

𝑣 = 𝑎𝑗 + 𝐿 otherwise.

53



Figure 2-4: Base case of Lemma 2.4.2 (in two dimensions). 𝐻 is the hypercube cell of 𝒢[𝐿]
that contains 𝑦 = 𝑥𝑐(𝑣) − 𝑠*(𝑣). Note that 𝐻 is not random. 𝐴𝑣 from Augmentation I is
the bottom-left corner of the grid cell that contains 𝑦 + 𝜎𝐿, where 𝜎 is a shift with uniform
i.i.d. coordinates in [0, 1]. Thus, 𝐴𝑣 is supported on the corners of 𝐻, and E𝜎[𝐴𝑣] = 𝑦.

The latter condition rearranges to 𝜎𝑗 < 1− 1
𝐿

(𝑦𝑗 − 𝑎𝑗) (note that this value is in [0, 1] since

𝑎𝑗 is defined such that 𝑎𝑗 ≤ 𝑦𝑗 < 𝑎𝑗 + 𝐿), which occurs with probability 1 − 1
𝐿

(𝑦𝑗 − 𝑎𝑗).

Therefore,

E𝜎𝑗
[𝐴𝑗

𝑣] = 𝑎𝑗 · (1− 1
𝐿

(𝑦𝑗 − 𝑎𝑗)) + (𝑎𝑗 + 𝐿) · 1
𝐿

(𝑦𝑗 − 𝑎𝑗) = 𝑦𝑗.

Furthermore, 𝐴𝑣 is supported on the corners of the grid cell 𝐻, and hence each coordinate

is supported on an interval of length 𝐿 = 1√
𝑑
2ℓ(𝑣). Finally, since the coordinates of 𝜎 are

independent, then so are the coordinates of 𝐴𝑣. (This is the same randomized rounding

scheme from [AK16]; see Figure 2-4 for illustration.) By taking 𝑌𝑣 = 𝐴𝑣 + 𝑠(𝑣), the support

length of each coordinate and the independence between the coordinates are preserved, while

the expectation changes to

E𝜎[𝑌𝑣] = E𝜎[𝐴𝑣] + 𝑠(𝑣) = 𝑦 + 𝑠(𝑣) = 𝑥𝑐(𝑣) − 𝑠*(𝑣) + 𝑠(𝑣) = 𝑥𝑐(𝑣) − 𝑥𝑐(𝑟),

coordinate-wise, where we have used Claim 2.3.12 for the rightmost equality. This proves

the base case.
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Induction step. Let 𝑣 be a descendant of 𝑣𝑖, which is different than 𝑣𝑖. Let 𝑢 be the next

node in ℒ(𝑇 ) on the upward path from 𝑣 to 𝑣𝑖. By induction, the statement of Lemma 2.4.2

holds for 𝑢. Therefore we have a random variable 𝑌𝑢 with independent coordinates, each

supported on an interval of length 1√
𝑑
(3 · 2ℓ(𝑣𝑖) − 2 · 2ℓ(𝑢)), such that E[𝑌𝑢] = 𝑥𝑐(𝑢) − 𝑥𝑐(𝑟)

coordinate-wise.

Augmentation II stores 𝐵𝑣, defined as the bottom-left corner of the cell of the origin-

centered grid 𝒢[ 1√
𝑑
2ℓ(𝑢)] that contains 𝑥𝑐(𝑣) + 1√

𝑑
2ℓ(𝑢)𝜎 − 𝑥𝑐(𝑢). Similarly to what was shown

in the base step for 𝐴𝑣, this implies that E𝜎[𝐵𝑣] = 𝑥𝑐(𝑣) − 𝑥𝑐(𝑢), that 𝐵𝑣 has independent

coordinates, and that it is supported on the corners of the grid cell that contains 𝑥𝑐(𝑣)−𝑥𝑐(𝑢),

which means that each coordinate is supported on an interval of length 1√
𝑑
2ℓ(𝑢).

We let 𝑌𝑣 = 𝑌𝑢 + 𝐵𝑣. It is easily seen that 𝑌𝑣 has the correct expectation (E[𝑌𝑣] =

𝑥𝑐(𝑣)−𝑥𝑐(𝑟) coordinate-wise), that its coordinates are independent, and that each is supported

on an interval of length 1√
𝑑
(3·2ℓ(𝑣𝑥)−2ℓ(𝑢)). The proof is complete by noticing that ℓ(𝑣) < ℓ(𝑢),

hence ℓ(𝑣) ≤ ℓ(𝑢)− 1, hence the length is at most 1√
𝑑
(3 · 2ℓ(𝑣𝑥) − 2 · 2ℓ(𝑣)).

2.4.3 Distance Estimation

Let 𝑖, 𝑗 ∈ [𝑛]. We show how to estimate ‖𝑥𝑖− 𝑥𝑗‖ from the sketch. Let 𝑟 be the lowest node

in 𝑇 which is the root of a subtree in 𝑇 ′ ∈ F(𝑇 ) and such that 𝑥𝑖, 𝑥𝑗 ∈ 𝐶(𝑟) (i.e., 𝑟 is a

common ancestor of leaf(𝑥𝑖) and leaf(𝑥𝑗)). Let 𝑣𝑖 be the leaf of 𝑇 ′ whose cluster contains

𝑥𝑖, and similarly define 𝑣𝑗 for 𝑥𝑗. Let ℓ𝑖𝑗 := max{ℓ(𝑣𝑖), ℓ(𝑣𝑗)}. Note that by Claim 2.3.1 we

have ‖𝑥− 𝑦‖ ≥ 2ℓ𝑖𝑗 .

Using Lemma 2.4.1, we can read off the sketch random variables 𝑋 ′
𝑖, 𝑋 ′

𝑗, 𝑋 ′′
𝑖 , 𝑋 ′′

𝑗 ∈ R𝑑,

such that each has independent coordinates supported on an interval of length 3√
𝑑
2ℓ𝑖𝑗 , such

that E[𝑋 ′
𝑖] = E[𝑋 ′′

𝑖 ] = 𝑥𝑖 − 𝑥𝑐(𝑟) and E[𝑋 ′
𝑗] = E[𝑋 ′′

𝑗 ] = 𝑥𝑗 − 𝑥𝑐(𝑟) coordinate-wise, and such

that (𝑋 ′
𝑖, 𝑋 ′

𝑗) are independent of (𝑋 ′′
𝑖 , 𝑋 ′′

𝑗 ). The latter property is achieved by using the

random shift 𝜎′ for (𝑋 ′
𝑖, 𝑋 ′

𝑗) and the random shift 𝜎′′ for (𝑋 ′′
𝑖 , 𝑋 ′′

𝑗 ). The estimate we return

is
√︁

(𝑋 ′
𝑖 −𝑋 ′

𝑗)𝑇 (𝑋 ′′
𝑖 −𝑋 ′′

𝑗 ). (Note that if we had 𝑋 ′
𝑖 = 𝑋 ′′

𝑖 and 𝑋 ′
𝑗 = 𝑋 ′′

𝑗 then the estimate

would just be ‖𝑋 ′
𝑖 −𝑋 ′

𝑗‖; however, we will make use of the independence between (𝑋 ′
𝑖, 𝑋 ′

𝑗)

and (𝑋 ′′
𝑖 , 𝑋 ′′

𝑗 ).) We now show it is a sufficiently accurate estimate.

To this end, let 𝑍1 = 𝑋 ′
𝑖−𝑋 ′

𝑗 and 𝑍2 = 𝑋 ′′
𝑖 −𝑋 ′′

𝑗 . The returned estimate is
√︁

𝑍𝑇
1 𝑍2. Note
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that 𝑍1, 𝑍2 are independent, each has independent coordinates supported on an interval of

length 6√
𝑑
2ℓ𝑖𝑗 , and E[𝑍1] = E[𝑍2] = 𝑥− 𝑦 coordinate-wise.

The following lemma is adapted from Alon and Klartag [AK16].

Lemma 2.4.3. Suppose 𝑑 ≥ 3𝜖−2 log 𝑛. Let 𝑆 > 0. Let 𝑧1, 𝑧2 ∈ R𝑑. Let 𝑍1, 𝑍2 be indepen-

dent random variables with independent coordinates, with each coordinate supported of an

interval of length 1√
𝑑
𝑆, and such that E[𝑍1] = 𝑧1 and E[𝑍2] = 𝑧2 coordinate-wise. Then,

Pr[|𝑍𝑇
1 𝑍2 − 𝑧𝑇

1 𝑧2| ≤ 𝜖 · 𝑆(‖𝑧1‖+ ‖𝑧2‖+ 𝑆)] ≥ 1− 4
𝑛3 .

Proof. We will denote the coordinates of 𝑍1 by (𝑍1
1 , . . . , 𝑍𝑑

1 ), and similarly for 𝑧1, 𝑍2, and

𝑧2. By the triangle inequality,

|𝑍𝑇
1 𝑍2 − 𝑧𝑇

1 𝑧2| = |𝑍𝑇
1 𝑍2 − 𝑍𝑇

1 𝑧2 + 𝑍𝑇
1 𝑧2 + 𝑧𝑇

1 𝑧2|

≤ |(𝑍1 − 𝑧1)𝑇 𝑧2|+ |𝑍𝑇
1 (𝑍2 − 𝑧2)|.

We start with the term (𝑍1− 𝑧1)𝑇 𝑧2 = ∑︀𝑑
𝑖=1 𝑧𝑖

2(𝑍𝑖
1− 𝑧𝑖

1). By hypothesis, for every coordinate

𝑖 ∈ [𝑑] we have E[𝑍𝑖
1 − 𝑧𝑖

1] = 0 and |𝑍𝑖
1 − 𝑧𝑖

1| ≤ 1√
𝑑
𝑆. Therefore the sum of squares of the

summands is upper-bounded by 1
𝑑
𝑆2‖𝑧2‖2. Now by Hoeffding’s inequality (Lemma 1.2.6),

Pr
[︁⃒⃒⃒

(𝑍1 − 𝑧1)𝑇 𝑧2

⃒⃒⃒
> 𝜖𝑆‖𝑧2‖

]︁
≤ 2𝑒−2𝜖2𝑑 ≤ 2

𝑛3 ,

where we have used 𝑑 ≥ 3𝜖−2 log 𝑛.

We proceed to the term 𝑍𝑇
1 (𝑍2−𝑧2) = ∑︀𝑑

𝑖=1 𝑍𝑖
1(𝑍𝑖

2−𝑧𝑖
2). Again by hypothesis E[𝑍𝑖

2−𝑧𝑖
2] =

0, and since 𝑍1, 𝑍2 are independent, E[𝑍𝑖
1(𝑍𝑖

2−𝑧𝑖
2)] = 0. The sum of squares is upper-bounded

by 1
𝑑
𝑆2‖𝑍1‖2 as above, and by the triangle inequality, ‖𝑍1‖ ≤ ‖𝑧1‖+ ‖𝑍1 − 𝑧1‖ ≤ ‖𝑧1‖+ 𝑆.

Altogether, ∑︀𝑑
𝑖=1(𝑍𝑖

1(𝑍𝑖
2 − 𝑧𝑖

2))2 ≤ 1
𝑑
𝑆2(‖𝑧1‖+ 𝑆)2, and by Hoeffding’s inequality,

Pr
[︁⃒⃒⃒

𝑍𝑇
1 (𝑍2 − 𝑧2)

⃒⃒⃒
> 𝜖𝑆(‖𝑧1‖+ 𝑆)

]︁
≤ 2𝑒−2𝜖2𝑑 ≤ 2

𝑛3 .

The lemma follows by a union bound over the two terms.
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Applying the lemma to 𝑍1, 𝑍2 defined above (with 𝑧1 = 𝑧2 = 𝑥− 𝑦 and 𝑆 = 6 · 2ℓ𝑖𝑗 ),

Pr[|𝑍𝑇
1 𝑍2 − ‖𝑥− 𝑦‖2| ≤ 𝜖 · 6 · 2ℓ𝑖𝑗 (2‖𝑥− 𝑦‖+ 6 · 2ℓ𝑖𝑗 )] ≥ 1− 4

𝑛3 .

Since ‖𝑥− 𝑦‖ ≥ 2ℓ𝑖𝑗 , this implies

Pr
[︁⃒⃒⃒

𝑍𝑇
1 𝑍2 − ‖𝑥− 𝑦‖2

⃒⃒⃒
≤ 𝜖 · 48‖𝑥− 𝑦‖2

]︁
≥ 1− 4

𝑛3 ,

and thus 𝑍𝑇
1 𝑍2 = (1 ± 𝑂(𝜖)) · ‖𝑥 − 𝑦‖2, which renders our estimate

√︁
𝑍𝑇

1 𝑍2 correct (up to

scaling 𝜖 by a constant) with that probability. The total success probability is 1−𝑂(1/𝑛), by

a union bound over all pairs 𝑖, 𝑗 ∈ [𝑛], and over the application of the Johnson-Lindenstrauss

theorem that was used as a preprocessing step.

2.4.4 Running Times

We start with the sketching time. The Johnson-Lindenstrauss theorem can be performed

either naïvely in time 𝑂(𝜖−2𝑛𝑑 log 𝑛), or in time 𝑂(𝑛𝑑 log 𝑑 + 𝜖−2𝑛 ·min{𝑑 log 𝑛, log3 𝑛}) by

the Fast Johnson-Lindenstrauss Transform of Ailon and Chazelle [AC09]. Note that here, 𝑑

is the ambient dimension of the input metric (before dimension reduction).

Next we compute the sketch from Section 2.3. To avoid confusion in notation, let us

denote its error and dimension parameters by 𝜖′ and 𝑑′ respectively. We construct that sketch

with 𝜖′ = Ω(1) and 𝑑′ = Θ(𝜖−2 log 𝑛), which as per Section 2.3.5 takes time 𝑂(𝑛2 log Φ+𝑛𝑑′).

The 𝑛2 log Φ term can be reduced to 𝑂(𝑛1+𝛼 log Φ) for any constant 0 < 𝛼 < 1, at the

cost of increasing the sketch size by an additive factor of 𝑂(𝑛𝑑′ log(1/𝛼)). This does not

asymptotically increase its size 𝑂(𝑛𝑑′ + 𝑛 log log Φ) as long as 𝛼 = Ω(1).

To this end, let 𝑐 = 𝛼−1/2. In constructing the relative location tree, we use the algorithm

of [HPIM12] to compute 𝑐-approximate connected components in each level. Their algorithm

is based on Locality-Sensitive Hashing (LSH), which in Euclidean spaces can be implemented

in time 𝑂(𝑛1+1/𝑐2) [AI06]. Using 𝑐-approximate connected components means that clusters

in level ℓ of the relative location tree may be merged if the distance between them is up to

𝑐 · 2ℓ (rather than just 2ℓ), and to account for this constant loss, we need to scale 𝜖′ down
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to 𝜖′/𝑐. Since the dependence of the sketch size on 𝜖′ is 𝑂(𝑛𝑑′ log(1/𝜖′)), it increases by an

additive factor of 𝑂(𝑛𝑑′ log(1/𝛼)).

Finally, the sketch augmentations in Section 2.4.1 take time 𝑑 per node in ℒ(𝑇 ) to

compute, so in total, 𝑂(𝑛𝑑) time. The overall sketching time is as stated in Theorem 2.1.2.

The estimation time is the same as Theorem 2.1.4, with dimension Θ(𝜖−2 log 𝑛).

2.5 ℓ𝑝-Metrics with 1 ≤ 𝑝 < 2

We point out that by known embedding results, both the upper and lower bounds for Eu-

clidean metric compression in Theorem 2.1.2 apply more generally to ℓ𝑝-metrics for every

1 ≤ 𝑝 ≤ 2.

Theorem 2.5.1. Let 1 ≤ 𝑝 ≤ 2 and 𝜖 > 0. For ℓ𝑝-metric sketching with 𝑛 points and

diameter Φ (of arbitrary dimension), Θ(𝜖−2𝑛 log 𝑛 + 𝑛 log log Φ) bits are both sufficient and

necessary.

The upper bound relies on the well-known fact that every such metric embeds isometri-

cally into a negative-type metric, i.e., into a squared Euclidean metric. We use the following

constructive version of this fact, from [LN14, Theorem 116], based on [MN04].

Theorem 2.5.2 ([LN14]2). Let 1 ≤ 𝑝 < 2. Let 𝑋 ⊂ R𝑑 be a point set with ℓ𝑝-aspect ratio

Φ. There is a mapping 𝑓 : 𝑋 → R𝑑·poly(log Φ,log 𝑑,1/𝜖) such that for every 𝑥, 𝑦 ∈ 𝑋,

(1− 𝜖)‖𝑥− 𝑦‖𝑝
𝑝 ≤ ‖𝑓(𝑥)− 𝑓(𝑦)‖2

2 ≤ (1 + 𝜖)‖𝑥− 𝑦‖𝑝
𝑝.

Proof of Theorem 2.5.1. Both the upper and lower bound follow from Theorem 2.1.2. For

the upper bound, by Theorem 2.5.2 we have a map 𝑓 such that it suffices to report ‖𝑓(𝑥𝑖)−

𝑓(𝑥𝑗)‖2/𝑝
2 for every 𝑖, 𝑗. Then it suffices to sketch the Euclidean metric on 𝑓(𝑥1), . . . , 𝑓(𝑥𝑛).

The lower bound follows from the standard fact that Euclidean metrics embed isometrically

into ℓ𝑝-metrics for every 1 ≤ 𝑝 < 2 (see, e.g., [Mat13]).
2The statement in [LN14] is for Φ = 𝑑𝑂(1), but applies to any Φ > 0. The statement given here is by

setting 𝑅 = 𝑑−1/𝑞 in [LN14, Theorem 116] and scaling the minimal distance in the given metric to 1.
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2.6 Lower Bounds

In this section we prove tight compression lower bounds for Euclidean metric spaces and for

general metric spaces, matching the upper bounds in Theorems 2.1.2 and 2.1.3 respectively.

This finishes the proofs of those two theorems.

Theorem 2.6.1 (Euclidean metrics). The ℓ2-metric sketching problem with 𝑛 points, aspect

ratio Φ and dimension 𝑑 = Ω(𝜖−2 log 𝑛) requires Ω(𝜖−2𝑛 log 𝑛 + 𝑛 log log Φ) bits.

Proof. We start by proving the first term of the lower bound, Ω(𝜖−2𝑛 log 𝑛). Let 0 < 𝛾 < 0.5

be a constant and let 𝜖 ≥ Ω(1/𝑛0.5−𝛾) be smaller than a sufficiently small constant. Let

𝑘 = 1/𝜖2, and suppose w.l.o.g. 𝑘 is an integer by scaling 𝜖 down by an appropriate constant.

Note that 𝑘 = 𝑂(𝑛1−2𝛾)≪ 𝑛 since 𝜖 ≥ Ω(1/𝑛0.5−𝛾).

Let 𝐵 be the set of standard basis vectors in R𝑛. Let 𝑎1, . . . , 𝑎𝑛 be an arbitrary distinct

vectors in {0, 1}𝑛, each having exactly 𝑘 coordinates set to 1 (and the rest to 0). Let

𝐴 = { 1√
𝑘
𝑎𝑖 : 𝑖 ∈ [𝑛]}. Note that 𝐴 ∪𝐵 is a set of 2𝑛 points in R𝑛, each with unit norm.

Suppose we have a sketch for the Euclidean distances in 𝐴 ∪ 𝐵 up to distortion 1 ± 1
8𝜖.

This means it can report the squared Euclidean distances up to distortion 1± 1
2𝜖 (by simply

squaring its output). For every 𝑖, 𝑗 ∈ [𝑛], denote by 𝑎𝑖(𝑗) the 𝑗-th coordinate of 𝑎𝑖, or

equivalently, 𝑎𝑖(𝑗) = 𝑎𝑇
𝑖 𝑒𝑗. Then,

‖ 1√
𝑘
𝑎𝑖 − 𝑒𝑗‖2

2 = ‖ 1√
𝑘
𝑎𝑖‖2

2 − 2√
𝑘
𝑎𝑇

𝑖 𝑒𝑗 + ‖𝑒𝑗‖2
2 = 2− 2𝜖𝑎𝑖(𝑗).

Thus, if 𝑎𝑖(𝑗) = 0 then ‖ 1√
𝑘
𝑎𝑖 − 𝑒𝑗‖2

2 = 2, and the sketch is guaranteed to return at least

2 − 𝜖. Conversely, if 𝑎𝑖(𝑗) = 0 then ‖ 1√
𝑘
𝑎𝑖 − 𝑒𝑗‖2

2 = 2 − 2𝜖, and the sketch is guaranteed

to return at most (1 + 1
2𝜖)(2 − 2𝜖) = 2 − 𝜖 − 𝜖2. Consequently, we can recover every 𝑎𝑗(𝑖)

from the sketch, and thus recover 𝐴. The number of possible choices for 𝐴 is
(︁(𝑛

𝑘)
𝑛

)︁
, which

by a known estimate (
(︁

𝑚
ℓ

)︁
≥ (𝑚

ℓ
)ℓ for all integers 𝑚, ℓ) is at least ((𝑛

𝑘
)𝑘/𝑛)𝑛. Therefore, the

resulting bit lower bound on the sketch size is

log
(︃(︃

(𝑛
𝑘
)𝑘

𝑛

)︃𝑛)︃
= 𝑛𝑘 log

(︂
𝑛

𝑘

)︂
− 𝑛 log 𝑛 = 𝑛

𝜖2 · log(𝑛𝜖2) = Ω(𝛾 · 𝜖−2𝑛 log 𝑛),

where the final bound is since log(𝑛𝜖2) ≥ log(𝑛2𝛾) = 2𝛾 log 𝑛, and since we can make 𝜖 small
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enough such that 𝜖2 < 𝛾. Note that the dimension of the point sets constructed above can

be reduced to 𝑂(𝜖−2 log 𝑛) by the Johnson-Lindenstrauss theorem [JL84]. This proves the

first term of the lower bound in the theorem statement.

Next we prove the second term of the lower bound, Ω(𝑛 log log Φ). Suppose w.l.o.g. that

log Φ is an integer. Consider the point set 𝑋 = {1, . . . , 𝑛}. Define a map 𝑔 : 𝑋 → R

by setting 𝑔(1) = 0, and for every 𝑥 ∈ 𝑋 ∖ {1} setting 𝑔(𝑥) = 2𝜑(𝑥) with an arbitrary

𝜑(𝑥) ∈ {1, . . . , log Φ}. The number of choices for 𝑔 is (log Φ)𝑛−1, and every choice of 𝑔

is a Euclidean embeddings of 𝑋 with one-dimension and aspect ratio at most Φ. We can

fully recover 𝑔 given a Euclidean distance sketch for 𝑋 with distortion better than 2, since

𝜑(𝑥) = |𝑔(𝑥)− 𝑔(1)| = for every 𝑥 ∈ 𝑋, and every two possible values of 𝜑(𝑥) are separated

by at least a factor of 2. This yields a sketching bound of log ((log Φ)𝑛−1) = Ω(𝑛 log log Φ)

bits.

To get the final lower bound Ω(𝜖−2𝑛 log 𝑛 + 𝑛 log log Φ), we augment the two metric

families constructed above into one. We constructed a family ℱ1 of metrics embedded in

R𝑛, of size |ℱ1| ≥ 2Ω(𝛾·𝜖−2𝑛 log 𝑛), and a family ℱ2 of metrics embedded in R1, of size |ℱ2| ≥

2Ω(𝑛 log log Φ). For every 𝐷′ ∈ ℱ1 and 𝐷” ∈ ℱ2, we can naturally define a metric 𝐷′ ⊕ 𝐷”

embedded in R𝑛+1 by embedding 𝐷′ in the first 𝑛 dimensions and 𝐷” in the remaining

dimension. This defines a family ℱ = {𝐷′ ⊕𝐷” : 𝐷′ ∈ ℱ1, 𝐷” ∈ ℱ2} of Euclidean metrics

over 𝑛 points in R𝑛+1 with aspect ratio Φ + 𝑂(1), of size |ℱ1| · |ℱ2|, such given a Euclidean

distance sketch with distortion 1± 𝜖 of a metric in ℱ , the metric can be fully recovered. The

lower bound 𝑏 = Ω(𝜖−2𝑛 log 𝑛 + 𝑛 log log Φ) follows.

Theorem 2.6.2 (general metrics). The general metric sketching problem with 𝑛 points and

aspect ratio Φ requires Ω(𝑛2 log(1/𝜖) + 𝑛 log log Φ) bits.

Proof. Let 𝜖 > 0 be smaller than a sufficiently small constant. Suppose w.l.o.g. that 𝜖−1 is an

integer. We construct a metric space (𝑋, d) with 𝑋 = {1, . . . , 𝑛}. For every 𝑥, 𝑦 ∈ 𝑋 such

that 𝑥 < 𝑦, set d(𝑥, 𝑦) = 1+𝑘(𝑥, 𝑦) · 𝜖, with an arbitrary integer 𝑘(𝑥, 𝑦) ∈ {0, 1, . . . , 𝜖−1−1}.

Note that 1 ≤ d(𝑥, 𝑦) < 2 for all 𝑥, 𝑦. This defines a metric space regardless of the choice

of the 𝑘(𝑥, 𝑦)’s. Indeed, we only need to verify the triangle inequality, and it holds trivially

since all pairwise distances are lower-bounded by 1 and upper-bounded by 2. Hence we have
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defined a family of (1/𝜖)(
𝑛
2) metrics.

Next, observe that a sketch with distortion (1± 1
4𝜖) is sufficient to fully recover a metric

from this family. Indeed, for every 𝑥, 𝑦 ∈ 𝑋, the sketch is guaranteed to report d(𝑥, 𝑦) up to

an additive error of 1
4𝜖 · d(𝑥, 𝑦), which is less than 1

2𝜖, while the minimum difference between

every pair of possible distances is 𝜖 by construction. By scaling 𝜖 by a constant, this proves a

lower bound of log
(︂

(1/𝜖)(
𝑛
2)
)︂

= Ω(𝑛2 log(1/𝜖)) on the sketch size in bits. The second lower

bound term Ω(𝑛 log log Φ), and the combination of the two terms into one lower bound, is

by the same proof as Theorem 2.6.1.
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Chapter 3

New Query Points and

Nearest Neighbor Search

The previous chapter considered the problem of optimally sketching all distances within a

given dataset of points in R𝑑. However, in many applications to machine learning and data

analysis, it is also necessary to handle new query points that were not part of the dataset.

In this chapter, we extend the techniques of Chapter 2 to this setting. We consider two

problems: reporting an approximate nearest neighbor of a query point in the dataset, and

reporting approximate distances from a query point to all points in the dataset. For both

problems we obtain nearly optimal compression bounds, improving over bounds arising from

classical dimension reduction. Our results also show that reporting approximate nearest

neighbors requires asymptotically less space than reporting approximate distances.

3.1 Introduction

A typical setting in information retrieval or machine learning is the following:

1. In the preprocessing or training stage, we get a dataset of objects (often embedded as

point in R𝑑), that we need to process in order to facilitate subsequent queries.

2. In the query or inference stage, we get a query object (say, a point in R𝑑) that did not

appear in the dataset, and we need to report measurements based on the dataset.
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Reference Bits per point No. queries Query type

[JL84, Ach03, KOR00, ...] 𝑂(log2 𝑛) 𝑞 = 𝑛𝑂(1) distances
[NN19] 𝑂(log2 𝑛) any 𝑞 distances
[MWY13] Ω(log2 𝑛) 𝑞 ≥ 𝑛 distances
Theorem 2.1.2 𝑂(log 𝑛) — none

Theorems 3.1.4 and 3.1.5 Θ(log 𝑛 · log 𝑞) 𝑞 ≤ 𝑛 distances
Theorem 3.1.3 𝑂(log 𝑛 + log 𝑞) any 𝑞 nearest neighbors

Table 3.1: Our results and related work on distance sketches with 𝑛 data points and 𝑞 query
points, in a typical regime where 𝜖, 𝛿 are small constants and 𝑑, Φ = 𝑛𝑂(1).

A prototypical example of this setting is the nearest neighbor search problem, where the

goal is to return the closest point in the dataset to the query point. More generally one can

ask to estimate all distances from a query point to each point in the dataset.

The metric sketching problem from Definition 2.1.1 is closely related to this setting, but

does not quite fit: it requires all points to be known already during the preprocessing (sketch-

ing) stage, meaning that they must all appear in the dataset. The input to the query stage

is not a new point, but a pair of indices of dataset points. On the other hand, the dimen-

sion reduction theorem of [JL84], and the subsequent work on sketching [Ach03, KOR00]

discussed in Chapter 2, are capable of handling new query points — as many as 𝑛𝑂(1), where

𝑛 is the number of points in the dataset. Very recently, Nelson and Narayanan [NN19] (fol-

lowing [MMMR18]) showed that (non-linear) dimension reduction can handle an unbounded

number of query points.

Is dimension reduction optimal for distance sketches with query points? Os-

tensibly, a positive answer was given by Molinaro, Woodruff and Yaroslavtzev [MWY13],

who proved a sketching lower bound that matches the discretized dimension reduction up-

per bound. However, their theorem relied on two key assumptions: One, that the number of

queries is at least as large as the dataset size. This leaves open the small query set regime,

which is arguably common in applications. For example, in many standard benchmark

datasets (e.g., MNIST, SIFT, GloVe, 20newsgroups, etc.) the query set size is smaller than

the dataset size by at least an order of magnitude. The other key assumption in [MWY13]
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is that the sketch needs to report the approximate distance between each query and each

data point. This leaves open the possibility of better sketching bounds for nearest neighbor

search, which does not necessarily entail reporting all distances.

The question arises whether our results from Chapter 2 can be extended to support

query points, while retaining the improvement over the discretized dimension reduction upper

bound of 𝑂(𝜖−2 log(𝑛) log Φ) bits per point, which is mutual to all of the previous approaches

listed above. In this chapter we show that the answer is yes, by further developing our tools

from the previous chapter. If we remove either one of the key assumptions in [MWY13],

then the lower bound breaks, and better sketches are possible. Our results, in the context

of the foregoing discussion, are summarized in Table 3.1.

3.1.1 Formal Problem Statements

We formalize the sketching problems considered in this chapter in terms of one-way commu-

nication complexity (with private randomness). The setting is as follows:

∙ Alice has 𝑛 data points, 𝑋 = {𝑥1, . . . , 𝑥𝑛} ⊂ R𝑑, with integer coordinates in [−Φ, Φ].

∙ Bob has 𝑞 query points, 𝑌 = {𝑦1, . . . , 𝑦𝑞} ⊂ R𝑑, with integer coordinates in [−Φ, Φ].

∙ Alice computes a compact representation (sketch) of her data points and sends it to

Bob, who then needs to report the output.

We define two problems in this model, each parameterized by 𝑛, 𝑞, 𝑑, Φ, 𝜖, 𝛿:

Definition 3.1.1. In the all-nearest-neighbors problem, Bob needs to report a (1 + 𝜖)-

approximate nearest neighbor in 𝑋 for all his points simultaneously, with probability 1 − 𝛿.

That is, for every 𝑗 ∈ [𝑞], Bob reports an index 𝑖𝑗 ∈ [𝑛] such that

Pr
[︃
∀𝑗 ∈ [𝑞], ‖𝑦𝑗 − 𝑥𝑖𝑗

‖ ≤ (1 + 𝜖) min
𝑖∈[𝑛]
‖𝑦𝑗 − 𝑥𝑖‖

]︃
≥ 1− 𝛿.

Definition 3.1.2. In the all-cross-distances problem, Bob needs to estimate all distances

‖𝑥𝑖 − 𝑦𝑗‖ up to distortion (1 ± 𝜖) simultaneously, with probability 1 − 𝛿. That is, for every
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𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑞], Bob reports an estimate �̃�𝑖𝑗 such that

Pr
[︂
∀𝑖 ∈ [𝑛], 𝑗 ∈ [𝑞], (1− 𝜖)‖𝑥𝑖 − 𝑦𝑗‖ ≤ �̃�𝑖𝑗 ≤ (1 + 𝜖)‖𝑥𝑖 − 𝑦𝑗‖

]︂
≥ 1− 𝛿.

Distances throughout this chapter are Euclidean. The assumption of integer coordinates

is w.l.o.g. as they can be scaled to any precision (similarly to Chapter 2). As per the above

discussion in Section 3.1, we are mostly interested in the regime 𝑞 ≤ 𝑛, i.e., where the number

of query points is small compared to the number of data points.

3.1.2 Our Results

The next theorem states our sketching upper bound for approximate nearest neighbor search.

Theorem 3.1.3. For the all-nearest-neighbors problem, there is a sketch of size

𝑂

(︃
𝑛

(︃
log 𝑛 + log 𝑞 + log(1/𝛿)

𝜖2 · log
(︂1

𝜖

)︂
+ log log(𝑑Φ)

)︃)︃
+ polylog(𝑛, 𝑞, 𝑑, Φ, 𝛿−1, 𝜖−1)

𝜖2 bits.

The important term is the multiplier of 𝑛, which is the amortized number of bits per

point. The additive “global” polylogarithmic term is due to storing private random bits

in the sketch. The precise global term is 𝑂((𝜖−2 log2(𝑑Φ) + log log(𝑞/𝛿)) · log(𝑛𝑞/𝛿)). If

one allows either shared randomness, or non-constructive sketches with private randomness,

then it can be eliminated (see Remark 3.2.5). However, we state our bounds for explicit

constructive sketches without shared randomness.

Theorem 3.1.3 improves over the discretized dimension reduction upper bound whenever

𝜖≫ 1/poly(𝑛). For example, for a constant number of queries, the dependence on 𝑛 per point

is log 𝑛 bits, rather than log2 𝑛. In Theorem 3.5.1 we give a lower bound of Ω(𝜖−2𝑛 log 𝑛) in

the regime 𝛿 = 1/𝑛𝑂(1), showing that the first term in Theorem 3.1.3 is almost tight.

We turn to our results for distance estimation sketches with queries.

Theorem 3.1.4. For the all-cross-distances problem, there is a sketch of size

𝑂
(︂

𝑛

𝜖2

(︂
log 𝑛 · log(1/𝜖) + log(𝑑Φ) log

(︂
𝑞

𝛿

)︂)︂)︂
+ polylog(𝑛, 𝑞, 𝑑, Φ, 𝛿−1, 𝜖−1)

𝜖5 bits.

66



Note that the dependence per point on Φ is logarithmic, as opposed to doubly logarithmic

in Theorem 3.1.3. This dependence is necessary, as our next theorem shows.

Theorem 3.1.5. Suppose that 𝑞 ≤ 𝑛, 𝑑1−𝜌 ≥ 𝜖−2 log(𝑛/𝛿), Φ ≥ 1/𝜖, and 1/𝑛0.5−𝜌′ ≤ 𝜖 ≤ 𝜖0

for some constants 𝜌, 𝜌′ > 0 and a sufficiently small constant 𝜖0. Then, for the all-cross-

distances problem, any sketch must use at least

Ω
(︂

𝑛

𝜖2

(︂
log 𝑛 + log(𝑑Φ) log

(︂
𝑞

𝛿

)︂)︂)︂
bits.

Note that the upper and lower bounds on the storage bits per point in Theorems 3.1.4

and 3.1.4 are matching up to a factor 𝑂(log(1/𝜖)). Also note that Theorem 3.1.5 shows, in

light of Theorem 3.1.3, that distance estimation with queries requires asymptotically larger

sketches than approximate nearest neighbor search.

Table 3.1 summarizes our results and related work in a typical demonstrative setting,

where 𝜖, 𝛿 are small constants, and the ambient dimension 𝑑 and the coordinates range Φ

are both polynomial in 𝑛 (this essentially means they fit in a machine word).

3.1.3 Technical Overview

The basis for our sketches in this chapter is the relative location tree from Section 2.3. As

discussed above, the data structure given there does not support new query points, and we

will need to modify and add to it in order to support them.

Let us review the relative location tree in order to highlight where the difficulties lie.

The construction in Section 2.3 identifies a hierarchy of clusters that are very well separated

from the rest of the points. Technically, they are identified by long non-branching paths in

a hierarchical decomposition tree of the metric space, which are then compressed into “long

edges”. This compression step perturbs the location of the clusters relative to each other,

but only to a tolerable error, owing to their separation (see Figure 3-1 for illustration). The

removal of long edges from the tree induces a partition into subtrees, where each subtree

corresponds to a well-separated cluster.

Distances between points in different clusters can be estimated efficiently by comparing

appropriate representatives of their respective clusters, based on the separation property.
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Figure 3-1: Compression and decompression of a two-dimensional dataset. The location of
the well-separated cluster {𝑥2, 𝑥3} can be perturbed by the lossy compression algorithm,
without significantly changing the distances to 𝑥1.

Figure 3-2: Compression and decompression of a dataset 𝑥1, 𝑥2, 𝑥3 in the presence of a new
query point 𝑦, which is unknown during compression. The same small perturbation in the
location of {𝑥2, 𝑥3} as in Figure 3-1 fails to preserve 𝑥3 as the nearest neighbor of 𝑦.

Within each cluster, we defined a surrogate for each point, which is a quantized representative

close to the original point, up to an unknown shift. Even though the shifts are too expensive

to store in the sketch, all surrogates in a cluster are guaranteed to share the same shift.

Therefore, the distance between points in the same cluster can be estimated by the distance

between their surrogates.

This reasoning breaks down if we need to handle new query points, for two reasons.

First, without knowing the query points in advance, we cannot identify clusters which are

well-separated from them. Thus, the path compression step may introduce arbitrarily large

error. This is illustrated in Figure 3-2. Second, if we store the surrogates up to an unknown

shift, we cannot estimate their distance to a new query point which is not similarly shifted.

Therefore, we must include in the sketch some information about the absolute location of

the clusters.

In this chapter we modify and augment the relative location tree in two ways, correspond-

ing to the two difficulties described above. First, instead of replacing each non-branching
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path completely by a “long edge”, the sketch also stores a suffix of the path. Intuitively, this

preserves some local information about the vicinity of each well-separated cluster, allowing

us to handle query points that fall very close to it and avoid cases as depicted in Figure 3-2.

Second, we store hashed quantizations of the unknown shifts of the clusters. While storing

all shifts leads to a prohibitive sketch size, we use universal hashing to store “just enough”

of them for each query, without knowing the queries in advance. We note that this mod-

ification makes the data structure inherently randomized; in contrast, the data structure

of Section 2.3 was deterministic.

Nearest neighbor search. Given a query 𝑦, the search procedure is performed top down

on the tree. Within each subtree, we attempt to reverse the hashed surrogate shift by

enumerating over candidate shifts near 𝑦. If 𝑦 is sufficiently near the cluster, then we are

likely (up to hash collisions) to recover the correct shift. Once the unshifted surrogates in

the current subtree are recovered, we find the one nearest to 𝑦. If it represents a singleton

point (i.e., a leaf in the overall tree) then we report it as the nearest neighbor. Otherwise,

it represents a well-separated cluster, and we proceed to explore it by descending into the

corresponding subtree.

Now, one of two cases occurs. If 𝑦 is sufficiently near the new cluster, then as above, we

recover the shift correctly and iterate. However, if 𝑦 is not near the cluster (meaning 𝑦 lies

in the “dead zone” between the well-separated cluster and the rest of the data points), then

the search procedure recovers an incorrect shift (without knowing of it), and all of its future

decisions would be based on wrong distance estimates. Nonetheless, note that in this case, 𝑦

is far from a well-separated cluster that has been identified as closest to it in an upper level.

This means that all points in that cluster are valid approximate nearest neighbors of 𝑦, and

the algorithm can return anything.

Distance estimation. While the above query procedure computes distances from 𝑦 to

the surrogates, those distances are not valid estimates for the true distances between 𝑦 and

the data points represented by those surrogates. (In fact, by Theorem 3.1.5, this task is not

possible within the space bound of Theorem 3.1.3.) Technically, the reason is that while the

69



surrogate distance gives us an upper bound on the true distance, we have no lower bound.

Indeed, as described in the previous paragraph, the search procedure does not know when

it reaches the true distance from 𝑦 to its nearest neighbors, and continues to try to move

closer, thereby beginning to produce wrong distance estimates.

To remedy this, we augment the data structure with additional information that will help

us tell between the above two cases above — i.e., whether 𝑦 is near or far from its nearest well-

separated cluster in every level. In particular, we use a distance sketch of [KOR00] in each

well-separated cluster (subtree). Once we have identified the cluster of approximate nearest

neighbors of 𝑦 (which is when the above second case occurs for the first time), we estimate

the distance to one representative of that cluster using the distance sketch of [Ach03]. These

are intuitively the most difficult distances to estimate. Distances to farther data points can

be estimated using the surrogates, as done in Chapter 2.

3.2 The Sketch

In this section we describe the basic data structure (generated by Alice) used for all both The-

orem 3.1.3 and Theorem 3.1.4. For the latter result, we will augment it further in Section 3.4.

Recall that in the problems we consider now (Section 3.1.1), our data points and query

points reside in the hypercube [−Φ, Φ]𝑑. Therefore, the maximal possible distance between

any pair of points (even if one is Alice’s and one is Bob’s) is

Δ* = 2
√

𝑑Φ.

Since we consider Euclidean distances, we can begin with a preliminary application of

a Johnson-Lindenstrauss transform (Theorem 1.2.1) in order to reduce the dimension to

𝑂(𝜖−2 log(𝑛𝑞/𝛿)). This is guaranteed to preserve all distances between Alice’s 𝑛 points to

Bob’s 𝑞 points, with probability at least 1− 𝛿, up to distortion 1± 𝜖. The coordinate range

becomes 𝑂(𝑑Φ) instead of Φ (where 𝑑 is the original ambient dimension), which would not

effect any of the bounds under discussion. We note, however, that the dimension reduction

transform itself (i.e., the matrix 𝑀 from Theorem 1.2.1) needs to be stored in Alice’s sketch,
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in order for Bob to be able to apply it to his points as well. We will account for this storage

when we compute the sketch size in Section 3.2.2.

3.2.1 Modified Relative Location Tree

Our starting point for the sketch is the relative location tree as constructed in Section 2.3

in the previous chapter. We will use the same construction and notation introduced there.

We now describe how we modify and augment it.

Additional levels. The tree in Section 2.3 was built bottom-up by iteratively merging

clusters, until all of the data points are merged into one cluster. Here, even after that

happens, we continue adding levels to the top of the tree, until level ⌈log(Δ*)⌉. This means

that the root may be the head of a 1-path.

Top-out compression. In Section 2.3, we replaced every maximal 1-path of the tree of

length at least Λ(𝑣) = log(Δ(𝑣)/(2ℓ(𝑣)𝜖)), where 𝑣 is the bottom node of the path, with

a long edge. Here, we replace the path except for its bottom Λ(𝑣) nodes. More precisely,

let 𝑢0, 𝑢1, . . . , 𝑢𝑘 = 𝑣 be a maximal 1-path in 𝑇 *, with 𝑘 > Λ(𝑣). We connect 𝑢0 directly to

𝑢𝑘−Λ(𝑣) by the long edge. The nodes 𝑢1, . . . , 𝑢𝑘−Λ(𝑣)−1 are removed from the tree, and the

long edge is annotated with length 𝑘 − Λ(𝑣).

This modified path compression step endows the tree with the following property.

Lemma 3.2.1. Let 𝑣 be the bottom node of a long edge (i.e., 𝑣 is the root of a subtree in

ℱ(𝑇 )), and 𝑥, 𝑥′ ∈ 𝐶(𝑣). Then ‖𝑥− 𝑥′‖ ≤ 2ℓ(𝑣)𝜖.

Proof of Lemma 3.2.1. By top-out compression, 𝑣 is the top of a downward 1-path of length

Λ(𝑣′), where 𝑣′ is its bottom node. Since no clusters are joined along a 1-path, we have

𝐶(𝑣′) = 𝐶(𝑣), hence 𝑥, 𝑥′ ∈ 𝐶(𝑣′) and hence ‖𝑥− 𝑥′‖ ≤ Δ(𝑣′). Noting that

ℓ(𝑣) = ℓ(𝑣′) + Λ(𝑣′) = ℓ(𝑣′) + log
(︃

Δ(𝑣′)
2ℓ(𝑣′)𝜖

)︃
= log

(︃
Δ(𝑣′)

𝜖

)︃
,

and rearranging, we find Δ(𝑣′) = 2ℓ(𝑣)𝜖, which implies the claim.
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Importantly, top-out compression does not asymptotically change the size of the tree

compared to the path compression step from Section 2.3. In particular, Lemma 2.3.4 still

holds. To see this, note that its proof only requires that for every node 𝑣 in the compressed

tree 𝑇 , the length of the maximal 1-path whose bottom node is 𝑣 (denoted there 𝑘(𝑣)) is at

most Λ(𝑣). This property is preserved by top-out compression.

Grid quantization. Our modification to the surrogates, defined next, will use quantiza-

tion onto grids. We now introduce appropriate notation. Let 𝜌 > 0. In Section 2.2, we

denoted by 𝒢𝑑[𝜌/
√

𝑑] the 𝑑-dimensional uniform grid with side length 𝜌/
√

𝑑. Let us now

denote,

𝒬𝜌 = 𝒢𝑑[𝜌/
√

𝑑] ∩ [−Φ, Φ]𝑑,

i.e., 𝒬𝜌 is the restriction of the grid to [−Φ, Φ]𝑑. Observe that |𝒬𝜌| = 𝑂(𝜌−1
√

𝑑Φ)𝑑 =

𝑂(𝜌−1Δ*)𝑑, and that each cell of 𝒬𝜌 has diameter at most 𝜌. For every 𝑥 ∈ R𝑑, we denote

by 𝒬𝜌(𝑥) the closest point to 𝑥 in 𝒬𝜌.

We restate Fact 2.2.2 in the above notation.

Fact 3.2.2. There is a universal constant Γ > 0 such that the following holds. Let 𝑥 ∈ R𝑑

and 𝜌 > 0. The number of points in 𝒬𝜌 which are at Euclidean distance at most 2𝜌 from 𝑥

is at most Γ𝑑.

Surrogates. We modify the definition of the surrogates in each subtree by replacing the

base case in their inductive definition; the inductive step remains the same. In particular, fix

a subtree 𝑇 ′ ∈ ℱ(𝑇 ) rooted at 𝑟. In Section 2.3, we set the surrogate root to its true center,

𝑠*(𝑟) = 𝑥𝑐(𝑟), which could not be recovered from the sketch. Here, instead, we set it to its

quantization onto a suitable grid, in order to facilitate recovery under certain conditions.

To differentiate the surrogates in this chapter from those in the previous chapter, we denote

them by 𝑠(𝑣). Thus, the root surrogate is defined as:

𝑠(𝑟) = 𝒬2ℓ(𝑟)(𝑥𝑐(𝑟)). (3.1)
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The remaining surrogates are defined by the same induction rule as Equation (2.4), i.e.,

𝑠(𝑣) = 𝑠(𝑖𝑛(𝑣)) + 2ℓ(𝑣)

𝛾(𝑣) · 𝜂(𝑣).

We also define leaf surrogates 𝑠𝜖(𝑣) for all 𝑣 ∈ ℒ(𝑇 ) as in Equation (2.5), i.e.,

𝑠𝜖(𝑣) = 𝑠(𝑖𝑛(𝑣)) + 2ℓ(𝑣)

𝛾(𝑣) · 𝜂𝜖(𝑣).

Lemma 3.2.3. For every node 𝑣, ‖𝑥𝑐(𝑣) − 𝑠(𝑣)‖ ≤ 2ℓ(𝑣). Furthermore, if 𝑣 ∈ ℒ(𝑇 ), then

‖𝑥𝑐(𝑣) − 𝑠𝜖(𝑣)‖ ≤ 2ℓ(𝑣)𝜖.

Proof. We start with the (non-leaf) surrogates 𝑠(𝑣). The proof is by induction on the ingress

ordering in each subtree. Let 𝑇 ′ ∈ ℱ(𝑇 ) be a subtree rooted at 𝑟. In the base case, 𝑣 = 𝑟. By

construction of the grids above, for every 𝜌 > 0 and 𝑥 ∈ [−Φ, Φ]𝑑 we have ‖𝑥−𝒬𝜌(𝑥)‖ ≤ 𝜌.

With 𝜌 = 2ℓ(𝑟) and 𝑥 = 𝑥𝑐(𝑟), the claim for the base case follows from Equation (3.1). The

induction step is the same as in Lemma 2.3.8.

The proof of the “furthermore” part (for leaf surrogates) is the same as Lemma 2.3.9.

Root surrogate hashing. Ideally, we would have liked to store the surrogates of all

subtree roots, which would allow us to recover all of the surrogates from the sketch. However,

this is prohibitive: there can be as many as Ω(𝑛) subtree roots in 𝑇 , and each of their

surrogates is quantized into about 𝑑 log(Δ*) bits. This leads to same sketch size as discretized

dimension reduction, which we are trying to improve.

Instead, we store hashes of the root surrogates. We will use an explicit construction of

universal hash families. Such constructions are well-known, e.g., the classical Carter-Wegman

construction [CW79] (see Section 1.2.4).

For every level ℓ in the tree, we pick a hash function 𝐻ℓ from a universal family,

𝐻ℓ : 𝒬2ℓ → [𝑚] with 𝑚 =
⌈︂
10 · Γ𝑑 · log(Δ*) · 𝑞

𝛿

⌉︂
,

where Γ is the constant from Fact 3.2.2. The hash function in each level is chosen inde-

pendently at random from the other levels. For every subtree root 𝑟, we store its hashed
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surrogate 𝐻ℓ(𝑟)(𝒬2ℓ(𝑟)(𝑥𝑐(𝑟))). We also store the description of each hash function 𝐻ℓ for every

level ℓ.

3.2.2 Sketch Size

Let us review the sketch. It contains the relative location tree 𝑇 from Section 2.3, with

the above modified path compression step (top-out compression). In addition, for every

subtree root 𝑟, we store its hash quantized surrogate 𝐻ℓ(𝑟)(𝒬2ℓ(𝑟)(𝑥𝑐(𝑟))), and the hash function

description 𝐻ℓ for every level ℓ.

Lemma 3.2.4. The total sketch size in bits is

𝑂

(︃
𝑛

(︃
log(𝑛𝑞/𝛿) · log(1/𝜖)

𝜖2 + log log(𝑑Φ)
)︃

+
(︃

log2(𝑑Φ)
𝜖2 + log log

(︂
𝑞

𝛿

)︂)︃
log

(︂
𝑛𝑞

𝛿

)︂)︃
.

Proof. The sketching algorithm starts with a preliminary dimension reduction step (Theo-

rem 1.2.1). Alice needs to store the dimension reduction map in the sketch in order for Bob

to apply it to his points as well. In order to preserve all 𝑛𝑞 distances between her points to

his points, the target dimension needs to be 𝑂(𝜖−2 log(𝑛𝑞/𝛿)). By [KMN11], the map can

be stored in 𝑂(log 𝑑 + log(𝑛𝑞/𝛿) · log log((𝑛𝑞/𝛿)/𝜖)) bits, where 𝑑 is the ambient dimension.

The effect of applying this map is that for the rest of the sketch, the dimension is reduced

to 𝑂(𝜖−2 log(𝑞𝑛/𝛿)), and the coordinate range increases from Φ to 𝑂(𝑑Φ).

The cost of storing the relative location tree is 𝑂(𝜖−2𝑛 log(𝑞𝑛/𝛿) log(1/𝜖) + 𝑛 log log(Δ*))

bits, by Lemma 2.3.11 (with dimension 𝑂(𝜖−2 log(𝑞𝑛/𝛿)) and diameter Δ*). Note that as

explained above, top-out compression does not change this storage size.

By Claim 2.3.10, there are 𝑂(𝑛) subtree roots in the tree. For each one we store its

surrogate hashed into a range of size 𝑚, where 𝑚 = ⌈𝑂(1)𝜖−2 log(𝑛𝑞/𝛿) ·log(Δ*)·𝑞/𝛿⌉. Therefore

their total storage size is 𝑂(𝑛(𝜖−2 log(𝑛𝑞/𝛿) + log log(Δ*) + log(𝑞/𝛿))) bits. This quantity is

dominated by the storage cost of the relative location tree.

Finally, we store the description of the hash function 𝐻ℓ in every level ℓ = 1, . . . , ⌈log(Δ*)⌉.

By Theorem 1.2.9, a hash function with domain 𝑈 can be represented by 𝑂(log |𝑈 |) bits. In
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our case, 𝐻ℓ has domain 𝒬2ℓ , so the total storage size is 𝑂(∑︀⌈log(Δ*)⌉
ℓ=1 |𝒬2ℓ |) bits. Since

|𝒬2ℓ | = 𝑂(2−ℓ(Δ*)𝜖−2 log(𝑛𝑞/𝛿)) ≤ 𝑂((Δ*)𝜖−2 log(𝑛𝑞/𝛿)),

for ℓ ≥ 1, the total size is 𝑂(𝜖−2 log(𝑛𝑞/𝛿) · log2(Δ*)) bits.

The sketch size stated in the lemma follows by adding all of the above terms, recalling

that Δ* = 𝑂(𝑑Φ) (where 𝑑 here is the ambient dimension), and simplifying by eliminating

dominated terms.

Remark 3.2.5. Our model in Theorems 3.1.3 and 3.1.4 is constructive sketching without

shared randomness. Therefore our sketch explicitly stores the random bits that generate the

hash functions and of the projection map. If public randomness is allowed, these do not

need to be stored. Alternatively, if one is only interested in the communication complexity,

one can use the general reduction from public to private randomness due to [New91], which

replaces the public coins by augmenting 𝑂(log(𝑛𝑑Φ)) bits to the sketch (since Alice’s input

has size 𝑂(𝑛𝑑Φ) bits). The bound in Theorem 3.1.3 then improves to

𝑂
(︂

𝑛
(︂

𝜖−2 log 𝑛 · log(1/𝜖) + log log(𝑑Φ) + log
(︂

𝑞

𝛿

)︂)︂
+ log Φ

)︂
bits,

and the bound in Theorem 3.1.4 improves to

𝑂
(︂

𝜖−2𝑛 ·
(︂

log 𝑛 · log(1/𝜖) + log(𝑑Φ) log
(︂

𝑞

𝛿

)︂)︂)︂
bits.

However, that reduction is non-constructive; we state our bounds so as to describe explicit

sketches.

3.3 Approximate Nearest Neighbor Search

In this section we describe our approximate nearest neighbor search query procedure, and

prove Theorem 3.1.3.
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3.3.1 Query Algorithm

Suppose Bob wants to report a (1+ 𝜖)-approximate nearest neighbor in 𝑋 for a point 𝑦 ∈ 𝑌 .

Algorithm Report Nearest Neighbor:

1. Start at the subtree 𝑇 ′ ∈ ℱ(𝑇 ) that contains the root of 𝑇 .

2. Recover all surrogates {𝑠(𝑣) : 𝑣 ∈ 𝑇 ′}, by the subroutine below.

3. Let 𝑣 be the leaf of 𝑇 ′ that minimizes ‖𝑦 − 𝑠(𝑣)‖.

4. If 𝑣 is the head of a long edge, recurse on the subtree under that long edge. Otherwise

𝑣 is a leaf in 𝑇 , and in that case return 𝑐(𝑣).

Subroutine Recover Surrogates: This is a subroutine that attempts to recover all sur-

rogates {𝑠(𝑣) : 𝑣 ∈ 𝑇 ′} in a given subtree 𝑇 ′ ∈ ℱ(𝑇 ), using both Alice’s sketch and Bob’s

point 𝑦.

Observe that to this end, the only information missing from the sketch is the root sur-

rogate 𝑠(𝑟), which served as the induction base for defining the rest of the surrogates. The

induction steps are fully defined by ℓ(𝑣), in(𝑣), 𝛾(𝑣), and 𝜂(𝑣), which are stored in the

sketch for every node 𝑣 ̸= 𝑟 in the subtree. The missing root surrogate was defined as

𝑠(𝑟) = 𝒬2ℓ(𝑟)(𝑥𝑐(𝑟)). Instead, the sketch stores its hashed value 𝐻ℓ(𝑟)(𝒬2ℓ(𝑟)(𝑥𝑐(𝑟))) and the

hash function 𝐻ℓ(𝑟).

The subroutine attempts to reverse the hash. It enumerates over all points 𝑝 ∈ 𝒬2ℓ(𝑟)

such that ‖𝑝− 𝑦‖ ≤ 2 · 2ℓ(𝑟). For each 𝑝 it computes 𝐻ℓ(𝑟)(𝑝). If 𝐻ℓ(𝑟)(𝑥𝑐(𝑟)) = 𝐻ℓ(𝑟)(𝑝) then

it sets 𝑠(𝑟) = 𝑝 and recovers all surrogates accordingly. If either no 𝑝, or more than one 𝑝,

satisfy 𝐻ℓ(𝑟)(𝑥𝑐(𝑟)) = 𝐻ℓ(𝑟)(𝑝), then it proceeds with 𝑠(𝑟) set to an arbitrary point (say, the

origin in R𝑑).

3.3.2 Analysis

Let 𝑟0, 𝑟1, . . . be the roots of the subtrees traversed by the algorithm.

Claim 3.3.1. ‖𝑥𝑐(𝑟0) − 𝑦‖ ≤ 2ℓ(𝑟0).
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Proof. Recall from Section 3.2 that ‖𝑥𝑐(𝑟0) − 𝑦‖ ≤ Δ*. Also, by the additional levels added

to 𝑇 in Section 3.2.1, ℓ(𝑟0) = ⌈log(Δ*)⌉. The claim follows.

Let 𝑡 be the smallest such that 𝑟𝑡 satisfies ‖𝑥𝑐(𝑟𝑡) − 𝑦‖ > 2ℓ(𝑟𝑡). (The algorithm does not

identify 𝑡, but we will use it for the analysis.)

Lemma 3.3.2. With probability 1 − 𝛿/𝑞, for every 𝑖 = 0, . . . , 𝑡 − 1 simultaneously, the

subroutine recovers 𝑠(𝑟𝑖) correctly as 𝒬2ℓ(𝑟)(𝑥𝑐(𝑟)). (Consequently, all surrogates in the subtree

rooted by 𝑟𝑖 are also recovered correctly.)

Proof. Fix a subtree 𝑇 ′ ∈ ℱ(𝑇 ) rooted in 𝑟, that satisfies ‖𝑦 − 𝑥𝑐(𝑟)‖ ≤ 2ℓ(𝑟). Since

‖𝑥𝑐(𝑟) − 𝑠(𝑟)‖ ≤ 2ℓ(𝑟) by Lemma 3.2.3, we have ‖𝑦 − 𝑠(𝑟)‖ ≤ 2 · 2ℓ(𝑟). Hence the surro-

gate recovery subroutine tries 𝑠(𝑟) as one of the hash pre-image candidates, and will identify

that 𝐻ℓ(𝑟)(𝑠(𝑟)) matches the hash stored in the sketch. Furthermore, by Fact 3.2.2, the

number of candidates is at most Γ𝑑 (where Γ = 𝑂(1)). Since the range of 𝐻ℓ(𝑟) has size

𝑚 = ⌈10 · Γ𝑑 · log(Δ*) · 𝑞/𝛿⌉, then by Claim 1.2.8 (with 𝑘 = Γ𝑑 and 𝜂 = 𝛿/⌈𝑞 log(Δ*)⌉), with

probability 1 − 𝛿/⌈𝑞 log(Δ*)⌉ there are no collisions, and 𝑠(𝑟) is recovered correctly. The

lemma follows by taking a union bound over the first 𝑡 subtrees traversed by the algorithm,

i.e. those rooted by 𝑟𝑖 for 𝑖 = 0, 1, . . . , 𝑡− 1. Noting that 𝑡 is upper-bounded by the number

of levels in the tree, which is ⌈log(Δ*)⌉, we get that all the 𝑠(𝑟𝑖)’s are recovered correctly

simultaneously with probability 1− 𝛿/𝑞.

From now on we assume that the event in Lemma 3.3.2 succeeds, meaning in steps

0, 1, . . . , 𝑡 − 1, the algorithm recovers all surrogates correctly. We henceforth prove that

under this event, the algorithm returns a (1+ 𝜖)-approximate nearest neighbor of 𝑦. In what

follows, let 𝑥* ∈ 𝑋 be a fixed true nearest neighbor of 𝑦 in 𝑋.

Lemma 3.3.3. Let 𝑇 ′ ∈ ℱ(𝑇 ) be a subtree rooted in 𝑟, such that 𝑥* ∈ 𝐶(𝑟). Let 𝑣 a leaf

of 𝑇 ′ that minimizes ‖𝑦 − 𝑠(𝑣)‖. Then either 𝑥* ∈ 𝐶(𝑣), or every 𝑧 ∈ 𝐶(𝑣) is a (1 + 𝑂(𝜖))-

approximate nearest neighbor of 𝑦.

Proof. Suppose w.l.o.g. by scaling that 𝜖 < 1/6. If 𝑥* ∈ 𝐶(𝑣) then we are done. Assume

now that 𝑥* ∈ 𝐶(𝑢) for a leaf 𝑢 ̸= 𝑣 of 𝑇 ′. Let ℓ = max{ℓ(𝑣), ℓ(𝑢)}.
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We start by showing that ‖𝑦−𝑥*‖ > 1
4 · 2

ℓ. Assume by contradiction this is not the case.

Since 𝑢 is a subtree leaf and 𝑥* ∈ 𝐶(𝑢), we have ‖𝑥*−𝑥𝑐(𝑢)‖ ≤ 2ℓ𝜖 by Lemma 2.3.5. We also

have ‖𝑥𝑐(𝑢) − 𝑠(𝑢)‖ ≤ 2ℓ𝜖 by Lemma 3.2.3. Together,

‖𝑦 − 𝑠(𝑢)‖ ≤ (1
4 + 2𝜖)2ℓ.

On the other hand, by the triangle inequality,

‖𝑦 − 𝑠(𝑣)‖ ≥ ‖𝑥* − 𝑥𝑐(𝑣)‖ − ‖𝑦 − 𝑥*‖ − ‖𝑥𝑐(𝑣) − 𝑠(𝑣)‖.

Noting that

∙ ‖𝑥* − 𝑥𝑐(𝑣)‖ ≥ 2ℓ, by Lemma 2.3.1, since 𝑥* and 𝑥𝑐(𝑣) are separated at level ℓ,

∙ ‖𝑦 − 𝑥*‖ ≤ 1
4 · 2

ℓ, by the contradiction hypothesis,

∙ ‖𝑥𝑐(𝑣) − 𝑠(𝑣)‖ ≤ 2ℓ𝜖, by Lemma 3.2.3,

we get

‖𝑦 − 𝑠(𝑣)‖ ≥ (3
4 − 𝜖)2ℓ > (1

4 + 2𝜖)2ℓ ≥ ‖𝑦 − 𝑠(𝑢)‖.

This contradicts the choice of 𝑣. Thus, ‖𝑦 − 𝑥*‖ > 1
4 · 2

ℓ.

The lemma now follows because for every 𝑧 ∈ 𝐶(𝑣),

‖𝑦 − 𝑧‖ ≤ ‖𝑦 − 𝑠(𝑣)‖+ ‖𝑠(𝑣)− 𝑥𝑐(𝑣)‖+ ‖𝑥𝑐(𝑣) − 𝑧‖ (3.2)

≤ ‖𝑦 − 𝑠(𝑢)‖+ ‖𝑠(𝑣)− 𝑥𝑐(𝑣)‖+ ‖𝑥𝑐(𝑣) − 𝑧‖ (3.3)

≤ ‖𝑦 − 𝑥*‖+ ‖𝑥* − 𝑥𝑐(𝑢)‖+ ‖𝑥𝑐(𝑢) − 𝑠(𝑢)‖+ ‖𝑠(𝑣)− 𝑥𝑐(𝑣)‖+ ‖𝑥𝑐(𝑣) − 𝑧‖ (3.4)

≤ ‖𝑦 − 𝑥*‖+ 4 · 2ℓ𝜖 (3.5)

≤ (1 + 16𝜖)‖𝑦 − 𝑥*‖, (3.6)

where (3.2) and (3.4) are by the triangle inequality, (3.3) is since ‖𝑦 − 𝑠(𝑣)‖ ≤ ‖𝑦 − 𝑠(𝑢)‖

by choice of 𝑣, (3.5) is by Lemmas 2.3.5 and 3.2.3, and (3.6) is since we have shown that

‖𝑦 − 𝑥*‖ > 1
4 · 2

ℓ. Therefore 𝑧 is a (1 + 16𝜖)-approximate nearest neighbor of 𝑦.
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Proof of Theorem 3.1.3. We may assume w.l.o.g. that 𝜖 is smaller than a sufficiently

small constant. Suppose that the event in Lemma 3.3.2 holds, hence all surrogates in the

subtrees rooted by 𝑟0, 𝑟1, . . . , 𝑟𝑡−1 are recovered correctly. We consider two cases.

In the first case, 𝑥* /∈ 𝐶(𝑟𝑡). Let 𝑖 ∈ {1, . . . , 𝑡} be the smallest such that 𝑥* /∈ 𝐶(𝑟𝑖). By

applying Lemma 3.3.3 on 𝑟𝑖−1, we have that every point in 𝐶(𝑟𝑖) is a (1+𝑂(𝜖))-approximate

nearest neighbor of 𝑦. After reaching 𝑟𝑖, the algorithm would return the center of some leaf

reachable from 𝑟𝑖, and it would be a correct output.

In the second case, 𝑥* ∈ 𝐶(𝑟𝑡). We will show that every point in 𝐶(𝑟𝑡) is a (1 + 𝑂(𝜖))-

approximate nearest neighbor of 𝑦, so once again, once the algorithm arrives at 𝑟𝑡 it can

return anything. By Lemma 3.2.1, every 𝑥 ∈ 𝐶(𝑟𝑡) satisfies

‖𝑥− 𝑥*‖ ≤ 2ℓ(𝑟𝑡)𝜖. (3.7)

In particular, ‖𝑥𝑐(𝑟𝑡)−𝑥*‖ ≤ 2ℓ(𝑟𝑡)𝜖. By definition of 𝑡 we have ‖𝑥𝑐(𝑟𝑡)− 𝑦‖ > 2ℓ(𝑟𝑡). Applying

the triangle inequality and then the two latter bounds, we get

‖𝑦 − 𝑥*‖ ≥ ‖𝑦 − 𝑥𝑐(𝑟𝑡)‖ − ‖𝑥𝑐(𝑟𝑡) − 𝑥*‖ > (1− 𝜖)2ℓ(𝑟𝑡).

Combining this with eq. (3.7), we find that every 𝑥 ∈ 𝐶(𝑟𝑡) satisfies ‖𝑥−𝑥*‖ ≤ 𝜖
1−𝜖
‖𝑦−𝑥*‖,

and hence (for 𝜖 ≤ 1/2),

‖𝑦 − 𝑥‖ ≤ ‖𝑦 − 𝑥*‖+ ‖𝑥* − 𝑥‖ ≤ (1 + 2𝜖)‖𝑦 − 𝑥*‖.

Thus 𝑥 is a (1 + 2𝜖)-nearest neighbor of 𝑦.

The proof assumes the occurrence of the event in Lemma 3.3.2, which occurs with proba-

bility 1− 𝛿/𝑞. By a union bound, the simultaneous success probability of the 𝑞 query points

of Bob is 1− 𝛿 as required. Finally, 𝜖 can be scaled down by a constant.

3.4 Distance Estimation

In this section we prove Theorem 3.1.4.
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3.4.1 Sketch Augmentations

We augment the sketch from Section 3.2 with additional information, relying on the following

distance sketches due to Achlioptas [Ach03] (following [JL84]) and Kushilevitz, Ostrovsky

and Rabani [KOR00].

Lemma 3.4.1 (discretized JL [Ach03]). Let 𝜖, 𝛿′ > 0. Let 𝑑′ = 𝑐𝜖−2 log(1/𝛿′) for a sufficiently

large constant 𝑐 > 0. Let 𝑀 be a random 𝑑′ × 𝑑 matrix in which every entry is chosen

independently uniformly at random from {−1/
√

𝑑′, 1/
√

𝑑′}. Then, for every 𝑥, 𝑦 ∈ R𝑑, with

probability 1− 𝛿′,

(1− 𝜖)‖𝑥− 𝑦‖ ≤ ‖𝑀𝑥−𝑀𝑦‖ ≤ (1 + 𝜖)‖𝑥− 𝑦‖.

Lemma 3.4.2 ([KOR00]). Let 𝑅 > 0 be fixed and let 𝜖, 𝛿′′ > 0. There is a randomized

map sk𝑅 of vectors in R𝑑 into 𝑂(𝜖−2 log(1/𝛿′′)) bits, with the following guarantee. For every

𝑥, 𝑦 ∈ R𝑑, given sk𝑅(𝑥) and sk𝑅(𝑦), one can output the following with probability 1− 𝛿′′:

∙ If ‖𝑥− 𝑦‖ ≤ (1− 𝜖)𝑅, output “Small”.

∙ If ‖𝑥− 𝑦‖ ≥ 𝑅, output “Large”.

We augment the sketch from Section 3.2 as follows. We sample a matrix 𝑀 from

Lemma 3.4.1, with 𝛿′ = 𝛿/𝑞. In addition, for every level ℓ in the tree 𝑇 , we sample a

map sk2ℓ from Lemma 3.4.2, with 𝛿′′ = 𝛿/(𝑞⌈log(Δ*)⌉). The maps of the different levels are

sampled independently. For every subtree root 𝑟 in 𝑇 , we store 𝑀𝑥𝑐(𝑟) and sk2ℓ(𝑟)(𝑥𝑐(𝑟)) in

the sketch. We also store the matrix 𝑀 itself, and the description of each map sk2ℓ for every

ℓ.

Total sketch size. Let us calculate the number of bits we have added to the sketch.

∙ Let 𝑟 be a subtree root. Recall that its center 𝑥𝑐(𝑟) has 𝑑 integer coordinates in [−Φ, Φ].

By Lemma 3.4.1, each of the 𝑑′ coordinates of 𝑀𝑥𝑐(𝑟) is the sum of the coordinates of

𝑥𝑐(𝑟) (with random signs and times a constant 1/
√

𝑑′), so each can be represented by

𝑂(𝑑 log Φ) bits. There are at most 2𝑛+1 subtree roots by Lemma 2.3.10(i), since every
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subtree root is either the root of 𝑇 or the bottom node of a long edge. Therefore, storing

𝑀𝑥𝑐(𝑟) for every 𝑟 adds 𝑂(𝑛𝑑′ log(𝑑Φ)) bits to the sketch. Since 𝑑′ = 𝑂(𝜖−2 log(1/𝛿′))

and 𝛿′ = 𝛿/𝑞, this adds 𝑂(𝜖−2𝑛 · log(𝑞/𝛿) · log(𝑑Φ)) bits to the sketch.

∙ The matrix 𝑀 itself can be stored, by [KMN11], using 𝑂(log 𝑑+log(𝑞/𝛿)+log(log(𝑞/𝛿)𝜖))

bits.

∙ By Lemma 3.4.2, storing sk2ℓ(𝑟)(𝑥𝑐(𝑟)) for a subtree root 𝑟 takes 𝑂(𝜖−2 log(1/𝛿′′)) bits.

As stated above there are at most 𝑂(𝑛) subtree roots, and 𝛿′′ = 𝛿/(𝑞⌈log(Δ*)⌉), where

we recall that Δ* = 𝑂(𝑑Φ). Altogether, this adds 𝑂(𝜖−2𝑛(log(𝑞/𝛿) + log log(𝑑Φ))) bits

to the sketch.

∙ Storing the description of the maps can be made to take 𝜖−5 · polylog(𝑞, 𝑑, Φ, 𝛿−1, 𝜖−1)

bits. This follows from known reductions, and we prove it in Claim 3.4.5 below for

completeness.

Note that we can assume w.l.o.g. that 𝑞 ≤ 𝑛, since otherwise, the known discretized dimen-

sion reduction sketching bound already yields Theorem 3.1.4. (This only serves to remove

the term 𝜖−2𝑛 log(𝑞) log(1/𝜖) from the bound.) In total, we get the sketch size stated in The-

orem 3.1.4.

3.4.2 Query Algorithm

Given the sketch, an index 𝑘 ∈ [𝑛] of a point in 𝑋, and a new query point 𝑦, the algorithm

needs to estimate ‖𝑦 − 𝑥𝑘‖ up to 1±𝑂(𝜖) distortion. It proceeds as follows.

1. Perform the approximate nearest neighbor query algorithm from Section 3.3. Let

𝑟0, 𝑟1, . . . be the downward sequence of subtree roots traversed by it.

2. For each 𝑟𝑗, estimate from the sketch whether ‖𝑦 − 𝑥𝑐(𝑟𝑗)‖ ≤ 2ℓ(𝑟𝑗). This can be done

by Lemma 3.4.2, since the sketch stores sk2ℓ(𝑟𝑗 )(𝑥𝑐(𝑟𝑗)) and also the map sk2ℓ(𝑟𝑗 ) , with

which we can compute sk2ℓ(𝑟𝑗 )(𝑦).

3. Let 𝑡 be the smallest 𝑗 that satisfies ‖𝑦 − 𝑥𝑐(𝑟𝑗)‖ > 2ℓ(𝑟𝑗) according the estimates of

Lemma 3.4.2. (This attempts to recover from the sketch the same 𝑡 as defined in the
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analysis in Section 3.3.)

4. Let 𝑡𝑘 ∈ {0, . . . , 𝑡} be the maximal such that 𝑥𝑘 ∈ 𝐶(𝑟𝑡𝑘
).

(In words, 𝑟𝑡𝑘
is the root of the subtree in which 𝑥𝑘 and 𝑦 “part ways”.)

5. If 𝑡𝑘 = 𝑡, return ‖𝑀𝑦 −𝑀𝑥𝑐(𝑟𝑡)‖. Note that 𝑀 and 𝑀𝑥𝑐(𝑟𝑡) are stored in the sketch.

6. If 𝑡𝑘 < 𝑡, let 𝑣𝑘 be the bottom node on the downward path from 𝑟𝑡𝑘
to leaf(𝑥𝑘) that

does not traverse a long edge. Return ‖𝑦 − 𝑠(𝑣𝑘)‖.

3.4.3 Analysis

Fix a query point 𝑦. Define the “good event” 𝒜(𝑦) as the intersection of the following:

1. For every subtree root 𝑟𝑗 traversed by the query algorithm above, the invocation of

Lemma 3.4.2 on sk2ℓ(𝑟𝑗 )(𝑥𝑐(𝑟𝑗)) and sk2ℓ(𝑟𝑗 )(𝑦) succeeds in deciding whether ‖𝑦−𝑥𝑐(𝑟𝑗)‖ ≤

2ℓ(𝑟𝑗). Specifically, this ensures that that choice of 𝑡 by the query algorithm satisfies

both

‖𝑦 − 𝑥𝑐(𝑟𝑗)‖ ≤ 2ℓ(𝑟𝑗) for every 𝑗 < 𝑡, (3.8)

and

‖𝑦 − 𝑥𝑐(𝑟𝑡)‖ ≥ (1− 𝜖)2ℓ(𝑟𝑡). (3.9)

Recalling that we invoked the lemma with 𝛿′ = 𝛿/(𝑞⌈log(Δ*)⌉), we can take a union

bound and succeed in all levels simultaneously with probability 1− 𝛿/𝑞.

2. ‖𝑀𝑦 −𝑀𝑥𝑐(𝑟𝑡)‖ = (1 ± 𝜖)‖𝑦 − 𝑥𝑐(𝑟𝑡)‖. By Lemma 3.4.1 this holds with probability

1− 𝛿/𝑞.

Therefore,

Claim 3.4.3. 𝒜(𝑦) occurs with probability 1−𝑂(𝛿/𝑞).

Furthermore,

Lemma 3.4.4. Conditioned on the occurrence of 𝒜(𝑦), Lemma 3.3.2 holds with probability

1− 𝛿/𝑞. Namely, the query algorithm correctly recovers all surrogates in the subtrees rooted

by 𝑟𝑗 for 𝑗 = 0, 1, . . . , 𝑡− 1.
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Proof. The proof of Lemma 3.3.2 in Section 3.3 relied on having ‖𝑦−𝑥𝑐(𝑟𝑗)‖ ≤ 2ℓ(𝑟𝑗) for every

𝑗 < 𝑡. Conditioning on 𝒜(𝑦) (Equation (3.8)) ensures this holds.

Proof of Theorem 3.1.4. Let 𝒜*(𝑦) denote the event in which both 𝒜(𝑦) occurs and the

conclusion of Lemma 3.3.2 occurs. By Claim 3.4.3 and Lemma 3.4.4, 𝒜*(𝑦) happens with

probability 1 − 𝑂(𝛿/𝑞). From now on we will assume that 𝒜*(𝑦) occurs, and conditioned

on this, we will show that the distance from 𝑦 to any data point can be deterministically

estimated correctly.

To this end, fix 𝑘 ∈ [𝑛] and suppose our goal is to estimate ‖𝑦 − 𝑥𝑘‖. Let 𝑡𝑘 and 𝑣𝑘 be

as defined by the distance query algorithm above. We handle the two cases of the algorithm

separately.

Case I: 𝑡𝑘 = 𝑡. This means 𝑥𝑘 ∈ 𝐶(𝑟𝑡). By Lemma 3.2.1 we have ‖𝑥𝑘 − 𝑥𝑐(𝑟𝑡)‖ ≤ 2ℓ(𝑟𝑡)𝜖.

By the occurence of 𝒜*(𝑦) (Equation (3.9)), we have ‖𝑦 − 𝑥𝑐(𝑟𝑡)‖ > (1 − 𝜖)2ℓ(𝑟𝑡). Together,

by the triangle inequality,

‖𝑦 − 𝑥𝑘‖ ≤ ‖𝑦 − 𝑥𝑐(𝑟𝑡)‖+ ‖𝑥𝑘 − 𝑥𝑐(𝑟𝑡)‖ ≤ ‖𝑦 − 𝑥𝑐(𝑟𝑡)‖+ 2ℓ(𝑟𝑡)𝜖 ≤ (1 + 𝜖
1−𝜖

)‖𝑦 − 𝑥𝑐(𝑟𝑡)‖,

and similarly

‖𝑦 − 𝑥𝑘‖ ≥ ‖𝑦 − 𝑥𝑐(𝑟𝑡)‖ − ‖𝑥𝑘 − 𝑥𝑐(𝑟𝑡)‖ ≥ ‖𝑦 − 𝑥𝑐(𝑟𝑡)‖ − 2ℓ(𝑟𝑡)𝜖 ≥ (1− 𝜖
1−𝜖

)‖𝑦 − 𝑥𝑐(𝑟𝑡)‖.

These mean that ‖𝑦 − 𝑥𝑐(𝑟𝑡)‖ is a (1 ± 𝑂(𝜖)) estimate (if, say, 𝜖 < 1/2) for ‖𝑦 − 𝑥𝑘‖. Since

𝒜*(𝑦) occurs, it holds that ‖𝑀𝑦 −𝑀𝑥𝑐(𝑟𝑡)‖ = (1 ± 𝜖)‖𝑦 − 𝑥𝑐(𝑟𝑡)‖, hence ‖𝑀𝑦 −𝑀𝑥𝑐(𝑟𝑡)‖ is

also a good estimate for ‖𝑦 − 𝑥𝑘‖, and this is what the algorithm returns.

Case II: 𝑡𝑘 < 𝑡. Let 𝑇 ′
𝑡𝑘

be the subtree rooted by 𝑟𝑡𝑘
. By the occurence of 𝒜*(𝑦), all

surrogates in 𝑇 ′
𝑡𝑘

are recovered correctly, and in particular 𝑠(𝑣𝑘) is recovered correctly. By

Lemma 3.2.3 we have ‖𝑥𝑐(𝑣𝑘)−𝑠(𝑣𝑘)‖ ≤ 2ℓ(𝑣𝑘)𝜖, and by Lemma 2.3.5 (noting that 𝑥𝑘 ∈ 𝐶(𝑣𝑘)

by choice of 𝑣𝑘) we have ‖𝑥𝑘 − 𝑥𝑐(𝑣𝑘)‖ ≤ 2ℓ(𝑣𝑘)𝜖. Together,

‖𝑥𝑘 − 𝑠(𝑣𝑘)‖ ≤ 2 · 2ℓ(𝑣𝑘)𝜖. (3.10)
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Let 𝑣 be the leaf in 𝑇 ′
𝑡𝑘

that minimizes ‖𝑦− 𝑠(𝑣)‖ (over all leaves of 𝑇 ′
𝑡𝑘

). Equivalently, 𝑣

is the top node of the long edge whose bottom node is 𝑟𝑡𝑘+1. Let ℓ = max{ℓ(𝑣), ℓ(𝑣𝑘)}. By

choice of 𝑡𝑘 we have 𝑣 ̸= 𝑣𝑘, hence the centers of these two leaves are separated already at

level ℓ, hence ‖𝑥𝑐(𝑣𝑘) − 𝑥𝑐(𝑣)‖ ≥ 2ℓ by Lemma 2.3.1. By two applications of Lemma 3.2.3 we

have ‖𝑥𝑐(𝑣𝑘)− 𝑠(𝑣𝑘)‖ ≤ 2ℓ𝜖 and ‖𝑥𝑐(𝑣)− 𝑠(𝑣)‖ ≤ 2ℓ𝜖. Putting the last three bounds together,

we have by the triangle inequality,

‖𝑠(𝑣𝑘)− 𝑠(𝑣)‖ ≥ ‖𝑥𝑐(𝑣𝑘) − 𝑥𝑐(𝑣)‖ − ‖𝑥𝑐(𝑣𝑘) − 𝑠(𝑣𝑘)‖ − ‖𝑥𝑐(𝑣) − 𝑠(𝑣)‖ ≥ (1− 2𝜖) · 2ℓ.

Since 𝑦 is closer to 𝑠(𝑣) than to 𝑠(𝑣𝑘) (by choice of 𝑣), we have

‖𝑦 − 𝑠(𝑣𝑘)‖ ≥ 1
2 · ‖𝑠(𝑣𝑘)− 𝑠(𝑣)‖ ≥

(︂1
2 − 𝜖

)︂
· 2ℓ.

Combining this with Equation (3.10) yields

‖𝑥𝑘 − 𝑠(𝑣𝑘)‖ ≤ 2𝜖 · 1
1/2− 𝜖

· ‖𝑦 − 𝑠(𝑣𝑘)‖ = 𝑂(𝜖) · ‖𝑦 − 𝑠(𝑣𝑘)‖.

Therefore,

‖𝑦 − 𝑥𝑘‖ = ‖𝑦 − 𝑠(𝑣𝑘)‖ ± ‖𝑥𝑘 − 𝑠(𝑣𝑘)‖ = (1±𝑂(𝜖)) · ‖𝑦 − 𝑠(𝑣𝑘)‖,

which means that ‖𝑦−𝑠(𝑣𝑘)‖ is a good estimate for ‖𝑦−𝑥𝑘‖, and this is what the algorithm

returns.

Conclusion. Combining both cases, we have shown that for any query point 𝑦, all distances

from 𝑦 to 𝑋 can be estimated correctly with probability 1−𝑂(𝛿/𝑞). Taking a union bound

over 𝑞 queries, and scaling 𝛿 and 𝜖 appropriately by a constant, yields the theorem.

3.4.4 Appendix: Explicit Storage of KOR Maps

In this section we argue that the description of a sketching map from Lemma 3.4.2 can be

stored explicitly with a small number of bits, in order to obtain explicit sketches without

84



shared randomness (see Remark 3.2.5). This entails storing an explicit embedding transform

into ℓ1, and then applying a unary embedding with small target dimension (whereas a naïve

unary embedding would lead to dimension linear in Φ, which is exponential in the input

description size). Both follow from known techniques: the former from [Ind06], and the latter

from [HPIM12, Lemmas 3.1 and 3.2]. For completeness, we include an explicit account.

Claim 3.4.5. A sketching map from Lemma 3.4.2 can be stored in 𝜖−5·polylog(𝑑, Φ, 1/𝛿′′, 1/𝜖)

bits (where 𝑑 is the ambient dimension of the input points, Φ is their coordinates range, and

𝜖, 𝛿′′ are the relative error and success probability, respectively, from Lemma 3.4.2).

Proof. Consider a map sk𝑅 from Lemma 3.4.2. The distance sketch of [KOR00] goes by

embedding Euclidean distances into ℓ1 and then into Hamming space. We review the steps

and bound their storage size.

1. Apply a Johnson-Lindenstrauss transform (Theorem 1.2.3) to reduce the Euclidean

dimension to 𝑂(𝜖−2 log(1/𝛿′′)). By [KMN11], the transform can be represented by

polylogarithmically many bits.

2. Apply Theorem 1.2.4, again with dimension

𝑑′′ = 𝑂(𝜖−2 log(1/𝛿′′)),

to embed the distances into ℓ1. The transform matrix has 𝑂(𝜖−4 log2(1/𝛿′′)) entries,

and by [Ind06], it suffices to represent each one with logarithmically many bits.

3. Round each point coordinate to an integer multiple of 𝜖𝑅/𝑑′′. This changes each

distance by at most an additive ±𝑂(𝜖𝑅), which we can allow.

4. Impose on the points a uniform grid with side length 𝑅/𝛿′′, shifted by an i.i.d. uniformly

random shift in each dimension. There are

𝑀 = 𝑅/𝛿′′

𝜖𝑅/𝑑′′ = 𝑑′′

𝜖𝛿′′

possible shift values in each dimension, so the total storage size of the shifts is 𝑑′′ log 𝑀

bits.
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5. Within each grid cell, by shifting and scaling, we may assume w.l.o.g. that the coor-

dinates are integers between 0 to 𝑀 . Embed the points in each cell into a (𝑑′′𝑀)-

dimensional Hamming space {0, 1}𝑑′′𝑀 , by the unary embedding, which transforms a

coordinate with value 𝑘 into a string of 𝑘 ones followed by 𝑀 − 𝑘 zeros. Observe that

the embedding is isometric (w.r.t. ℓ1-distances in the source space).

6. The [KOR00] sketch in the Hamming case is defined by 𝑑′′𝑀 bits per bit in the sketch,

so in total, 𝑂(𝑑′′𝑀 · 𝜖−2 log(1/𝛿′′)) = (𝛿′′)−1𝜖−5 log3(1/𝛿′′) bits. The inverse-linear de-

pendence on the success probability 𝛿′′ can be decreased to 𝑂(log(1/𝛿′′)) by a standard

technique (reporting the majority output of 𝑂(log(1/𝛿′′)) independent repetitions, each

run with constant success probability).

Thus the bit size of representing the map sk𝑅 is as stated in the lemma. We need to argue

that the above transformations preserve (i) the sketch size per point and (ii) the success

probability.

For (i), given an input point 𝑥 ∈ R𝑑, we augment its sketch sk𝑅(𝑥) with the ID of the grid

cell that contains it, hashed into one of 𝑂(1/𝛿′′) buckets by universal hashing (Section 1.2.4).

This only adds 𝑂(log(1/𝛿′′)) bits to the sketch and does not change its asymptotic size. We

also need to add the description of the universal hash function to the description of sk𝑅.

If 𝑥 has integer coordinates in [−Φ, Φ], then there are at most 𝑂(𝑑Φ)𝑑′′ grid cells, and

by Theorem 1.2.9, a universal hash function costs 𝑂(𝑑′′ log(𝑑Φ)) = 𝑂(𝜖−2 log(1/𝛿′′) log(𝑑Φ))

bits to store.

For (ii), when we compare sk𝑅(𝑥) and sk𝑅(𝑦) for a pair 𝑥, 𝑦, if their hashed cell IDs are

different we report “Large”, and otherwise we report the output of the [KOR00] sketch. If

‖𝑥 − 𝑦‖ ≤ 𝑅, then, since the grid side is 𝑅/𝛿′′, it is not hard to see they fall in different

cells of the uniformly shifted grid with probability at most 𝑂(𝛿′′). On the other hand, if

‖𝑥 − 𝑦‖ ≥ (1 + 𝜖)𝑅 and 𝑥, 𝑦 fall in different cells, the probability that their hashed cell

IDs are the same is at most 𝛿′′ by the universal hashing property. Thus the total failure

probability added to Lemma 3.4.2 by the above transformations is 𝑂(𝛿′′).
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3.5 Lower Bound for Nearest Neighbor Search

In this section we provide a lower bound for the all-nearest-neighbors problem, matching

the upper bound in Theorem 3.1.3 up to a factor of 𝑂(log(1/𝜖)), in the regime 𝛿 < 1/𝑛2.

We recall that 𝛿 is the success probability of the sketch in reporting an approximate nearest

neighbor for a single unknown query, so this assumption essentially means that the sketch is

required to succeed on 𝑛2 queries simultaneously.

Theorem 3.5.1. Suppose that 𝑑 ≥ Ω(𝜖−2 log 𝑛), Φ ≥ 1/𝜖, and 1/𝑛0.5−𝛽 ≤ 𝜖 ≤ 𝜖0 for a

constant 𝛽 > 0 and a sufficiently small constant 𝜖0. Suppose also that 𝛿 < 1/𝑛2. Then, for

the all-nearest-neighbors problem, Alice must use a sketch of at least Ω(𝛽𝜖−2𝑛 log 𝑛) bits.

Proof. We start with dimension 𝑑 = 𝑛 + 1 + log 𝑛; it can then be reduced by standard

dimension reduction. Fix 𝑘 = 1/𝜖2 and assume w.l.o.g. that 𝑘 is a square integer (by taking

𝜖 to be appropriately small). Note that since 𝜖 > 1/
√

𝑛 we have 𝑘 ≤ 𝑛, and that since

Φ ≥ 1/𝜖 we have
√

𝑘 ≤ Φ.

The data set will consist of 2𝑛 points, 𝑥1, . . . , 𝑥𝑛 and 𝑧1, . . . , 𝑧𝑛. Let 𝑖 ∈ [𝑛]. We choose the

first 𝑛 coordinates of 𝑥𝑖 to be an arbitrary 𝑘-sparse vector, in which each nonzero coordinate

equals 1/
√

𝑘. Note that the norm of this part is 1. The (𝑛 + 1)th coordinate of 𝑥𝑖 is set to

0. The remaining log 𝑛 coordinates encode the binary encoding of 𝑖, with each coordinate

multiplied by 10.

Next we define 𝑧𝑖. The first 𝑛 coordinates are 0. The (𝑛+1)th coordinate equals
√

1− 𝜖.

The remaining log 𝑛 coordinates encode 𝑖 similarly to 𝑥𝑖.

The number of different choices for {𝑥1, . . . , 𝑥𝑛} is
(︁

𝑛
𝑘

)︁𝑛
. Therefore if we show that one

can fully recover 𝑥1, . . . , 𝑥𝑛 from a given all-nearest-neighbor sketch of the dataset, we would

get the desired lower bound

log
(︃(︃

𝑛

𝑘

)︃𝑛)︃
≥ 𝑛𝑘 log(𝑛/𝑘) = 𝜖−2𝑛 log(𝜖2𝑛) = 𝜖−2𝑛 log(𝑛2𝛽) = 2𝛽𝜖−2𝑛 log 𝑛.

Suppose we have such a sketch. For given 𝑖, 𝑗 ∈ [𝑛] we now show how to recover the 𝑗th

coordinate of 𝑥𝑖, denoted 𝑥𝑖(𝑗), with a single approximate nearest neighbor query. Let 𝑦𝑖𝑗

be the following vector in R𝑑: The first 𝑛 + 1 coordinates are all zeros, except for the 𝑗th
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coordinate which is set to 1. The last log 𝑛 coordinates encode 𝑖 similarly to 𝑥𝑖 and 𝑧𝑖.

Consider the distances from 𝑦𝑖𝑗 to all data points. We start with 𝑥𝑖. It is identical to 𝑦𝑖

in the last log 𝑛+1 coordinates, so we will restrict both to the first 𝑛 coordinates and denote

the restricted vectors by 𝑥:𝑛
𝑖 and 𝑦:𝑛

𝑖𝑗 . 𝑥:𝑛
𝑖 is a 𝑘-sparse vector with nonzero entries equal to

1/
√

𝑘, hence ‖𝑥:𝑛
𝑖 ‖ = 1. 𝑦:𝑛

𝑖𝑗 is just the standard basis vector 𝑒𝑗 in R𝑛. Hence,

‖𝑥𝑖 − 𝑦𝑖𝑗‖2 = ‖𝑥:𝑛
𝑖 − 𝑦:𝑛

𝑖𝑗 ‖2 = ‖𝑥:𝑛
𝑖 ‖2 + ‖𝑦:𝑛

𝑖𝑗 ‖2 − 2(𝑥:𝑛
𝑖 )𝑇 𝑦:𝑛

𝑖𝑗 = 2− 2𝑥𝑖(𝑗).

This equals 2 if 𝑥𝑖(𝑗) = 0 and 2− 2/
√

𝑘 = 2− 2𝜖 if 𝑥𝑖(𝑗) = 1/
√

𝑘.

Next consider 𝑧𝑖. It is identical to 𝑦𝑖𝑗 in all except the 𝑗th coordinate, which is 0 in 𝑧𝑖

and 1 in 𝑦𝑖𝑗, and the (𝑛 + 1)th coordinate, which is 0 for 𝑦𝑖𝑗 and
√

1− 𝜖 for 𝑧𝑖. Therefore,

‖𝑧𝑖 − 𝑦𝑖𝑗‖2 = 2− 𝜖.

Finally, for every 𝑖′ ̸= 𝑖, both 𝑥𝑖′ and 𝑧𝑖′ are at distance at least 10 from 𝑦𝑖𝑗 due to the

encoding of 𝑖 (as binary multiplied by 10) in the last log 𝑛 coordinates.

In summation we have established the following:

∙ If 𝑥𝑖(𝑗) ̸= 0, then the closest point to 𝑦𝑖𝑗 in the dataset is 𝑥𝑖 at distance
√

2− 2𝜖, and

the next closest point is 𝑧𝑖 at distance
√

2− 𝜖.

∙ If 𝑥𝑖(𝑗) = 0, then the closest point to 𝑦𝑖𝑗 in the dataset is 𝑧𝑖 at distance
√

2− 𝜖, and

the next closest point is 𝑥𝑖 at distance 2.

Therefore, if the sketch supports (1 + 1
8𝜖)-approximate nearest neighbors, we can recover the

true nearest neighbor of 𝑦𝑖𝑗 and thus recover 𝑥𝑖(𝑗). By hypothesis, the query succeeds with

probability 𝛿 < 1/𝑛2. By a union bound over all 𝑖, 𝑗 ∈ [𝑛] we can recover all of 𝑥1, . . . , 𝑥𝑛

simultaneously, and the theorem follows.

3.6 Lower Bound for Distance Estimation

In this section we prove Theorem 3.1.5. The proof is along the lines of [MWY13], who proved

(among other results) this statement for the case 𝑞 = 𝑛. We describe how to adapt their

framework to our problem, and refer to [MWY13] for missing details that remain similar.
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3.6.1 Preliminaries: The Augmented Indexing Problem

The proof follows the approach of [JW13], of proving one-way communication lower bounds

by reduction to variants of the augmented indexing problem, defined next.

Definition 3.6.1 (Augmented Indexing). In the Augmented Indexing problem 𝐴𝑢𝑔𝐼𝑛𝑑(𝑘, 𝛿),

Alice gets a vector 𝐴 with 𝑘 entries, whose elements are entries of a universe of size 20/𝛿.

Bob gets an index 𝑖 ∈ [𝑘], an element 𝑒, and the elements 𝐴(𝑖′) for every 𝑖′ < 𝑖. Bob needs

to decide whether 𝑒 = 𝐴(𝑖), and succeed with probability 1− 𝛿.

Jayram and Woodruff [JW13] give a one-way communication lower bound of Ω(𝑘 log(1/𝛿))

for this problem. The main component in [MWY13] is a modified one-way communication

model, in which the protocol is allowed to abort with a substantially larger (constant) proba-

bility than it is allowed to err. We will call it simply the abortion model and refer to [MWY13]

for the exact definition (which we will not require). They prove the same lower bound for

Augmented Indexing in abortion model as in the usual one-way communication model.

Lemma 3.6.2 ([MWY13]). In the abortion model, the one-way communication complexity

of 𝐴𝑢𝑔𝐼𝑛𝑑(𝑘, 𝛿) is Ω(𝑘 log(1/𝛿)).

3.6.2 Variants of Augmented Indexing

We start by defining a variant of augmented indexing that will be suitable for our purpose.

Definition 3.6.3. In the Matrix Augmented Indexing problem 𝑀𝑎𝑡𝐴𝑢𝑔𝐼𝑛𝑑(𝑘, 𝑚, 𝛿), Alice

gets a matrix 𝐴 of order 𝑘 ×𝑚, whose entries are elements of a universe of size 1/𝛿. Bob

gets indices 𝑖 ∈ [𝑘] and 𝑗 ∈ [𝑚], an element 𝑒, and the elements 𝐴(𝑖, 𝑗′) for every 𝑗 < 𝑗′.

Bob needs to decide whether 𝑒 = 𝐴(𝑖, 𝑗), and succeed with probability 1− 𝛿.

This problem is clearly at least as difficult as 𝐴𝑢𝑔𝐼𝑛𝑑(𝑘𝑚, 𝛿) from Definition 3.6.1, since

in the latter Bob gets more information (namely, if we arrange the vector 𝐴 in 𝐴𝑢𝑔𝐼𝑛𝑑(𝑘𝑚, 𝛿)

as a 𝑘 ×𝑚 matrix, then Bob gets all entries of 𝐴 which lexicographically precede 𝐴(𝑖, 𝑗)).

We get the following immediate corollary from Lemma 3.6.2.

Corollary 3.6.4. In the abortion model, the one-way communication complexity of the

𝑀𝑎𝑡𝐴𝑢𝑔𝐼𝑛𝑑(𝑘, 𝑚, 𝛿) problem is Ω(𝑘𝑚 log(1/𝛿)).
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[MWY13] reformulate Augmented Indexing so that Alice’s input is a set instead of vector.

Similarly, we reformulate Matrix Augmented Indexing as follows.

Definition 3.6.5. Let 𝑚 > 0 and 𝑘 > 0 be integers, and 𝛿 ∈ (0, 1). Partition the interval

[𝑚/𝛿] into 𝑚 intervals 𝐼1, . . . , 𝐼𝑚 of size 1/𝛿 each.

In the Augmented Set List problem 𝐴𝑢𝑔𝑆𝑒𝑡𝐿𝑖𝑠𝑡(𝑘, 𝑚, 𝛿), Alice gets a list of subsets

𝑆1, . . . , 𝑆𝑘 ⊂ [𝑚/𝛿], such that each 𝑆𝑖 has size exactly 𝑚 and contains exactly one element

from each interval 𝐼1, . . . , 𝐼𝑚. Bob gets an index 𝑖 ∈ [𝑘], an element 𝑒 ∈ [𝑚/𝛿] and a subset

𝑇 of 𝑆𝑖 that contains exactly the elements of 𝑆𝑖 that are smaller than 𝑒. Bob needs to decide

whether 𝑒 ∈ 𝑆𝑖, and succeed with probability at least 1− 𝛿.

The equivalence to Matrix Augmented Indexing is not hard to show; the details are similar

to [MWY13] and we omit them here. By the equivalence, we get the following corollary from

Corollary 3.6.4.

Corollary 3.6.6. In the abortion model, the one-way communication complexity of the

𝐴𝑢𝑔𝑆𝑒𝑡𝐿𝑖𝑠𝑡(𝑘, 𝑚, 𝛿) problem is Ω(𝑘𝑚 log(1/𝛿)).

Next we define the 𝑞-fold version of the same problem.

Definition 3.6.7. In the problem 𝑞-𝐴𝑢𝑔𝑆𝑒𝑡𝐿𝑖𝑠𝑡(𝑘, 𝑚, 𝛿), Alice and Bob get 𝑞 instances of

AugSetList(𝑘, 𝑚, 𝛿/𝑞), and Bob needs to answer correctly on all of them simultaneously with

probability at least 1− 𝛿.

The main technical result of [MWY13] is, loosely speaking, a direct-sum theorem which

lifts a lower bound in the abortion model to a 𝑞-fold lower bound in the usual model.

Applying their theorem to Corollary 3.6.6, we obtain the following.

Corollary 3.6.8. The one-way communication complexity of the 𝑞-𝐴𝑢𝑔𝑆𝑒𝑡𝐿𝑖𝑠𝑡(𝑘, 𝑚, 𝛿) prob-

lem is Ω(𝑞𝑘𝑚 log(𝑞/𝛿)).

Finally, we construct a “generalized augmented indexing” problem over 𝑟 copies of the

above problem.

Definition 3.6.9. In the problem 𝑟-𝐼𝑛𝑑(𝑞-𝐴𝑢𝑔𝑆𝑒𝑡𝐿𝑖𝑠𝑡(𝑘, 𝑚, 𝛿)), Alice gets 𝑟 instances,

𝐴1, . . . , 𝐴𝑟, of 𝑞-𝐴𝑢𝑔𝑆𝑒𝑡𝐿𝑖𝑠𝑡(𝑘, 𝑚, 𝛿). Bob gets an index 𝑗 ∈ [𝑟], his part 𝐵𝑗 of instance
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𝑗, and Alice’s instances 𝐴1, . . . , 𝐴𝑗−1. Bob needs to solve instance 𝑗 with success probability

at least 1− 𝛿.

By standard direct sum results in communication complexity (see [MWY13]) we obtain

from Corollary 3.6.8 the final lower bound we need.

Lemma 3.6.10. The one-way communication complexity of the 𝑟-𝐼𝑛𝑑(𝑞-𝐴𝑢𝑔𝑆𝑒𝑡𝐿𝑖𝑠𝑡(𝑘, 𝑚, 𝛿))

problem is Ω(𝑟𝑞𝑘𝑚 log(𝑞/𝛿)).

3.6.3 Lower bound by Number of Queries

We now prove the following term of the lower bound in Theorem 3.1.5

Lemma 3.6.11. Suppose that 𝑑1−𝜌 ≥ 𝜖−2 log(𝑞/𝛿) for a constant 𝜌 > 0, and 𝜖 is at most

a sufficiently small constant. Then, for the all-cross-distances problem, Alice must use a

sketch of at least Ω(𝜖−2𝑛 log(𝑑Φ) log(𝑞/𝛿)) bits.

The proof of Lemma 3.6.11 is by reducing 𝑟-𝐼𝑛𝑑(𝑞-𝐴𝑢𝑔𝑆𝑒𝑡𝐿𝑖𝑠𝑡(𝑘, 𝑚, 𝛿)) to the all-cross-

distances problem. We will use two reductions, to get a lower bound once in terms of 𝑑 and

once in terms of Φ. Specifically, in the first reduction we will set 𝑚 = 1/𝜖2, 𝑘 = 𝑛/𝑞 and

𝑟 = 𝜌 log 𝑑 (where 𝜌 is the constant from the statement of Lemma 3.6.11). Then the lower

bound we would get by Proposition 3.6.10 is Ω (𝜖−2𝑛 log 𝑑 log(𝑞/𝛿)). In the second reduction

we will set 𝑟 = 𝜌 log Φ, yielding the lower bound Ω (𝜖−2𝑛 log Φ log(𝑞/𝛿)). Together they lead

to Lemma 3.6.11.

In both settings, recall we are reducing to the following problem: For dimension 𝑑 =

Ω(𝜖−2 log(𝑞/𝛿)) and aspect ratio Φ, Alice gets 𝑛 points, Bob gets 𝑞 points, and Bob needs to

estimate all cross-distances up to distortion 1± 𝜖.

Consider an instance of 𝑟-𝐼𝑛𝑑(𝑞-𝐴𝑢𝑔𝑆𝑒𝑡𝐿𝑖𝑠𝑡(𝑘, 𝑚, 𝛿)). It can be visualized as follows:

Alice gets a matrix 𝑆 with 𝑛 = 𝑞𝑘 rows and 𝑟 columns, where each entry contains a set

of size 𝑚. Bob gets an index 𝑗 ∈ [𝑟], indices 𝑖1, . . . , 𝑖𝑞 ∈ [𝑘], elements 𝑒1, . . . , 𝑒𝑞, subsets

𝑇1 ⊂ 𝑆(𝑖1, 𝑗), . . . , 𝑇𝑞 ⊂ 𝑆(𝑖𝑞, 𝑗), and the first 𝑗 − 1 columns of the matrix 𝑆.

We now use the encoding scheme of [JW13], in the set formulation which was given

in [MWY13]. We restate the result.
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Lemma 3.6.12 ([JW13]). Let 𝑚 = 1/𝜖2 and 0 < 𝜂 < 1. Suppose we have the following

setting:

∙ Alice has subsets 𝑆1, . . . , 𝑆𝑟 of [𝑚/𝜂].

∙ Bob has an index 𝑗 ∈ [𝑟], an element 𝑒 ∈ [𝑚/𝜂], the subset 𝑇 ⊂ 𝑆𝑗 of elements smaller

than 𝑒, and the sets 𝑆1, . . . , 𝑆𝑗−1.

There is a shared-randomness mapping of their inputs into points 𝑣𝐴, 𝑣𝐵 and a scale Ψ > 0

(the scale is known to both), such that

1. 𝑣𝐴, 𝑣𝐵 ∈ {0, 1}𝐷 for 𝐷 = 𝑂(𝜖−2 log( 1
𝜂
) exp(𝑟)).

2. If 𝑒 ∈ 𝑆𝑗 (YES instance) then w.p. 1− 𝜂, ‖𝑣𝐴 − 𝑣𝐵‖2 ≤ (1− 2𝜖)Ψ.

3. If 𝑒 /∈ 𝑆𝑗 (NO instance) then w.p. 1− 𝜂, ‖𝑣𝐴 − 𝑣𝐵‖2 ≥ (1− 𝜖)Ψ

Lower bound by dimension. We start with the first reduction that yields a lower bound

in terms of 𝑑.

Lemma 3.6.13. Under the assumptions of Lemma 3.6.11, for the all-cross-distances prob-

lem, Alice must use a sketch of at least Ω(𝜖−2𝑛 log(𝑑) log(𝑞/𝛿)) bits.

Proof. We invoke Lemma 3.6.12 with 𝑟 = 𝜌 log 𝑑 and 𝜂 = 𝛿/𝑞. Note that the latter is the

desired success probability in each instance of 𝑞-𝐴𝑢𝑔𝑆𝑒𝑡𝐿𝑖𝑠𝑡(𝑘, 𝑚, 𝛿) (cf. Definition 3.6.7).

Alice encodes each row of the matrix, (𝑆(𝑖, 1), . . . , 𝑆(𝑖, 𝑟)), into a point 𝑥𝑖, thus 𝑛 points

𝑥1, . . . , 𝑥𝑛. Bob encodes (𝑆(𝑖, 1), . . . , 𝑆(𝑖𝑧, 𝑗 − 1), 𝑇𝑖, 𝑗, 𝑒𝑧) for each 𝑧 ∈ [𝑞] into a point 𝑦𝑧,

thus 𝑞 points 𝑦1, . . . , 𝑦𝑧. For every 𝑧 ∈ [𝑞], the problem represented by row 𝑖𝑧 in the matrix 𝑆

is reduced by Lemma 3.6.12 to estimating the distance ‖𝑥𝑖𝑧−𝑦𝑧‖. By Item 1 of Lemma 3.6.12,

the points {𝑥𝑖}𝑖∈[𝑛], {𝑦𝑧}𝑧∈[𝑞] have binary coordinates and dimension 𝐷 = 𝑂(𝜖−2 log(𝑞/𝛿)𝑑𝜌).

By the hypothesis 𝑑1−𝜌 ≥ 𝜖−2 log(𝑞/𝛿) of Lemma 3.6.11, 𝐷 = 𝑂(𝑑). Therefore Alice and Bob

can now feed them into a given black-box solution of the all-cross-distances problem, which

estimates all the required distances and solves 𝑟-𝐼𝑛𝑑(𝑞-𝐴𝑢𝑔𝑆𝑒𝑡𝐿𝑖𝑠𝑡(𝑘, 𝑚, 𝛿)).

Let us establish the success probability of the reduction. Since we set 𝜂 = 𝛿/𝑞 in

Lemma 3.6.12, it preserves each distance ‖𝑥𝑖𝑧−𝑦𝑧‖ for 𝑧 ∈ [𝑞] with probability 1−𝛿/𝑞. By a
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union bound, it preserves all of them simultaneously with probability 1−𝛿. The success prob-

ability of the all-cross-distances problem, simultaneously on all query points {𝑦𝑧 : 𝑧 ∈ [𝑞]},

is again 1− 𝛿. Altogether, the reduction succeeds with probability 1−𝑂(𝛿). As a result, the

all-cross-distances problem solves the given instance of 𝑟-𝐼𝑛𝑑(𝑞-𝐴𝑢𝑔𝑆𝑒𝑡𝐿𝑖𝑠𝑡(𝑘, 𝑚, 𝛿)), and

Lemma 3.6.13 follows.

Lower bound by coordinate range. We proceed to the second reduction that would

yield a lower bound in terms of Φ.

Lemma 3.6.14. Under the assumptions of Lemma 3.6.11, for the all-cross-distances prob-

lem, Alice must use a sketch of at least Ω(𝜖−2𝑛 log(Φ) log(𝑞/𝛿)) bits.

Proof. We may assume that Φ ≥ 𝑑 since otherwise Lemma 3.6.14 already follows from

Lemma 3.6.13. Therefore Φ1−𝜌 ≥ 𝜖−2 log(𝑞/𝛿).

The reduction is very similar to the one in Lemma 3.6.13. Again we evoke Lemma 3.6.12

with 𝜂 = 𝛿/𝑞, but this time we set 𝑟 = 𝜌 log Φ. Again we denote Alice’s encoded points

by 𝑥1, . . . , 𝑥𝑛, and Bob’s by 𝑦1, . . . , 𝑦𝑞. By Item 1 of Lemma 3.6.12, the points have binary

coordinates and dimension 𝐷 = 𝑂(𝜖−2 log(𝑞/𝛿)Φ𝜌). The difference from Lemma 3.6.13 is

that since it is possible that Φ ≫ 𝑑, the dimension 𝐷 is too large for the given black-box

solution of the all-cross-distances problem (which is limited to dimension 𝑂(𝑑)).

To solve this, Alice and Bob project their points into dimension 𝐷′ = 𝑂(𝜖−2 log(𝑞/𝛿)) by

a Johnson-Lindenstrauss transform, using shared randomness. Let �̃�1, . . . , �̃�𝑛 and 𝑦1, . . . , 𝑦𝑧

denote the projected points. After the projection each coordinate has magnitude at most

𝑂(𝜖−2 log(𝑞/𝛿)Φ𝜌). By our assumption Φ1−𝜌 ≥ Ω(𝜖−2 log(𝑞/𝛿)), this is at most 𝑂(Φ). Since

the dimension 𝐷′ is 𝑂(𝑑), Alice and Bob can now feed �̃�1, . . . , �̃�𝑛 and 𝑦1, . . . , 𝑦𝑧 into a given

black-box solution of the all-cross-distances problem with dimension 𝑂(𝑑) and aspect ratio

𝑂(Φ).

Let us establish the success probability of the reduction. As before, Lemma 3.6.12 pre-

serves all the required distances, ‖𝑥𝑖𝑧 − 𝑦𝑧‖ for 𝑧 ∈ [𝑞], with probability 1− 𝛿. The Johnson-

Lindenstrauss transform into dimension 𝐷′ preserves each distance as ‖�̃�𝑖𝑧 − 𝑦𝑧‖ with prob-

ability at least 1 − 𝛿, since we picked the dimension to be 𝐷′ = 𝑂(𝜖−2 log( 𝑞
𝛿
)). The success

probability of the all-cross-distances problem simultaneously is again 1− 𝛿. Altogether, the
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reduction succeeds with probability 1 − 𝑂(𝛿). As a result, the all-cross-distances problem

solves the given instance of 𝑟-𝐼𝑛𝑑(𝑞-𝐴𝑢𝑔𝑆𝑒𝑡𝐿𝑖𝑠𝑡(𝑘, 𝑚, 𝛿)), and Lemma 3.6.14 follows.

3.6.4 Lower Bound by Number of Data Points

Finally we prove the remaining term of the lower bound in Theorem 3.1.5, by reduction to

the metric sketching problem from Chapter 2.

Lemma 3.6.15. Suppose that 𝑑 ≥ Ω(𝜖−2 log 𝑛); Φ ≥ 1/𝜖; 𝜖 is at most a sufficiently small

constant; and 𝜖 ≥ 1/𝑛0.5−𝜌′ for a constant 𝜌′ > 0. Then, for the all-cross-distances problem,

Alice must use a sketch of at least Ω(𝜌′𝜖−2𝑛 log 𝑛) bits.

Proof. We reduce Euclidean metric sketching without new query points (Definition 2.1.1) to

all-cross-distances (with query points). For the latter problem, we have already proved the

desired lower bound in Theorem 2.6.1.

Suppose we have a given sketching procedure for the all-cross-distances problem that

uses 𝑠 = 𝑠(𝑛, 𝑑, Φ, 1, 𝜖, 𝛿) amortized bits per point. (Note that 𝑠 is the sketch size with 𝑞 = 1

query point.) We invoke it on the input point set 𝑋 to the metric sketching problem, and

denote the resulting sketch by 𝑆0. For every point 𝑦 ∈ {−Φ . . . Φ}𝑑, with probability 1−𝛿, all

distances {‖𝑥−𝑦‖ : 𝑥 ∈ 𝑋} can be recovered from 𝑆0. In particular, this holds in expectation

for (1 − 𝛿)𝑛 of the points in 𝑋. By Markov’s inequality, this holds for 1
2(1 − 𝛿)𝑛 > 1

4𝑛 of

the points in 𝑋 with probability at least 1/2. We proceed by recursion on the remaining 3
4𝑛

points in 𝑋, and so on, until for every 𝑥, 𝑦 ∈ 𝑋 we have produced an all-cross-distances that

correctly estimates ‖𝑥− 𝑦‖. The sketch produced in the 𝑖th step of the recursion is denoted

by 𝑆𝑖 and has total size (3
4)𝑖𝑛𝑠 bits. After 𝑡 = 𝑂(log 𝑛) steps, with nonzero probability

1/𝑛𝑂(1), we have produced a sequence of sketches 𝑆0, . . . , 𝑆𝑡 from which every distance in

{‖𝑥 − 𝑥′‖ : 𝑥, 𝑥′ ∈ 𝑋} can be recovered, with a total size of 𝑂(∑︀𝑡
𝑖=0(3

4)𝑖𝑛𝑠) = 𝑂(𝑛𝑠) bits.

(Note that the lower bound in Theorem 2.6.1 was information theoretic and did not depend

on the success probability.) This completes the reduction to Definition 2.1.1 and the lower

bound follows.
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3.6.5 Concluding the Lower Bound Proof

To conclude the proof of Theorem 3.1.5, note that whenever we prove two lower bounds 𝐵

and 𝐵′, they can be combined into one lower bound 𝐵+𝐵′ by taking the direct product of the

respective families of hard metrics, as in the proof of Theorem 2.6.1. Thus, Lemmas 3.6.13

and 3.6.14 imply Lemma 3.6.11, which together with Lemma 3.6.15 implies Theorem 3.1.5.
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Chapter 4

Practical and Provable Metric

Compression

In this chapter we revisit the metric sketching problem from a practical point of view.

Chapters 2 and 3 were focused on achieving optimal theoretical bounds, which necessitated

using rather involved techniques that do not seem amenable to implementation. Nonetheless,

we show that the underlying algorithmic ideas can yield a practical variant of the algorithm.

Our resulting algorithm, QuadSketch, provably attains nearly optimal sketching bound —

close to our bounds from Chapters 2 and 3, and asymptotically better than discretized

dimension reduction — and at the same time, it empirically matches of improves over the

performance of state-of-the-art heuristics on standard benchmark datasets.

4.1 Introduction

Our motivation in studying metric compression, as discussed in Chapter 1, has been twofold:

aside from being a natural question of inherent theoretical interest, it also arises in practical

applications that involve searching through large datasets. So far we have focused on the

theoretical aspects. Now we turn to the practical ones.

Can our techniques from the previous chapters lead to practical algorithms?

Ostensibly, our Relative Location Tree technique from Chapters 2 and 3 — while provably

achieving optimal sketching bounds — may seem too complicated to be beneficial in practice.
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Reference Bits per point Construction runtime

Discretized [JL84] 𝑂(𝜖−2 log2 𝑛) �̃�(𝜖−2𝑛)
Theorem 2.1.2 𝑂(𝜖−2 log 𝑛), tight �̃�(𝑛1+𝛼 + 𝜖−2𝑛), 𝛼 ∈ (0, 1]

QuadSketch (Theorem 4.4.8) 𝑂(𝜖−2 log 𝑛 · log(𝜖−1 log 𝑛)) �̃�(𝜖−2𝑛)

Table 4.1: QuadSketch guarantees for Euclidean metric compression with distortion (1± 𝜖),
compared to previous bounds. The bounds are listed with Φ = 𝑛𝑂(1) for simplicity.

However, we will show that its key algorithmic ideas can be adjusted to benefit both in theory

and in practice. We call the resulting algorithm QuadSketch. On one hand, theoretically,

its compression bound is looser than the optimal bound by a factor of 𝑂(log log 𝑛), whereas

the discretized dimension reduction bound is looser by 𝑂(log 𝑛). See Table 4.1 for a more

precise comparison. On the other hand, empirically, we implement QuadSketch and show

that it attains state-of-the-art performance in practical metric sketching.

4.1.1 Our Results

We focus on Euclidean distances. Let us start by a recap of the metric sketching setting

from Definition 2.1.1. We are given a set of points 𝑋 = {𝑥1, . . . , 𝑥𝑛} ⊂ R𝑑, with pairwise

distances in the range [1, Φ]. Our goal is to construct a compressed bit representation of 𝑋,

called a sketch, that has the following property: given any 𝑖, 𝑗 ∈ [𝑛], we can recover from the

sketch an estimate of the distance ‖𝑥𝑖 − 𝑥𝑗‖ up to distortion (1± 𝜖).

For this chapter it will be convenient to explicitly consider point decompression. This

means that given 𝑖 ∈ [𝑛], we can recover from the sketch a point �̃�𝑖 ∈ R𝑑 that serves as

a proxy for the original point 𝑥𝑖. In particular, every distance ‖𝑥𝑖 − 𝑥𝑗‖ is approximated

by ‖�̃�𝑖 − �̃�𝑗‖. We will also assume for simplicity that the input point dimension is already

reduced to 𝑂(𝜖−2 log 𝑛), by a standard [JL84]-type transform.

QuadSketch. The main contribution of this chapter is a simple and data-adaptive sketch-

ing algorithm, which is both provable and practical. Being quite intuitive, it is based on a

randomized variant of a classical quadtree (see, e.g., [Sam84, HP11]), followed by pruning

some nodes and edges.
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In its simplest variant, the trade-off between the sketch size and approximation quality

is governed by a single parameter Λ. Specifically, Λ controls the pruning step, in which

the algorithm identifies “non-important” bits among those stored in the quadtree (i.e., bits

whose omission would have little effect on the approximation quality), and removes them

from the sketch. Higher values of Λ result in sketches that are longer but produce more

accurate distance estimates.

Provable guarantees. The basic distance preservation guarantee of QuadSketch is sum-

marized in the following theorem.

Theorem 4.1.1. Given 𝜖, 𝛿 > 0, let Λ = 𝑂(log(𝑑 log Φ/𝜖𝛿)) and 𝐿 = log Φ + Λ. QuadSketch

runs in time �̃�(𝑛𝑑𝐿), and produces a sketch of size 𝑂(𝑛𝑑Λ + 𝑛 log 𝑛) bits, with the following

guarantee: for every 𝑖 ∈ [𝑛],

Pr
[︁
∀𝑗∈[𝑛]‖�̃�𝑖 − �̃�𝑗‖ = (1± 𝜖)‖𝑥𝑖 − 𝑥𝑗‖

]︁
≥ 1− 𝛿.

In particular, with probability 1 − 𝛿, if �̃�𝑖* is the nearest neighbor of �̃�𝑖 in �̃�, then 𝑥𝑖* is a

(1 + 𝜖)-approximate nearest neighbor of 𝑥𝑖 in 𝑋.

Note that Λ in the theorem represents the number of bits per coordinate. For example, in

the typical setting where 𝑑 = 𝑂(𝜖−2 log 𝑛) and Φ = 𝑛𝑂(1), QuadSketch uses Λ = 𝑂(log log 𝑛+

log(1/𝜖)) bits per coordinate.

We remark that setting of the above theorem is somewhat simplified compared to those

considered in the previous chapters: it does not estimate all distances simultaneously (as

required in Chapter 2), but only the distances from every given point; and does not apply

to query points outside the dataset 𝑋 (as required in Chapter 3). Nonetheless, QuadSketch

achieves the same sketching bound from Theorem 4.1.1 for both of these problems formally.

We show this later in this chapter, in Theorems 4.4.8 and 4.4.9, respectively.

Empirical performance. We evaluate QuadSketch experimentally on both real and syn-

thetic data sets: a SIFT feature data set from [JDS11], MNIST [LC98], time series data

reflecting taxi ridership in New York City [GMRS16], and a synthetic data set (Diagonal)
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containing random points from a one-dimensional subspace (i.e., a line) embedded in a high-

dimensional space. The data sets are quite diverse: SIFT and MNIST data sets are de-facto

“standard” test cases for nearest neighbor search and distance preserving sketches, NYC

taxi data was designed to contain anomalies and “irrelevant” dimensions, while Diagonal

has extremely low intrinsic dimension.

We compare QuadSketch to Product Quantization (PQ) [JDS11], a state of the art empir-

ical method for computing distance preserving sketches, as well as a naïve baseline of simple

uniform quantization. The sketch length/accuracy tradeoffs for QuadSketch and PQ are

comparable on SIFT and MNIST data, with PQ having better accuracy for shorter sketches

while QuadSketch having better accuracy for longer sketches. On NYC taxi data, the ac-

curacy of QuadSketch is higher over the whole range of sketch lengths. Finally, Diagonal

exemplifies a situation where the low dimensionality of the data set hinders the performance

of PQ, while QuadSketch naturally adapts to this data set. Overall, QuadSketch performs

well on “typical” data sets, while its provable guarantees ensure robust performance in a

wide range of scenarios. Both algorithms improve over the baseline quantization method.

4.2 Algorithm: QuadSketch

Generally speaking, QuadSketch is an analog of the relative location tree from Chapters 2

and 3, except that the hierarchical clustering tree is replaced with a randomly shifted

quadtree. The path compression step is similar to Section 2.3, and here it takes a natu-

ral interpretation of eliminating non-significant bits from the binary expansion of the point

coordinates. Finally, we can dispense with the different definitions of centers, ingresses and

surrogates from Section 2.3, as they all naturally coincide with grid corners in the quadtree.

We now describe the algorithm in a self-contained manner. It takes as input the point

set 𝑋, and two parameters 𝐿 and Λ that control the amount of compression.

Step 1: Randomly shifted grid. The algorithm starts by imposing a randomly shifted

axis-parallel grid on the points. We first enclose the whole point set in an axis-parallel

hypercube 𝐻. Let Δ = 2⌈log Φ⌉. Set up 𝐻 to be centered at 𝑥1 with side length 4Δ. Now
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Figure 4-1: Quadtree construction for three points 𝑥, 𝑦, 𝑧. The coordinates on the horizontal
and vertical axes are written in binary representation, which corresponds to the edge labels
in the quadtree.

choose 𝜎1, . . . , 𝜎𝑑 ∈ [−Δ, Δ] independently and uniformly at random, and shift 𝐻 in each

coordinate 𝑗 by 𝜎𝑗. By the choice of side length 4Δ, one can see that 𝐻 after the shift still

contains the whole point set. For every integer ℓ such that −∞ < ℓ ≤ log(4Δ), let 𝐺ℓ denote

the axis-parallel grid with cell side 2ℓ which is aligned with 𝐻.

Step 2: Quadtree construction. The 2𝑑-ary quadtree on the nested grids 𝐺ℓ is naturally

defined by associating every grid cell 𝑐 in 𝐺ℓ with the tree node at level ℓ, such that its

children are the 2𝑑 grid cells in 𝐺ℓ−1 which are contained in 𝑐. The edge connecting a node

𝑣 to a child 𝑣′ is labeled with a bitstring of length 𝑑 defined as follows: the 𝑗𝑡ℎ bit is 0 if 𝑣′

coincides with the bottom half of 𝑣 along coordinate 𝑗, and 1 if 𝑣′ coincides with the upper

half along that coordinate (see Figure 4-1 for example).

In order to construct the tree, we start with 𝐻 as the root, and bucket the points contained

in it into the 2𝑑 children cells. We only add child nodes for cells that contain at least one

point of 𝑋. Then we continue by recursion on the child nodes. The quadtree construction

is finished after 𝐿 levels. We denote the resulting edge-labeled tree by 𝑇 *. A construction

with 𝐿 = 2 is illustrated in Figure 4-1.

We define the level of a tree node with side length 2ℓ to be ℓ (note that ℓ can be negative).

The degree of a node in 𝑇 * is its number of children. Since all leaves are located at the bottom

level, each point 𝑥𝑖 ∈ 𝑋 is contained in exactly one leaf, which we henceforth denote by 𝑣𝑖.
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Step 3: Pruning. Consider a downward path 𝑢0, 𝑢1, . . . , 𝑢𝑘 in 𝑇 *, such that 𝑢1, . . . , 𝑢𝑘−1

are nodes with degree 1, and 𝑢0, 𝑢𝑘 are nodes with degree other than 1 (𝑢𝑘 may be a leaf).

For every such path in 𝑇 *, if 𝑘 > Λ + 1, we remove the nodes 𝑢Λ+1, . . . , 𝑢𝑘−1 from 𝑇 * with

all their adjacent edges (and edge labels). Instead we connect 𝑢𝑘 directly to 𝑢Λ as its child.

We refer to that edge as the long edge, and label it with the length of the path it replaces,

𝑘−Λ. The original edges from 𝑇 * are called short edges. At the end of the pruning step, we

denote the resulting tree by 𝑇 .

The sketch. For each point 𝑥𝑖 ∈ 𝑋 the sketch stores the index of the leaf 𝑣𝑖 that contains it.

In addition it stores the structure of the tree 𝑇 , encoded using the Eulerian Tour Technique1.

Specifically, starting at the root, we traverse 𝑇 in the Depth First Search (DFS) order. In

each step, DFS either explores the child of the current node (downward step), or returns to

the parent node (upward step). We encode a downward step by 0 and an upward step by 1.

With each downward step we also store the label of the traversed edge (a length-𝑑 bitstring

for a short edge or the edge length for a long edge, and an additional bit marking if the edge

is short or long).

Decompression. Recovering �̃�𝑖 from the sketch is done simply by following the downward

path from the root of 𝑇 to the associated leaf 𝑣𝑖, collecting the edge labels of the short

edges, and placing zeros instead of the missing bits of the long edges. The collected bits then

correspond to the binary expansion of the coordinates of �̃�𝑖.

More formally, for every node 𝑢 (not necessarily a leaf) we define 𝑐(𝑢) ∈ R𝑑 as follows:

For 𝑗 ∈ {1, . . . , 𝑑}, concatenate the 𝑗𝑡ℎ bit of every short edge label traversed along the

downward path from the root to 𝑢. When traversing a long edge labeled with length 𝑘,

concatenate 𝑘 zeros.2 Then, place a binary floating point in the resulting bitstring, after the

bit corresponding to level 0. (Recall that the levels in 𝑇 are defined by the grid cell side

lengths, and 𝑇 might not have any nodes in level 0; in this case we need to pad with 0’s

either on the right or on the left until we have a 0 bit in the location corresponding to level

1See e.g., https://en.wikipedia.org/wiki/Euler_tour_technique.
2This is the primary lossy step in our sketching method: the original bits could be arbitrary, but they

are replaced with zeros.
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0.) The resulting binary string is the binary expansion of the 𝑗𝑡ℎ coordinate of 𝑐(𝑢). Now �̃�𝑖

is defined to be 𝑐(𝑣𝑖).

Block QuadSketch. The successful Product Quantization algorithm for metric sketch-

ing [JDS11] is based on partitioning the coordinates into blocks, and sketching (or quantizing)

block separately. We can further modify QuadSketch in a similar manner. Specifically, we

partition the 𝑑 dimensions into 𝑚 blocks 𝐵1 . . . 𝐵𝑚 of size 𝑑/𝑚 each, and apply QuadSketch

separately to each block. More formally, for each 𝐵𝑖, we apply QuadSketch to the point set

(𝑥1)𝐵𝑖
. . . (𝑥𝑛)𝐵𝑖

, where 𝑥𝐵 denotes the (𝑑/𝑚)-dimensional vector obtained by projecting 𝑥

on the dimensions in 𝐵. The following theorem is an immediate corollary of Theorem 4.1.1.

Theorem 4.2.1. Let 𝜖, 𝛿 > 0. Let 𝑚 be an integer divisor of 𝑑. Let Λ = 𝑂(log(𝑑 log Φ/𝜖𝛿))

and 𝐿 = 𝑙𝑜𝑔Φ + Λ. The 𝑚-block variant of QuadSketch runs in time �̃�(𝑛𝑑𝐿), and produces

a sketch of size 𝑂(𝑛𝑑Λ + 𝑛𝑚 log 𝑛) bits, with the following guarantee: For every 𝑖 ∈ [𝑛],

Pr
[︁
∀𝑗∈[𝑛]‖�̃�𝑖 − �̃�𝑗‖ = (1± 𝜖)‖𝑥𝑖 − 𝑥𝑗‖

]︁
≥ 1−𝑚𝛿.

It can be seen that increasing the number of blocks 𝑚 up to a certain threshold, namely

of 𝑑Λ/ log 𝑛, does not affect the asymptotic bound on the sketch size. Although we cannot

prove that varying 𝑚 can improve the accuracy of the sketch, this seems to be the case

empirically, as demonstrated in the experimental section.

4.3 Experiments

Algorithms. We evaluate QuadSketch experimentally and compare its performance to

Product Quantization (PQ) [JDS11], a state-of-the-art compression scheme for approximate

nearest neighbors, and to a baseline of uniform scalar quantization, which we refer to as

Grid. For each dimension of the dataset, Grid places 𝑘 equally spaced landmark scalars

on the interval between the minimum and the maximum values along that dimension, and

rounds each coordinate to the nearest landmark.

All three algorithms work by partitioning the data dimensions into blocks, and performing
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a quantization step in each block independently of the other ones. QuadSketch and PQ take

the number of blocks as a parameter, whereas Grid uses blocks of size 1. The quantization

step is the basic algorithm described in Section 4.2 for QuadSketch, 𝑘-means for PQ, and

uniform scalar quantization for Grid.

Datasets. We test the algorithms on four datasets: The SIFT data used in [JDS11],

MNIST [LC98] (with all vectors normalized to 1), NYC Taxi ridership data [GMRS16], and

a synthetic dataset called Diagonal, consisting of random points on a line embedded in a

high-dimensional space. The properties of the datasets are summarized in Table 4.2. Note

that we were not able to compute the exact diameters for MNIST and SIFT, hence we only

report estimates for Φ for these data sets, obtained via random sampling.

The Diagonal dataset consists of 10, 000 points of the form (𝑥, 𝑥, . . . , 𝑥), where 𝑥 is

chosen independently and uniformly at random from the interval [0, 40000]. This yields a

dataset with very large aspect ratio Φ, with the intention of demonstrating the effect of this

parameter on the performance of metric sketching algorithms. Furthermore, since Diagonal

is constructed such that all coordinates are maximally correlated, the heuristic partitioning

into blocks — the driving force behind PQ — is not expected to be beneficial. This is meant

to demonstrate that QuadSketch can successfully adapt to “worst-case data”, thanks to its

worst-case guarantees, whereas heuristic algorithms do not perform well.

Queries. For SIFT and MNIST we use the standard query set provided with each dataset.

For Taxi and Diagonal we use 500 queries chosen at random from each dataset. For the sake

of consistency, for all data sets, we apply the same quantization process jointly to both the

point set and the query set, for both PQ and QuadSketch. We note, however, that both

algorithms can be run on “out of sample” queries (for QuadSketch, we show this in detail

in Section 4.4.4).

Parameter setting. For each dataset, we enumerate the number of blocks over all divisors

of the dimension 𝑑. For QuadSketch, 𝐿 ranges in 2, . . . , 20, and Λ ranges in 1, . . . , 𝐿−1. For

PQ, the number of 𝑘-means landmarks per block ranges in 25, 26, . . . , 212. For both algorithms

we include the results for all combinations of the parameters, and plot the envelope of the
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Dataset Points Dimension Aspect ratio (Φ) Data type

SIFT 1, 000, 000 128 ≥ 83.2 Image descriptors
MNIST 60, 000 784 ≥ 9.2 Hand-written digits
NYC Taxi 8, 874 48 49.5 Time-series
Diagonal (synthetic) 10, 000 128 20, 478, 740.2 Synthetic

Table 4.2: Datasets used in our empirical evaluation. The aspect ratio of SIFT and MNIST
is estimated on a random sample.

best performing combinations.

Performance measures. We report two measures of performance for each dataset: (a)

the accuracy, defined as the fraction of queries for which the sketch returns the true nearest

neighbor, and (b) the average distortion, defined as the ratio between the (true) distances

from the query to the reported near neighbor and to the true nearest neighbor. The sketch

size is measured in bits per coordinate. The results appear in Figures 4-2 to 4-5. Note that

the vertical axis in the distortion plots corresponds to the value of 𝜖, not 1 + 𝜖.

4.3.1 Effect of Parameter Setting

We plot how the different parameters of QuadSketch effect its performance. Recall that 𝐿

determines the number of levels in the quadtree prior to the pruning step, and Λ controls

the amount of pruning. By construction, the higher we set these parameters, the larger

the sketch will be and with better accuracy. The empirical tradeoff for the SIFT dataset is

plotted in Figure 4-6.

The optimal setting for the number of blocks is not monotone, and generally depends

on the specific dataset. It is noted in [JDS11] that on SIFT data, an intermediate number

of blocks gives the best results, and this is confirmed by our experiments. Table 4.3 lists

the performance on the SIFT dataset for a varying number of blocks, for a fixed setting of

𝐿 = 6 and Λ = 5. It shows that the sketch quality remains essentially the same, while the

size varies significantly, with the optimal size attained at 16 blocks.
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Figure 4-2: Results for the SIFT dataset

Figure 4-3: Results for the MNIST dataset

Figure 4-4: Results for the Taxi dataset

Figure 4-5: Results for the Diagonal dataset
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Figure 4-6: On the left, 𝐿 varies from 2 to 11 for a fixed setting of 16 blocks and Λ = 𝐿− 1
(no pruning). On the right, Λ varies from 1 to 9 for a fixed setting of 16 blocks and 𝐿 = 10.
Increasing Λ beyond 6 does not have further effect on the resulting sketch.

# Blocks Bits per coordinate Accuracy Average distortion
1 5.17 0.719 1.0077
2 4.523 0.717 1.0076
4 4.02 0.722 1.0079
8 3.272 0.712 1.0079

16 2.795 0.712 1.008
32 3.474 0.712 1.0082
64 4.032 0.713 1.0081
128 4.079 0.72 1.0078

Table 4.3: QuadSketch accuracy on SIFT data by number of blocks, with 𝐿 = 6 and Λ = 5.

4.4 Proofs

In this section we prove the theoretical guarantees of QuadSketch.

4.4.1 Basic QuadSketch Guarantee

We start by proving Theorem 4.1.1.

Recall that we have a point set 𝑥1, . . . , 𝑥𝑛 ∈ R𝑑 with aspect ratio Φ, and given error

parameters 𝜖, 𝛿 > 0. For the remainder of the section we fix the setting

Λ = log
(︃

16 · 𝑑1.5 · log Φ
𝜖𝛿

)︃
, (4.1)
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and assume w.l.o.g. it is an integer.

The analysis relies on the padded decomposition property of a randomly shifted quadtree,

as defined in the seminal work of Bartal [Bar96]. We now define the notion in our setting.

To this end, recall that in Section 4.2, we denoted by 𝐺ℓ the grid with side length 2ℓ for

every integer ℓ.

Definition 4.4.1 (padded point in grid). We say that a point 𝑥𝑖 is (𝜖, Λ, ℓ)-padded, if the

grid cell in 𝐺ℓ that contains 𝑥𝑖 also contains the ball of radius 𝜌(ℓ) centered at 𝑥𝑖, where

𝜌(ℓ) = 8 · 2ℓ−Λ ·
√

𝑑

𝜖
.

Definition 4.4.2 (padded point in tree). We say that 𝑥𝑖 is (𝜖, Λ)-padded in the quadtree 𝑇 ,

if it is (𝜖, Λ, ℓ)-padded for every level ℓ of 𝑇 .

The fact that a randomly shifted quadtree has the padded decomposition property was

observed in [Ind01]. The next lemma reproduces the argument.

Lemma 4.4.3. If the grids are randomly shifted, as in the QuadSketch construction (Sec-

tion 4.2), then every point 𝑥𝑖 is (𝜖, Λ)-padded in 𝑇 with probability 1− 𝛿.

Proof. Fix a point 𝑥𝑖, a coordinate 𝑘 ∈ {1, . . . , 𝑑} and a level ℓ. Let 𝑥𝑖(𝑘) denote the value

of 𝑥𝑖 in coordinate 𝑘. Along this coordinate, we are randomly shifting a 1-dimensional grid

partitioned into intervals of length 2ℓ. Since the shift is uniformly random, the probability

for 𝑥𝑖(𝑘) to be at distance at most 𝜌(ℓ) from an endpoint of the interval that contains it

equals 2𝜌(ℓ)/2ℓ. By plugging our setting of 𝜌(ℓ) and Λ, this probability equals 𝛿/(𝑑 log Φ).

Taking a union bound over the 𝑑 coordinates, we have probability at most 𝛿/ log Φ for 𝑥𝑖

to be at distance at most 𝜌(ℓ) from the boundary of the cell of 𝐺ℓ that contains it. In

the complement event 𝑥𝑖 is (𝜖, Λ, ℓ)-padded in 𝐺ℓ. Taking another union bound over the

𝐿 = log Φ + Λ levels in the quadtree, 𝑥𝑖 is (𝜖, Λ)-padded with probability at least 1− 𝛿.

We now state and prove the main lemma. It states that if a point is padded, as defined

above, then QuadSketch accurately estimates the distance from that point to all other points,

and therefore satisfies the guarantee of Theorem 4.1.1.
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Figure 4-7: By collecting the edge label bits along every dimension from the root to a node,
and padding with zeros as necessary, we obtain the binary expansion of the bottom-left
corner of the associated grid cell.

Lemma 4.4.4. If a point 𝑥𝑖 is (𝜖, Λ)-padded in 𝑇 , then for every 𝑗 ∈ [𝑛],

(1− 𝜖)‖�̃�𝑖 − �̃�𝑗‖ ≤ ‖𝑥𝑖 − 𝑥𝑗‖ ≤ (1 + 𝜖)‖�̃�𝑖 − �̃�𝑗‖,

where {�̃�𝑖} are as defined in Section 4.2.

Proof. We recall that 𝑇 is a pruned quadtree in which every node 𝑣 is associated with a grid

cell of an axis-parallel grid 𝐺ℓ with side length 2ℓ, which is aligned with and contained in 𝐻.

We call ℓ the level of 𝑣, and denote it henceforth by ℓ(𝑣). We will use the term “bottom-left

corner” of a grid cell for the corner that minimizes all coordinate values (i.e., the high-

dimensional analog of a bottom-left corner in the plane).

Let 𝑟 be the root of 𝑇 . We may assume w.l.o.g. that the bottom-left corner of 𝐻 is

the origin in R𝑑, since translating 𝐻 together with the entire point set does not change

pairwise distances. Under this assumption, we make the following observation, illustrated

in Figure 4-7.

Claim 4.4.5. Let 𝑣 be a node in 𝑇 . If the path from 𝑟 to 𝑣 contains only short edges, then

𝑐(𝑣) (defined by the decompression algorithm in Section 4.2) is the bottom-left corner of the

grid cell associated with 𝑣.

Let 𝑥𝑖 be a padded point, and 𝑥𝑗 be any point. Recall that we denote by 𝑣𝑖 and 𝑣𝑗

the leaves corresponding to 𝑥𝑖 and 𝑥𝑗 respectively (see Section 4.2). Let 𝑤 be the lowest

common ancestor of 𝑣𝑖 and 𝑣𝑗 in 𝑇 . Since 𝑥𝑖 and 𝑥𝑗 are in separate grid cells of 𝐺ℓ(𝑤)−1, and
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by padding the cell containing 𝑥𝑖 also contains the ball of radius 𝜌(ℓ(𝑤)− 1) around 𝑥𝑖, we

have

‖𝑥𝑖 − 𝑥𝑗‖ ≥ 𝜌(ℓ(𝑤)− 1) = 8 · 2ℓ(𝑤)−1−Λ
√

𝑑

𝜖
. (4.2)

Let 𝑢𝑖 be the lowest node on the downward path from 𝑤 to 𝑣𝑖, that can be reached

without traversing a long edge. Similarly define 𝑢𝑗 for 𝑣𝑗. See Figure 4-8 for illustration.

Note that 𝑢𝑖 must be either the leaf 𝑣𝑖, or an internal node whose only outgoing edge is

a long edge. In both cases, 𝑢𝑖 is the bottom of a path of degree-1 nodes of length Λ:

∙ If 𝑢𝑖 is a leaf: Since the point set has aspect ratio Φ, then after log Φ levels the grid

becomes sufficiently fine such that each grid cell contains at most one point 𝑥𝑖. Since

we generate the quadtree with 𝐿 = log Φ + Λ levels, then each point 𝑥𝑖 is in its own

grid cell for at least the bottom Λ levels of the quadtree.

∙ If 𝑢𝑖 is an internal node which is the head of a long edge: Since the pruning step only

places long edges at the bottom of degree-1 paths of length Λ, then 𝑢𝑖 must be the

bottom node of such path.

On the other hand, 𝑤 is an ancestor of 𝑢𝑖, and it must have degree at least 2, since it is

also an ancestor of 𝑢𝑗. Hence, 𝑤 is at least Λ levels above 𝑢𝑖, implying

ℓ(𝑣𝑖) ≤ ℓ(𝑤)− Λ. (4.3)

Applying the same arguments to 𝑢𝑗 we get also ℓ(𝑣𝑗) ≤ ℓ(𝑤)− Λ.

Let 𝑐*(𝑢𝑖), 𝑐*(𝑢𝑗) ∈ R𝑑 be the bottom-left corners of the grid cells associated with 𝑢𝑖

and 𝑢𝑗. If all edges on the downward paths from the root of 𝑇 to 𝑢𝑖 and 𝑢𝑗 were short,

then Claim 4.4.5 would yield that 𝑐*(𝑢𝑖) = 𝑐(𝑢𝑖) and 𝑐*(𝑢𝑗) = 𝑐(𝑢𝑗). In general, there might

be some long edges on those paths, but they all must lie on the subpath from the root of 𝑇

down to 𝑤, which is the same for both paths. This is because by the choice of 𝑢𝑖 and 𝑢𝑗, all

downward edges from 𝑤 to either of them are short. Therefore 𝑐(𝑢𝑖) and 𝑐(𝑢𝑗) are shifted

from the true bottom-left corners by the same shift, which we denote by

𝜂 = 𝑐*(𝑢𝑖)− 𝑐(𝑢𝑖) = 𝑐*(𝑢𝑗)− 𝑐(𝑢𝑗). (4.4)
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Figure 4-8: In the proof of Lemma 4.4.4, 𝑤 is the lowest common ancestor of 𝑣𝑖, 𝑣𝑗, the leaves
corresponding to 𝑥𝑖, 𝑥𝑗. The node 𝑢𝑖 is the lowest node on the downward path from 𝑤 to
𝑣𝑖 which is achievable without traversing any long edges (marked in red). The node 𝑢𝑗 is
defined similarly for 𝑣𝑗.

Next, observe that the grid cell associated with 𝑢𝑖 has side 2ℓ(𝑢𝑖) and it contains both

𝑐*(𝑢𝑖) and 𝑥𝑗. Therefore,

‖𝑥𝑖 − 𝑐*(𝑢𝑖)‖ ≤ 2ℓ(𝑢𝑖)
√

𝑑. (4.5)

Furthermore, since 𝑢𝑖 is an ancestor of 𝑣𝑖, then by the definition of 𝑐(𝑢𝑖) and 𝑐(𝑣𝑖), in

each coordinate, the binary expansions of these two vertices are equal from the location

ℓ(𝑢𝑖) and up. In the less significant locations, 𝑐(𝑢𝑖) is zeroed while 𝑐(𝑣𝑖) may have arbitrary

bits. This means that the difference between 𝑐(𝑢𝑖) and 𝑐(𝑣𝑖) in each coordinate can be at

most 2ℓ(𝑢𝑖) in absolute value, and consequently ‖𝑐(𝑣𝑖)− 𝑐(𝑢𝑖)‖ ≤ 2ℓ(𝑢𝑖)
√

𝑑. Recalling that the

decompression algorithm defines �̃�𝑖 = 𝑐(𝑣𝑖), we get

‖�̃�𝑖 − 𝑐(𝑢𝑖)‖ ≤ 2ℓ(𝑢𝑖)
√

𝑑. (4.6)
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Collecting the above inequalities, we have

‖𝑥𝑖 − 𝜂 − �̃�𝑖‖ = ‖𝑥𝑖 − 𝑐(𝑢𝑖)− 𝜂 + 𝑐(𝑢𝑖)− �̃�𝑖‖

= ‖𝑥𝑖 − 𝑐*(𝑢𝑖) + 𝑐(𝑢𝑖)− �̃�𝑖‖ Equation (4.4)

≤ ‖𝑥𝑖 − 𝑐*(𝑢𝑖)‖+ ‖𝑐(𝑢𝑖)− �̃�𝑖‖ triangle inequality

≤ 2 · 2ℓ(𝑢𝑖)
√

𝑑 Equations (4.5) and (4.6)

≤ 2 · 2ℓ(𝑤)−Λ
√

𝑑 Equation (4.3).

Similarly for 𝑗 we have ‖𝑥𝑖 − 𝜂 − �̃�𝑖‖ ≤ 2 · 2ℓ(𝑤)−Λ
√

𝑑. Together, by the triangle inequality,

‖�̃�𝑖 − �̃�𝑗‖ = ‖�̃�𝑖 + 𝜂 − 𝑥𝑖 + 𝑥𝑖 − 𝑥𝑗 + 𝑥𝑗 − 𝜂 − �̃�𝑗‖

= ‖𝑥𝑖 − 𝑥𝑗‖ ± (‖𝑥𝑖 − 𝜂 − �̃�𝑖‖+ ‖𝑥𝑖 − 𝜂 − �̃�𝑖‖)

= ‖𝑥𝑖 − 𝑥𝑗‖ ± 4 · 2ℓ(𝑤)−Λ
√

𝑑.

To complete the proof of Lemma 4.4.4, it now suffices to show 4 · 2ℓ(𝑤)−Λ
√

𝑑 ≤ 𝜖 · ‖𝑥𝑖 − 𝑥𝑗‖.

This follows from Equation (4.2).

The distance estimation guarantee of Theorem 4.1.1 follows from combining Lemma 4.4.3

and Lemma 4.4.4.

4.4.2 Sketch Size and Construction Time

In this section we prove the sketch size bound and sketching runtime of QuadSketch, which

together complete the proof of Theorem 4.1.1.

Lemma 4.4.6. QuadSketch produces a sketch of size 𝑂(𝑛(𝑑Λ + log 𝑛 + log log Φ)) bits.

Proof. The tree 𝑇 has 𝑛 leaves, and we have pruned each non-branching path in it to length

Λ. Hence its total size is 𝑂(𝑛Λ), and its structure can be stored with this many bits using

(say) the Eulerian Tour Technique described in Section 4.2. Each short edge label is 𝑑 bits

long, so together they consume 𝑂(𝑛𝑑Λ) bits. As for the long edges, there can be at most
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𝑂(𝑛) of them, since the bottom of each long edge is either a branching node (i.e., a node

with more than one child) or a leaf. The long edge labels are lengths of downward paths in

the non-pruned tree 𝑇 *, whose height bounded by is 𝐿 = 𝑂(log Φ + Λ). Together the long

edge labels consume 𝑂(𝑛 log(log Φ + Λ)) bits. Finally, for each point 𝑥𝑖 we store the index

of its corresponding leaf 𝑣𝑖. Since there are 𝑛 leaves, this requires 𝑂(𝑛 log 𝑛) additional bits

to store.

Note that in the statement of Theorem 4.1.1 we set Λ = 𝑂(log(𝑑Φ/(𝜖𝛿)), so the 𝑛 log log Φ

term is the above lemma is dominated by 𝑛𝑑Λ.

Lemma 4.4.7. The QuadSketch construction algorithm runs in time 𝑂(𝑛𝑑𝐿).

Proof. Given a quadtree cell and a point contained in it, in order to bucket the point into

a cell in the next level, we need to check for each coordinate whether the point falls in the

upper or lower half of the cell. This takes time 𝑂(𝑑). Since each point is bucketed once in

every level, and we generate 𝑇 * for 𝐿 levels, the quadtree construction time is 𝑂(𝑛𝑑𝐿). The

pruning step requires just a linear scan of 𝑇 *, in time 𝑂(𝑛𝐿).

4.4.3 Metric Compression

In this section we show that QuadSketch can induce a formal solution to the metric sketching

problem from Definition 2.1.1. It is looser than our optimal bound from Theorem 2.1.2 by

a small factor of 𝑂(log log 𝑛 + log log Φ + log(1/𝜖)). Yet, it is better than the discretized

dimension reduction upper bound of 𝑂(𝜖−2 log(𝑛) log Φ) bits per point (except in patholog-

ical settings where Φ is extremely small). Note that the difference between Theorem 2.1.2

and Theorem 4.1.1 is that here we need the sketch to accurately estimate all distance simul-

taneously, rather than from a single given points as in Theorem 4.1.1.

Theorem 4.4.8. Let 𝜖 > 0. Suppose we are given a point set 𝑋 = {𝑥1, . . . , 𝑥𝑛} ⊂ R𝑑 with

Euclidean distances in the range [1, Φ]. Using the QuadSketch algorithm from Section 4.2 as

a black-box, we can compute in expected time �̃�(𝑛𝑑 log(𝑑Φ/𝜖)) a sketch of size

𝑂(𝜖−2𝑛 log(𝑛) · (log log 𝑛 + log log Φ + log(1/𝜖))) bits,
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such that with high probability, every distance ‖𝑥𝑖 − 𝑥𝑗‖ can be recovered from the sketch up

to distortion 1± 𝜖.

Sketching algorithm. As usual, by [JL84] we can assume w.l.o.g. that 𝑂(𝜖−2 log 𝑛), by

preliminary dimension reduction, which succeeds with high probability.

The sketching algorithm will use multiple invocations of QuadSketch. For all of them,

we set Λ = 𝑂(log(𝑑 log Φ/𝜖)) and 𝐿 = log Φ + Λ. The randomness in each invocation (i.e.,

the random shift of the quadtree) is independent of all other invocations.

Given a point set 𝑋, apply QuadSketch to 𝑋 and let 𝑇1 be the resulting tree. Let

𝑄 ⊂ 𝑋 be the padded points in 𝑇1 (meaning those for which the condition of Lemma 4.4.3

is satisfied for 𝑇1). If |𝑄| < 1
2 |𝑋|, discard the tree and run QuadSketch again, and so on

until |𝑄| ≥ 1
2 |𝑋|. Continue by recursion on 𝑋 ∖𝑄, until we have constructed a sequence of

trees 𝑇1, . . . , 𝑇𝑘 such that,

∙ In each tree, at least half the points are padded.

∙ Each tree contains less than half of the points of the previous tree.

∙ Every point in 𝑋 is padded in some tree.

The returned sketch contains all trees 𝑇1, . . . , 𝑇𝑘.

For every 𝑖 ∈ [𝑛], let 𝛾[𝑖] ∈ [𝑘] denote the index of the first tree in which 𝑥𝑖 is padded.

Note that we can easily recover 𝛾(𝑖) from the sketch, as it is the index of the last tree in

which 𝑖 appears (i.e., the last tree in which 𝑥𝑖 was included in the sketched point set and

associated with a leaf).

Query algorithm. Given two point indices 𝑖, 𝑗 ∈ [𝑛], assume w.l.o.g. 𝛾(𝑖) ≤ 𝛾(𝑗). Then,

the tree 𝑇𝛾(𝑖) has corresponding leaves for both 𝑥𝑖 and 𝑥𝑗. We decompress �̃�𝑖 and �̃�𝑗 from

𝑇𝛾(𝑖) and return ‖�̃�𝑖 − �̃�𝑗‖.

Proof of Theorem 4.4.8. The correctness of the estimate up to distortion 1 ± 𝜖 follows

from Lemma 4.4.4, since for every pair 𝑖, 𝑗 ∈ [𝑛], either 𝑥𝑖 or 𝑥𝑗 is padded in the tree that

we use to report the distance between them.
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We now bound the sketch size and the running time. Lemma 4.4.3 with 𝛿 = 0.25

implies that in each of the trees 𝑇1, . . . , 𝑇𝑘, the expected fraction of padded points is 0.75.

Hence by Markov’s inequality, with probability 0.5 at least half the points are padded.

Therefore the number of times we need to build each 𝑇𝑖 until a successful attempt (that

allows us to proceed to 𝑇𝑖+1 instead of discarding 𝑇𝑖 and building it again) is distributed

geometrically with parameter 0.5, and the expected number of attempts is 2. After 𝑘 =

𝑂(log 𝑛) successfully built trees, every point is padded in some tree, 𝑄 becomes empty, and

the sketching algorithm terminates. Overall we need in expectation 𝑂(log 𝑛) invocations of

QuadSketch, which by Lemma 4.4.7 takes �̃�(𝑛𝑑𝐿) expected time.

Furthermore, since every tree 𝑇𝑖 sketches less than half as many points as the previous

one, the total size of the sketches 𝑇1, . . . , 𝑇𝑘, by Lemma 4.4.6 is

𝑂

(︃
𝑘−1∑︁
𝑘′=0

𝑛

2𝑘′ (𝑑Λ + log 𝑛

2𝑘′ )
)︃

= 𝑂(𝑛(𝑑Λ + log 𝑛)).

Recalling that 𝑑 = 𝑂(𝜖−2 log 𝑛), Λ = 𝑂(log(𝑑 log Φ/𝜖)), and 𝐿 = log Φ + Λ, we get the stated

bound.

4.4.4 Nearest Neighbor Search

In this section we prove that QuadSketch is guaranteed to report approximate nearest neigh-

bors even for query points outside the dataset, as formally defined in Definition 3.1.1. The

proof is by adapting our techniques developed in Chapter 3. As in the case of metric sketch-

ing (Section 4.4.3), the compression bound obtained by QuadSketch is looser than our bound

from Theorem 3.1.3 by a small factor, but still asymptotically better than discretized di-

mension reduction, while being simple and practical.

Theorem 4.4.9. Let 𝜖 > 0. Suppose we are given a point set 𝑋 = {𝑥1, . . . , 𝑥𝑛} ⊂ R𝑑 with

Euclidean distances in the range [1, Φ]. QuadSketch, with the middle-out compression step

described below, computes in time 𝑂(𝑛𝑑 log(𝑑Φ𝑞/(𝜖𝛿))) a sketch of size

𝑂(𝜖−2𝑛 log(𝑛) · (log log 𝑛 + log log Φ + log(𝑞/(𝜖𝛿))) + 𝑑 log Φ) bits,
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such that with probability at least 1− 𝛿, simultaneously for every 𝑞 query points in R𝑑, it is

possible to report from the sketch a (1 + 𝜖)-approximate nearest neighbor in 𝑋 for each query

point.

Technique: Middle-out compression. We now describe how to apply the techniques

from Chapter 3 to QuadSketch to support new query points. In that chapter we introduced

three techniques: top-out compression, grid quantization and root surrogate hashing. The

latter two will turn out to be unnecessary for QuadSketch, since as we will see, they are

already “organically” built into the quadtree. As for top-out compression, we combine it

into the path compression step of QuadSketch from Section 4.2, which prunes every maximal

1-path except for its top Λ nodes (i.e., “bottom-out” compression). Combining the two

yields middle-out compression: every maximal 1-path longer than 2Λ is replaced by a long

edge, except for its top and its bottom Λ nodes. Note that the QuadSketch algorithm is

nearly unchanged, and the sketch size is at most twice as big. In the remainder of this section

we show that this modification to QuadSketch allows it to accurately report approximate

nearest neighbors for new query points, thereby proving Theorem 4.4.9.

Notation. For every node 𝑣 in the quadtree, let 𝐶(𝑣) denotes the subset of points in 𝑋

(the dataset) that are contained in the grid cell associated with 𝑣. As in Chapters 2 and 3,

the quadtree is partitioned into a set ℱ(𝑇 ) of subtrees by removing the long edges.

For every node 𝑣 in the quadtree, we let 𝑥𝑐(𝑣) denote an arbitrarily chosen fixed point

in 𝐶(𝑣). We also denote by 𝑠*(𝑣) the “bottom-left” (i.e. minimal in all dimensions) corner

of the grid cell associated with 𝑣. (We use these notations as they are analogous to centers

and surrogates from Chapters 2 and 3, except here these notions are considerably simplified.)

In the QuadSketch description from Section 4.2, we use the same setting of Λ from Equa-

tion (4.1):

Λ = log
(︃

16 · 𝑑1.5 · log Φ
𝜖𝛿

)︃
,

and

𝐿 = ⌈log Φ⌉+ 2 + ⌈Λ⌉.
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Basic properties. We start by stating some basic properties of the sketch.

Claim 4.4.10. For every point 𝑥 ∈ 𝑋, with probability 1− 𝛿, the following holds. If 𝑧 ∈ R𝑑

is any point outside the grid cell that contains 𝑥 in level ℓ of the quadtree, then ‖𝑥 − 𝑧‖ ≥

8𝜖−1 · 2ℓ−Λ
√

𝑑.

Proof. This is a restatement of the padding property from Lemma 4.4.3. If 𝑥 is (𝜖, Λ)-padded

in the quadtree, then its grid cell in level ℓ also contains the ball of radius 8𝜖−1 · 2ℓ−Λ
√

𝑑

around 𝑥 (see Definitions 4.4.1 and 4.4.2). If 𝑧 is outside the grid cell then it is outside the

ball.

Claim 4.4.11. Let 𝑣 be a node in the quadtree, and 𝑥, 𝑥′ ∈ R𝑑 points contained in the grid

cell associated with 𝑣. Then ‖𝑥− 𝑥′‖ ≤ 2ℓ(𝑣)
√

𝑑.

Proof. The grid cell associated with 𝑣 is a hypercube with side 2ℓ(𝑣) and diameter 2ℓ(𝑣)
√

𝑑.

Claim 4.4.12. For every leaf 𝑣 of the quadtree, 𝐶(𝑣) contains a single point of 𝑋, and 𝑣 is

the bottom of a 1-path of length at least Λ.

Proof. Recall that the top level in the quadtree has side length 4Δ = 2⌈log Φ⌉+2, and we build

it for 𝐿 = ⌈log Φ⌉ + 2 + ⌈Λ⌉ levels. After ⌈log Φ⌉ + 2 levels, the grid has side length 1, and

since this is the minimum distance between the data points, every grid cell contains at most

a single point in that level. Then we proceed for ⌈Λ⌉ additional levels, ensuring that every

leaf in the quadtree is the bottom of a 1-path of length at least Λ.

Claim 4.4.13. Every subtree leaf in the quadtree is the bottom of a 1-path of length at least

Λ.

Proof. If 𝑣 is a leaf of the quadtree, this follows from Claim 4.4.12. Otherwise this follows

from middle-out compression.

Query algorithm. Let 𝑦 be a query point for which we need to report an approximate

nearest neighbor from the sketch. The query algorithm is the same as in Section 3.3: starting

with the subtree that contains the quadtree root, it recovers the surrogates in the current

subtree and chooses the subtree 𝑣 whose surrogate is the closest to 𝑦. If 𝑣 is a quadtree
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leaf, its center is returned as the approximate nearest neighbor. Otherwise, the algorithm

proceeds by recursion on the subtree under 𝑣.

The difference is in the way we recover the surrogates of a given subtree. In Section 3.3

this was done using the root surrogate hashes. Here we can use a simpler, deterministic

surrogate recovery subroutine. Let 𝑠*(𝐻) ∈ R𝑑 the surrogate of the quadtree root. (We

store this point explicitly in the sketch, and it will be convenient to think of it w.l.o.g. as

the the origin in R𝑑.) As observed in Claim 4.4.5, for every tree node 𝑣, if we concatenate

the bits annotating the edges on the path from the root to 𝑣, we get the binary expansion

of the point 𝑠*(𝐻) + 𝑠*(𝑣). Therefore, we can recover 𝑠*(𝑣) from the sketch, as long as the

path from the root to 𝑣 does not traverse a long edge.

If the path to 𝑣 contains long edges (and thus missing bits in the binary expansion of

𝑠*(𝑣)), the algorithm completes these bits from the binary expansion of 𝑦. Let 𝑟0, 𝑟1, . . . be

the subtree roots traversed by the algorithm, and let 𝑇0, 𝑇1, . . . be the corresponding subtrees.

Let 𝑡 be the smallest such that the algorithm does not recover the surrogates in 𝑇𝑡 correctly

(because the bits missing on the long edge connecting 𝑇𝑡−1 to 𝑇𝑡 are not truly equal to those

of 𝑦). As in Section 3.3, the query algorithm does not know 𝑡 (it simply always assumes

that the bits of 𝑦 are the correct missing ones), but we will use it for analysis. Note that

by definition of 𝑡, all surrogates in the subtrees rooted at 𝑟0, . . . , 𝑟𝑡−1 are recovered correctly.

(The analog of this fact in Chapter 3 was Lemma 3.3.2, whereas here its conclusion holds

deterministically.)

Proof of Theorem 4.4.9. Let 𝑥* ∈ 𝑋 be a fixed true nearest neighbor of 𝑦 in 𝑋 (chosen

arbitrarily if there is more than one). We shall assume that the event in Claim 4.4.10 occurs

for 𝑥*.

Lemma 4.4.14 (analog of Lemma 3.3.3). Let 𝑇 ′ ∈ ℱ(𝑇 ) be a subtree rooted in 𝑟, such that

𝑥* ∈ 𝐶(𝑟). Let 𝑣 be a leaf of 𝑇 ′ that minimizes ‖𝑦− 𝑠*(𝑣)‖. Then either 𝑥* ∈ 𝐶(𝑣), or every

𝑧 ∈ 𝐶(𝑣) is a (1 + 𝑂(𝜖))-approximate nearest neighbor of 𝑦.

Proof. If 𝑥* ∈ 𝐶(𝑣) then we are done. Assume now that 𝑥* ∈ 𝐶(𝑢) for a leaf 𝑢 ̸= 𝑣 of 𝑇 ′.

Let ℓ = max{ℓ(𝑣), ℓ(𝑢)}.
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We start by showing that ‖𝑦 − 𝑥*‖ > 𝜖−12ℓ
√

𝑑. Assume by contradiction this is not the

case. Since 𝑥*, 𝑥𝑐(𝑢) and 𝑠*(𝑢) are all points in 𝐶(𝑢), by Claim 4.4.11 we have,

‖𝑥* − 𝑥𝑐(𝑢)‖ ≤ 2ℓ
√

𝑑 and ‖𝑥𝑐(𝑢) − 𝑠*(𝑢)‖ ≤ 2ℓ
√

𝑑.

Therefore, by the triangle inequality,

‖𝑦 − 𝑠*(𝑢)‖ ≤ ‖𝑦 − 𝑥*‖+ ‖𝑥* − 𝑥𝑐(𝑢)‖+ ‖𝑥𝑐(𝑢) − 𝑠*(𝑢)‖ ≤ (𝜖−1 + 2)2ℓ
√

𝑑, (4.7)

where we have used the above together with the contradiction hypothesis ‖𝑦−𝑥*‖ ≤ 𝜖−12ℓ
√

𝑑.

On the other hand, by Claim 4.4.13, both 𝑣 and 𝑢 are the bottom of 1-paths of length at

least Λ. This means that 𝑥* and 𝑥𝑐(𝑣) are separated already at level ℓ+Λ, and by Claim 4.4.10,

this implies

‖𝑥* − 𝑥𝑐(𝑣)‖ ≥ 8𝜖−1 · 2ℓ
√

𝑑.

Moreover, by Claim 4.4.11,

‖𝑥𝑐(𝑣) − 𝑠*(𝑣)‖ ≤ 2ℓ
√

𝑑.

Again using that ‖𝑦 − 𝑥*‖ ≤ 𝜖−12ℓ
√

𝑑 by contradiction, we get by the triangle inequality,

‖𝑦 − 𝑠*(𝑣)‖ ≥ ‖𝑥* − 𝑥𝑐(𝑣)‖ − ‖𝑦 − 𝑥*‖ − ‖𝑥𝑐(𝑣) − 𝑠*(𝑣)‖ ≥ (7𝜖−1 − 1) · 2ℓ
√

𝑑. (4.8)

For 𝜖 < 1/2, Equations (4.7) and (4.8) together imply ‖𝑦 − 𝑠*(𝑣)‖ > ‖𝑦 − 𝑠*(𝑢)‖, which

contradicts the choice of 𝑣. Thus we have shown ‖𝑦 − 𝑥*‖ > 𝜖−12ℓ
√

𝑑.

The lemma now follows because for every 𝑧 ∈ 𝐶(𝑣),

‖𝑦 − 𝑧‖ ≤ ‖𝑦 − 𝑠*(𝑣)‖+ ‖𝑠*(𝑣)− 𝑥𝑐(𝑣)‖+ ‖𝑥𝑐(𝑣) − 𝑧‖ (4.9)

≤ ‖𝑦 − 𝑠*(𝑢)‖+ ‖𝑠*(𝑣)− 𝑥𝑐(𝑣)‖+ ‖𝑥𝑐(𝑣) − 𝑧‖ (4.10)

≤ ‖𝑦 − 𝑥*‖+ ‖𝑥* − 𝑥𝑐(𝑢)‖+ ‖𝑥𝑐(𝑢) − 𝑠*(𝑢)‖+ ‖𝑠*(𝑣)− 𝑥𝑐(𝑣)‖+ ‖𝑥𝑐(𝑣) − 𝑧‖ (4.11)

≤ ‖𝑦 − 𝑥*‖+ 4 · 2ℓ
√

𝑑 (4.12)

≤ (1 + 4𝜖)‖𝑦 − 𝑥*‖, (4.13)
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where (4.9) and (4.11) are by the triangle inequality, (4.10) is since ‖𝑦−𝑠*(𝑣)‖ ≤ ‖𝑦−𝑠*(𝑢)‖

by choice of 𝑣, (4.12) is by applying Lemma 4.4.11 to each of the last four summands,

and (4.13) is since we have shown that ‖𝑦 − 𝑥*‖ > 𝜖−12ℓ
√

𝑑. Therefore 𝑧 is a (1 + 4𝜖)-

approximate nearest neighbor of 𝑦.

Now we prove that the query algorithm returns an approximate nearest neighbor for 𝑦.

We may assume w.l.o.g. that 𝜖 is smaller than a sufficiently small constant. Let 𝑡 be as

defined in the surrogate recovery part of the query algorithm above.

We consider two cases. In the first case, 𝑥* /∈ 𝐶(𝑟𝑡). Let 𝑖 ∈ {1, . . . , 𝑡} be the smallest

such that 𝑥* /∈ 𝐶(𝑟𝑖). By applying Lemma 4.4.14 on 𝑟𝑖−1, we have that every point in 𝐶(𝑟𝑖)

is a (1 + 𝑂(𝜖))-approximate nearest neighbor of 𝑦. After reaching 𝑟𝑖, the algorithm would

return the center of some leaf reachable from 𝑟𝑖, and it would be a correct output.

In the second case, 𝑥* ∈ 𝐶(𝑟𝑡). We will show that every point in 𝐶(𝑟𝑡) is a (1 + 𝑂(𝜖))-

approximate nearest neighbor of 𝑦, so once again, once the algorithm arrives at 𝑟𝑡 it can

return anything.

By definition of 𝑡, we know that 𝑦 does not reside in the grid cell associated with 𝑟𝑡.

Therefore, by Claim 4.4.10,

‖𝑦 − 𝑥*‖ ≥ 8𝜖−12ℓ(𝑟𝑡)−Λ
√

𝑑.

On the other hand, by Claim 4.4.13, 𝑟𝑡 is the bottom of a 1-path of length at least Λ.

Therefore, any two points in 𝐶(𝑟𝑡) are contained in the same grid cell at level ℓ(𝑟𝑡) − Λ,

whose diameter is 2ℓ(𝑟𝑡)−Λ
√

𝑑. In particular, for every 𝑥 ∈ 𝐶(𝑟𝑡) we have,

‖𝑥− 𝑥*‖ ≤ 2ℓ(𝑟𝑡)−Λ
√

𝑑.

The above inequalities together imply ‖𝑥− 𝑥*‖ ≤ 1
8𝜖‖𝑦 − 𝑥*‖, and therefore by the triangle

inequality,

‖𝑦 − 𝑥‖ ≤ ‖𝑦 − 𝑥*‖+ ‖𝑥* − 𝑥‖ ≤ (1 + 1
8𝜖)‖𝑦 − 𝑥*‖.

Thus every 𝑥 ∈ 𝐶(𝑟𝑡) is a (1 + 𝜖)-approximate nearest neighbor of 𝑦 in 𝑋.

In the above proof we have assumed that the event in Claim 4.4.10 holds for 𝑥*. This

happens with probability 1−𝛿, which proves Theorem 4.4.9 for one query point. To handle 𝑞
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query points, we can scale 𝛿 down to 𝛿/𝑞 and take a union bound over the 𝑞 nearest neighbors

of the 𝑞 query points. Finally, 𝜖 can be scaled by a constant to yield the theorem.
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Chapter 5

Low-Rank Approximation

of Distance Matrices

A natural way to represent a metric space is by a distance matrix, in which every entry

indicates the distance between a pair of points corresponding to its row and column. This

view of the metric space motivates notions of efficient representation that arise from linear

algebra, such as approximating the distance matrix by a low-rank matrix. In this chapter,

we give a sublinear time algorithm for this problem, which is both simpler and more efficient

than previous work. Furthermore, we prove that the algorithm is optimal, up to constants,

in terms of the number of entries it reads from the input matrix.

5.1 Introduction

A distance matrix is formally defined as follows:

Definition 5.1.1 (distance matrix). A matrix 𝐴 ∈ R𝑛×𝑚 is called a distance matrix if there

is an associated metric space (𝒵, d) with 𝒳 = {𝑥1, . . . , 𝑥𝑛} ⊂ 𝒵 and 𝒴 = {𝑦1, . . . , 𝑦𝑚} ⊂ 𝒵,

such that 𝐴𝑖𝑗 = d(𝑥𝑖, 𝑦𝑗) for every 𝑖, 𝑗.

The intersection between 𝒳 and 𝒴 can be arbitrary. In the special case where 𝑛 = 𝑚

and 𝑥𝑖 = 𝑦𝑖 for every 𝑖 ∈ [𝑛], we call 𝐴 a symmetric distance matrix. Otherwise we call

it asymmetric.
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Distance matrices are a natural way of representing metric data. Indeed, they arise in

various computational contexts, such as learning image manifolds [WS06], image understand-

ing [TDSL00], protein structure analysis [HS93], and more. The recent survey [DPRV15]

provides a comprehensive list. Common software packages such as Julia, MATLAB or R

include operations specifically design to produce or process such matrices.

Viewing a metric space as a matrix naturally leads to linear algebraic notions of efficient

representation, like low-rank approximation. Given an integer 𝑘 > 0, the goal is to find

a matrix 𝐴′ of rank 𝑘 which is as close as possible to 𝐴 (whose rank can be as large as

min{𝑛, 𝑚}). Specifically, we aim to minimize the squared Frobenius norm1 error ‖𝐴−𝐴′‖2
𝐹 .

When 𝑘 is small, using 𝐴′ as a proxy for 𝐴 leads to significant saving of computational

resources, with only a limited loss in accuracy. For example, storing 𝐴 requires Ω(𝑚𝑛) space,

while storing 𝐴′ requires only 𝑂(𝑘(𝑚 + 𝑛)) space; likewise, multiplying 𝐴 by a vector takes

Ω(𝑚𝑛), while multiplying 𝐴′ by the same vector takes only 𝑂(𝑘(𝑚 + 𝑛)) time.2 Generally,

computing low-rank approximations of matrices is a classical computational problem, with

a remarkable number of applications in science and engineering.

The best rank-𝑘 approximation of 𝐴, denote henceforth 𝐴𝑘, can be found in polynomial

time 𝑂(min{𝑚2𝑛, 𝑚𝑛2}) by computing the singular value decomposition (SVD) of 𝐴. How-

ever, since the input matrix 𝐴 is often very large, this running time is rendered infeasible or

undesirable. As a result, faster approximate algorithms for computing low-rank approxima-

tions have been studied extensively — see the surveys [Mah11, Woo14] and references therein.

In particular, this line of work has shown that for any matrix 𝐴 and an arbitrarily small

𝜖 > 0, it is possible to compute a matrix 𝐴′ that attains the optimal Frobenius norm error up

to an additive error of 𝜖‖𝐴‖𝐹 (that is, 𝐴′ satisfies ‖𝐴−𝐴′‖2
𝐹 ≤ ‖𝐴−𝐴𝑘‖2

𝐹 + 𝜖‖𝐴‖2
𝐹 ), in time

nearly linear in the size of 𝐴. Furthermore, this additive error guarantee can strengthened

to a relative error guarantee, ‖𝐴 − 𝐴′‖2
𝐹 ≤ (1 + 𝜖)‖𝐴 − 𝐴𝑘‖2

𝐹 . For distance matrices, the

running time is Ω(𝑚𝑛).

Can we get an even faster, sublinear running time? Since merely writing down the

1The squared Frobenius norm of a matrix 𝑀 is the sum of squares of its entries, ‖𝑀‖2
𝐹 =

∑︀
𝑖,𝑗 𝑀2

𝑖𝑗 .
2In fact, both the storage space and vector multiplication time of 𝐴 can be made proportional to the

number of nonzero entries in 𝐴. However, distance matrices are generally dense — their number of zero
entries is equal to the intersection size between 𝒳 and 𝒴, and thus they have Ω(𝑚𝑛) nonzero entries.
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output 𝐴′ may take Ω(𝑚𝑛) time, in this case the algorithm is required to output a low-rank

factorization of 𝐴′, in the form of two matrices 𝑉 ∈ R𝑛×𝑘 and 𝑈 ∈ R𝑘×𝑚 such that 𝐴′ = 𝑉 𝑈 .

Nonetheless, for general matrices the answer remains negative, as a single large entry in the

input matrix can significantly influence the output, and finding such an entry could take

linear time. However, it is known for that for several interesting special classes of matrices,

one can find an approximate low-rank solution using only a sublinear amount of time or

samples from the input matrix. This includes algorithms for incoherent matrices [CR09],

positive semidefinite matrices [MW17], and distance matrices [BW18].

Bakshi and Woodruff [BW18] were the first to consider low-rank approximation of dis-

tance matrices. They gave a sublinear time algorithm, that runs in time 𝑂((𝑛 + 𝑚)1+𝛾) ·

poly (𝑘, 1/𝜖) where 𝛾 > 0 is an arbitrarily small constant, and finds a rank-𝑘 approximation

that satisfies the additive error guarantee. Furthermore, they showed that the relative error

guarantee cannot be achieved for general distance matrices in sublinear time.

5.1.1 Our Results

In this chapter we present an algorithm for low-rank approximation of distance matrices

with an additive error guarantee, that is both simpler and more efficient than prior work.

Specifically, we show:

Theorem 5.1.2 (upper bound). There is a randomized algorithm that given a distance

matrix 𝐴 ∈ R𝑛×𝑚, reads 𝑂((𝑛 + 𝑚)𝑘/𝜖) entries of 𝐴, runs in time �̃�(𝑛 + 𝑚) · poly (𝑘, 1/𝜖),

and computes matrices 𝑉 ∈ R𝑛×𝑘, 𝑈 ∈ R𝑘×𝑚 that with probability 0.99 satisfy

‖𝐴− 𝑉 𝑈‖2
𝐹 ≤ ‖𝐴− 𝐴𝑘‖2

𝐹 + 𝜖‖𝐴‖2
𝐹 . (5.1)

We complement the sample complexity of our algorithm with a matching lower bound

on the number of entries of the input matrix that must be read by any algorithm.

Theorem 5.1.3 (lower bound). Let 𝑘 ≤ 𝑚 ≤ 𝑛 and 𝜖 > 0 be such that 𝑘/𝜖 = 𝑂(min(𝑚, 𝑛1/3)).

Any randomized and possibly adaptive algorithm that given a distance matrix 𝐴 ∈ R𝑛×𝑚,

computes 𝑉 ∈ R𝑛×𝑘, 𝑈 ∈ R𝑘×𝑚 that satisfy ‖𝐴− 𝑉 𝑈‖2
𝐹 ≤ ‖𝐴−𝐴𝑘‖2

𝐹 + 𝜖‖𝐴‖2
𝐹 , must read at
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least Ω((𝑛 + 𝑚)𝑘/𝜖) entries of 𝐴 in expectation. The lower bound holds even for symmetric

distance matrices.

We include an empirical evaluation of our algorithm on synthetic and real data. The

results validate that our approach attains good approximation with faster running time

than existing methods.

5.1.2 Technical Overview

Upper bound. Our high level approach is similar to [BW18]: use a classical result of

Frieze, Kannan and Vempala [FKV04], which shows how to compute a solution satisfying

Equation 5.1 in �̃�(𝑛 + 𝑚) · poly (𝑘, 1/𝜖) time, assuming it is possible to sample a row (or a

column) of the input matrix with probability proportional to its squared norm. Moreover,

the [FKV04] result is robust in the following sense: Suppose we estimate the sampling

probabilities instead of computing them exactly. If for some 0 < 𝛿 < 1 it is guaranteed that

the actual sampling probability of each row is no smaller than 𝛿 times its correct probability,

then the foregoing result works as long as we oversample rows by a factor of 𝑂(1/𝛿).

Thus, the main challenge is to estimate the row norms in sublinear time. Although this

cannot be done for general matrices, distance matrices have additional structure (imposed by

the triangle inequality), which makes the problem easier. Specifically, in a distance matrix,

the squared norm of a row corresponding to a point 𝑥 ∈ 𝒳 takes the form

𝑟𝑥 =
∑︁
𝑦∈𝒴

d(𝑥, 𝑦)2,

which is seen to be related to 𝑘-means clustering. Indeed, various techniques from the

approximate clustering literature can be applied here [Ind99, Che09, CCK15, CCK18]; see

a detailed discussion in Section 5.1.3.

Our row norm estimation procedure is considerably simpler than prior methods, and

reads only a single row and column from the input matrix, resulting in an optimal sample

bound. Let us describe it here in the symmetric case 𝒳 = 𝒴 . We pick a point 𝑥* uniformly

at random from 𝒳 , and read its corresponding row from the input matrix, thus learning the

distance from 𝑥* to any other point in 𝒳 . For every pair 𝑥, 𝑦 ∈ 𝒳 , we estimate the squared
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distance d(𝑥, 𝑦)2 by the detour through 𝑥*, i.e., by d(𝑥, 𝑥*)2 + d(𝑥*, 𝑦)2. Thus, the squared

norm 𝑟𝑥 of every row 𝑥 is estimated by

𝑟𝑥 =
∑︁
𝑦∈𝒳

(d(𝑥, 𝑥*)2 + d(𝑥*, 𝑦)2) = |𝒳 | · d(𝑥, 𝑥*)2 +
∑︁
𝑦∈𝒳

d(𝑥*, 𝑦)2.

As an immediate consequence of the triangle inequality (for squared distances, see Claim 5.2.3),

𝑟𝑥 ≥ 1
2𝑟𝑥. On the other hand, it is easily seen that in expectation over 𝑥* we have

E𝑥* [∑︀𝑥∈𝒳 𝑟𝑥] = 2∑︀𝑥∈𝑋 𝑟𝑥. Therefore, if we normalize the 𝑟𝑥’s to sum to 1, they yield sam-

pling probabilities that satisfy the robust condition stated above (with 𝛿 = Ω(1)). Namely,

if we let 𝑝𝑥 = 𝑟𝑥/
∑︀

𝑥′ 𝑟𝑥′ , then 𝑝𝑥 ≥ Ω(1) · 𝑟𝑥/
∑︀

𝑥′ 𝑟𝑥′ while ∑︀𝑥 𝑝𝑥 = 1. This is sufficient to

support a reduction to [FKV04] as long as we oversample the rows by a constant factor.

After executing the algorithm of [FKV04], we still need one more step to compute the

solution (as their method reports 𝑈 but not 𝑉 ). This amounts to a regression problem that

admits efficient approximate solutions by standard techniques. For example, using leverage

score sampling (see [Mah11, Woo14]) would result in nearly tight sample complexity, up to

a factor of log 𝑘. To avoid this factor and obtain the tight sample bound, we use a recent

solver of Chen and Price [CP17].

Lower bound. First let us note that an Ω(𝑛𝑘) lower bound can be easily obtained. It

is not hard to see that any 𝑛 × 𝑘 matrix with entries in {1, 2} is an (asymmetric) distance

matrix, since the triangle inequality is satisfied trivially. If we choose a uniformly random

matrix from {1, 2}𝑛×𝑘, then any algorithm that computes a matrix satisfying Equation (5.1)

with 𝜖 = Ω(1) must match a 1−Ω(𝜖) fraction of the entries exactly, yielding the lower bound.

Our Ω(𝑛𝑘/𝜖) lower bound is considerably more involved, and uses tools from communica-

tion complexity and random matrix theory. For simplicity, let us describe our techniques in

the case 𝑘 = 1. Consider the problem of reporting the majority bit of a random binary string

of length 𝑟 = Θ(1/𝜖). This requires reading Ω(𝑟) of the input bits. If we stack together 𝑛

instances into an 𝑛× 𝑟 random binary matrix 𝐴, then reporting the majority bit for a large

fraction of rows requires reading Ω(𝑛𝑟) input bits. This is our target lower bound.

The reduction proceeds by first shifting the values in 𝐴 from {0, 1} to {1, 2}, so that
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it becomes an (asymmetric) distance matrix. A naïve rank-1 approximation would be to

replace each entry with 1.5, yielding a total squared Frobenius error of 1
4𝑛𝑟. However, the

optimal rank-1 approximation is (essentially) to replace each row by its true mean value

instead of 1.5. By anti-concentration of the binomial distribution, in most rows the majority

element appears Ω(
√

𝑟) times more often than the minority element. A simple calculation

shows this leads to a constant additive advantage per row, and Ω(𝑛) advantage over the

whole matrix, of the optimal rank-1 approximation over the naïve one. Since 𝜖‖𝐴‖2
𝐹 = 𝑂(𝑛),

any algorithm that satisfies Equation (5.1) must attain a similar advantage.

By spectral properties of random matrices, the optimal rank-1 approximation of 𝐴 is

essentially unique. In particular, the largest singular value of 𝐴 is much larger than the

second-largest one. For technical reasons we need to sharpen this separation even further.

We accomplish this by augmenting the matrix with an extra row with very large values,

which corresponds to augmenting the metric space with an extra very far point. The upshot

is that any algorithm that satisfies Equation (5.1) must approximately recover the mean

values for a large fraction of the rows. This allows us to solve the majority problem, by

reporting whether each row mean in the rank-1 approximation matrix is smaller or larger

than 1.5. This yields the desired lower bound for asymmetric distance matrices. The result

for symmetric distance matrices, and for general values of 𝑘, builds on similar techniques.

5.1.3 Additional Related Work

As pointed out above, the low rank approximation problem for distance matrices is reduced

by [FKV04] to estimating the 1-means clustering cost of 𝒴 with each centroid in 𝒳 , i.e.,

estimating 𝑟𝑥 = ∑︀
𝑦∈𝒴 d(𝑥, 𝑦)2 for every 𝑥 ∈ 𝒳 . There are numerous approaches in the

literature for this problem. Bakshi and Woodruff [BW18] use a uniform sample of 𝒴 to

obtain a coarse estimate, which is then refined recursively. Alternatively, one could obtain

a constant approximation of each 𝑟𝑥 using the approximate comparator technique of [Ind99]

(developed there for 𝑘-median clustering, but applicable to 𝑘-means as well), or coreset

techniques like [Che09]. For our purpose, these approaches exceed the optimal number of

samples by at least a few logarithmic factors.

The most closely related approach to ours is the Probability Proportional to Size (PPS)
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technique of Cohen, Chechik and Kaplan [CCK15, CCK18], although we had not been

aware of it at the time of the original publication of our results ([IVWW19]). We now briefly

describe it. The technique in [CCK15] is presented in the symmetric case (𝒳 = 𝒴) and for

1-median, i.e., the goal estimate the quantities 𝑚𝑥 = ∑︀
𝑥′∈𝒳 d(𝑥, 𝑥′) for every 𝑥. They let

𝛾𝑥 = max
𝑠∈𝑆

d(𝑥, 𝑠)∑︀
𝑥′∈𝒳 d(𝑥′, 𝑠) ,

where 𝑆 is a uniform sample of 𝒳 of size at least 2. They prove that with high probability,

on one hand ∑︀𝑥 𝛾𝑥 = 𝑂(1), while on the other hand,

𝛾𝑥 ≥ Ω(1) ·max
𝑠∈𝒳

d(𝑥, 𝑠)∑︀
𝑥′∈𝒳 d(𝑥′, 𝑠) .

By a known inequality (max𝑖 𝑎𝑖/𝑏𝑖 ≥
∑︀

𝑖 𝑎𝑖/
∑︀

𝑖 𝑏𝑖 for all positive 𝑎1, . . . , 𝑎𝑛, 𝑏1, . . . , 𝑏𝑛), this

implies

𝛾𝑥 ≥ Ω(1) ·
∑︀

𝑠∈𝒳 d(𝑥, 𝑠)∑︀
𝑠∈𝒳

∑︀
𝑥′∈𝒳 d(𝑥′, 𝑠) = 𝑚𝑥∑︀

𝑥′∈𝒳 𝑚𝑥′
.

This is the same result as in our Theorem 5.2.4 below, except that it is in the symmetric

1-median case; nonetheless, their techniques extend to asymmetric 1-means as well. We

prove the result directly with a simpler argument.

5.2 Upper Bound

5.2.1 Preliminaries

Our algorithm uses two existing sublinear time algorithms as subroutines. They are formal-

ized in the following two theorems. The first theorem, due to Frieze, Kannan and Vempala,

reduces low-rank approximation to sampling proportionally to row (or column) norms. We

use 𝐴𝑖,* to denote the 𝑖th row of 𝐴.

Theorem 5.2.1 ([FKV04]). Let 𝐴 ∈ R𝑛×𝑚 be any matrix. Let 𝑘 > 0 be an integer, and

let 0 < 𝜖 < 1. Let 𝑆 be a sample of 𝑂(𝑘/𝜖) rows according to a probability distribution

(𝑝1, . . . , 𝑝𝑛) that satisfies 𝑝𝑖 ≥ Ω(1) · ‖𝐴𝑖,*‖2
2/‖𝐴‖2

𝐹 for every 𝑖 = 1, . . . , 𝑛. Then, in time
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Input: Distance matrix 𝐴 ∈ R𝑛×𝑚. Output: Matrices 𝑉 ∈ R𝑛×𝑘 and 𝑈 ∈ R𝑘×𝑚.
1: Choose 𝑖* ∈ [𝑛] and 𝑗* ∈ [𝑚] uniformly at random.
2: For each 𝑖 = 1, . . . , 𝑛: 𝑝𝑖 ← 𝐴2

𝑖,𝑗* + 𝐴2
𝑖*,𝑗* + 1

𝑚

∑︀𝑚
𝑗=1 𝐴2

𝑖*,𝑗.
3: Sample 𝑂(𝑘/𝜖) rows of 𝐴 according to the distribution proportional to (𝑝1, . . . , 𝑝𝑛).
4: Compute 𝑈 from the sample, using Theorem 5.2.1.
5: Compute 𝑉 from 𝐴 and 𝑈 , using Theorem 5.2.2.
6: Return 𝑉, 𝑈 .

Algorithm 1: Low-rank approximation for distance matrices

𝑂(𝑚𝑘/𝜖 + poly (𝑘, 1/𝜖)) we can compute from 𝑆 a matrix 𝑈 ∈ R𝑘×𝑚, that with probability

0.99 satisfies

‖𝐴− 𝐴𝑈𝑇 𝑈‖2
𝐹 ≤ ‖𝐴− 𝐴𝑘‖2

𝐹 + 𝜖‖𝐴‖2
𝐹 . (5.2)

The second theorem, due to Chen and Price, approximately solves a regression problem

while reading only a small number of columns of the input matrix.

Theorem 5.2.2 ([CP17]). Let 𝑘 > 0 be an integer, and let 0 < 𝜖 < 1. There is a randomized

algorithm that given matrices 𝐴 ∈ R𝑛×𝑚 and 𝑈 ∈ R𝑘×𝑚, reads only 𝑂(𝑘/𝜖) columns of 𝐴,

runs in time �̃�(𝑚+𝑛)·poly (𝑘, 1/𝜖), and returns 𝑉 ∈ R𝑛×𝑘 that with probability 0.99 satisfies

‖𝐴− 𝑉 𝑈‖2
𝐹 ≤ (1 + 𝜖) min

𝑋∈R𝑛×𝑘
‖𝐴−𝑋𝑈‖2

𝐹 . (5.3)

Since our sampling procedure evaluates the sum of squared distances (rather than just

distances), we need the following approximate version of the triangle inequality.

Claim 5.2.3. For every 𝑥, 𝑦, 𝑧 ∈ 𝒵 in a metric space (𝒵, d), d(𝑥, 𝑦)2 ≤ 2(d(𝑥, 𝑧)2+d(𝑧, 𝑦)2).

Proof. By the triangle inequality, d(𝑥, 𝑦)2 ≤ (d(𝑥, 𝑧)+d(𝑧, 𝑦))2 = d(𝑥, 𝑧)2 +2d(𝑥, 𝑧)d(𝑧, 𝑦)+

d(𝑧, 𝑦)2. By the inequality of means, d(𝑥, 𝑧)d(𝑧, 𝑦) ≤ 1
2(d(𝑥, 𝑧)2 + d(𝑧, 𝑦)2).

5.2.2 Algorithm

In this section we prove Theorem 5.1.2. The algorithm is stated in Algorithm 1. The

main step in the analysis is to provide guarantees for the sampling probabilities 𝑝𝑖 computed

in Steps 1 and 2 of the algorithm. They are specified by the following theorem.
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Theorem 5.2.4. There is a randomized algorithm that given a distance matrix 𝐴 ∈ R𝑛×𝑚,

runs in time 𝑂(𝑚 + 𝑛), reads 𝑂(𝑚 + 𝑛) entries of 𝐴, and outputs sampling probabilities

(𝑝1, . . . , 𝑝𝑛), that with probability 1−𝛿 satisfy 𝑝𝑖 ≥ Ω(𝛿) ·‖𝐴𝑖,*‖2
2/‖𝐴‖2

𝐹 for every 𝑖 = 1, . . . , 𝑛.

Proof. Let (𝒵, d) be the metric space associated with 𝐴. Let 𝒳 = {𝑥1, . . . , 𝑥𝑛} and 𝒴 =

{𝑦1, . . . , 𝑦𝑚} be the pointsets associated with its rows and its columns, respectively. Choose

a uniformly random 𝑖* ∈ [𝑛] and a uniformly random 𝑗* ∈ [𝑚]. For every 𝑖 ∈ [𝑛], the output

sampling probabilities are given by

𝑝𝑖 = d(𝑥𝑖, 𝑦𝑗*)2 + d(𝑥𝑖* , 𝑦𝑗*)2 + 1
𝑚

𝑚∑︁
𝑗=1

d(𝑥𝑖* , 𝑦𝑗)2.

All 𝑝𝑖’s can be computed in time 𝑂(𝑛 + 𝑚) and by reading 𝑛 + 𝑚 entries of 𝐴, since they

only involve distances between 𝑥𝑖* to 𝒴 and between 𝑦𝑗* to 𝒳 . For every 𝑖 ∈ [𝑛],

‖𝐴𝑖,*‖2
2 =

𝑚∑︁
𝑗=1

d(𝑥𝑖, 𝑦𝑗)2

≤ 2
𝑚∑︁

𝑗=1

(︁
d(𝑥𝑖, 𝑦𝑗*)2 + d(𝑦𝑗* , 𝑦𝑗)2

)︁
by Claim 5.2.3

≤ 2
𝑚∑︁

𝑗=1

(︁
d(𝑥𝑖, 𝑦𝑗*)2 + 2d(𝑥𝑖* , 𝑦𝑗*)2 + 2d(𝑥𝑖* , 𝑦𝑗)2

)︁
by Claim 5.2.3

= 2𝑚 · d(𝑥𝑖, 𝑦𝑗*)2 + 4𝑚 · d(𝑥𝑖* , 𝑦𝑗*)2 + 4
𝑚∑︁

𝑗=1
d(𝑥𝑖* , 𝑦𝑗)2

≤ 4𝑚 · 𝑝𝑖.

On the other hand:

∙ For every fixed 𝑖, in expectation over 𝑗*, we have E [d(𝑥𝑖, 𝑦𝑗*)2] = 1
𝑚

∑︀𝑚
𝑗=1 d(𝑥𝑖, 𝑦𝑗)2.

∙ For every fixed 𝑗, in expectation over 𝑖*, we have E [d(𝑥𝑖* , 𝑦𝑗)2] = 1
𝑛

∑︀𝑛
𝑖=1 d(𝑥𝑖, 𝑦𝑗)2.

∙ In expectation over 𝑖* and 𝑗*, we have E [d(𝑥𝑖* , 𝑦𝑗*)2] = 1
𝑛𝑚

∑︀𝑛
𝑖=1

∑︀𝑚
𝑗=1 d(𝑥𝑖, 𝑦𝑗)2.

Thus,
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E
[︃

𝑛∑︁
𝑖=1

𝑝𝑖

]︃
=

𝑛∑︁
𝑖=1

⎛⎝E [︁d(𝑥𝑖, 𝑦𝑗*)2
]︁

+ E
[︁
d(𝑥𝑖* , 𝑦𝑗*)2

]︁
+ E

⎡⎣ 1
𝑚

𝑚∑︁
𝑗=1

d(𝑥𝑖* , 𝑦𝑗)2

⎤⎦⎞⎠
= 3𝑛 · 1

𝑛𝑚

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

d(𝑥𝑖, 𝑦𝑗)2

= 3
𝑚
‖𝐴‖2

𝐹 .

By Markov’s inequality, ∑︀𝑛
𝑖=1 𝑝𝑖 ≤ 3

𝛿𝑚
‖𝐴‖2

𝐹 with probability 1 − 𝛿. Normalizing the 𝑝𝑖’s

by their sum yields the theorem.

We remark that if 𝐴 is a symmetric distance matrix, i.e., 𝒳 = 𝒴 , the sampling prob-

abilities can be simplified to choosing a single 𝑖* ∈ [𝑛] uniformly at random, and letting

𝑝𝑖 = d(𝑥𝑖, 𝑥𝑖*)2 + 1
𝑛

∑︀𝑚
𝑗=1 d(𝑥𝑖* , 𝑥𝑗)2. The proof is similar to the above.

We also remark that essentially the same result follows from [CCK15] (see Section 5.1.3

for details).

Proof of Theorem 5.1.2. Consider Algorithm 1. By Theorem 5.2.4, the probabilities

computed in Steps 1–2 are suitable for invoking Theorem 5.2.1. This ensures that the

matrix 𝑈 computed in Steps 3–4 satisfies Equation (5.2). Theorem 5.2.2 guarantees that the

matrix 𝑉 computed in Step 5 satisfies Equation (5.3). Putting these together, we have

‖𝐴− 𝑉 𝑈‖2
𝐹 ≤ (1 + 𝜖) min

𝑋∈R𝑛×𝑘
‖𝐴−𝑋𝑇 𝑈‖2

𝐹 by Equation (5.3)

≤ (1 + 𝜖)‖𝐴− 𝐴𝑈𝑇 𝑈‖2
𝐹

≤ (1 + 𝜖)
(︁
‖𝐴− 𝐴𝑘‖2

𝐹 + 𝜖‖𝐴‖2
𝐹

)︁
by Equation (5.2)

≤ ‖𝐴− 𝐴𝑘‖2
𝐹 + 𝜖 · (2 + 𝜖) · ‖𝐴‖2

𝐹 since ‖𝐴− 𝐴𝑘‖2
𝐹 ≤ ‖𝐴‖2

𝐹 ,

and we can scale 𝜖 by a constant. This proves Equation (5.1). For the query complexity

bound, note that Steps 1 and 2 in Algorithm 1 read exactly 𝑚 + 𝑛− 1 entries of 𝐴 (the 𝑖*-th

row and the 𝑗*-th column). Theorem 5.2.1 reads 𝑂(𝑘/𝜖) rows of 𝐴, and Theorem 5.2.2 reads

𝑂(𝑘/𝜖) columns of 𝐴, yielding a total of 𝑂((𝑛 + 𝑚)𝑘/𝜖) entries read. Finally, the running

time is the sum of running times of Theorems 5.2.1, 5.2.2 and 5.2.4.
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5.3 Lower Bound for Rank-1 Approximation

We now begin proving Theorem 5.1.3. For a clearer presentation, in this section we prove it

in the special case 𝑘 = 1, and for asymmetric distance matrices. This case encompasses the

main ideas, and will serve as the backbone for the full proof of Theorem 5.1.3. In Section 5.4

we extend the proof to any rank 𝑘, and in Section 5.5 we show it applies also to symmetric

distance matrices, thus completing the proof of Theorem 5.1.3 in its full generality. For

concreteness, let us formally state the special case that will be proven in this section.

Theorem 5.3.1. Let 𝑛, 𝑟, 𝜖 be such that 𝑟 ≤ 𝑛 and 1 > 𝜖 ≥ Ω(𝑛−1/3). Any randomized

algorithm that given a distance matrix 𝐴 ∈ R𝑛×𝑟, computes 𝑉 ∈ R𝑛×𝑘, 𝑈 ∈ R𝑘×𝑟 that with

probability 2/3 satisfy ‖𝐴− 𝑉 𝑈‖2
𝐹 ≤ ‖𝐴−𝐴1‖2

𝐹 + 𝜖‖𝐴‖2
𝐹 , must read at least Ω(𝑛/𝜖) entries

of 𝐴 in expectation.

5.3.1 Preliminaries: Linear Algebra

Matrix norms. Let 𝑀 = (𝑀𝑖𝑗) ∈ R𝑚×𝑛 be a matrix of rank 𝑟. Let 𝜎1 ≥ . . . ≥ 𝜎𝑟 be

its non-zero singular values, sorted from largest to smallest. The Frobenius norm of 𝑀 is

defined as

‖𝑀‖𝐹 =
⎯⎸⎸⎷ 𝑚∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝑀2
𝑖𝑗,

and is also known to be equal to
√︁∑︀𝑟

𝑖=1 𝜎2
𝑖 . The spectral norm of 𝑀 is defined as

‖𝑀‖2 = max
𝑥∈R𝑛:𝑥 ̸=0

‖𝐴𝑥‖2

‖𝑥‖2
,

and is also known to be equal to 𝜎1.

Optimal low-rank approximation by the SVD. We recall the singular value decom-

position (SVD): 𝑀 can be written as 𝑀 = 𝑈Σ𝑉 𝑇 , where 𝑈 ∈ R𝑚×𝑟 and 𝑉 ∈ R𝑛×𝑟 have or-

thonormal columns, and Σ ∈ R𝑟×𝑟 is a diagonal matrix whose diagonal entries are 𝜎1, . . . , 𝜎𝑟.

Let 𝑘 ∈ [𝑟]. Denote by 𝑈𝑘 ∈ R𝑚×𝑘 and 𝑉𝑘 ∈ R𝑛×𝑘 the restriction of 𝑈 and 𝑉 , respectively,

to their first (left) 𝑘 columns. Denote by Σ𝑘 ∈ R𝑘×𝑘 the restriction of Σ to its top-left 𝑘× 𝑘
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principal submatrix. Denote:

𝑀𝑘 = 𝑈𝑘Σ𝑘𝑉 𝑇
𝑘 .

We will often use this notation for any matrix 𝑀 and integer 𝑘.

The following theorem is standard and well-known.

Fact 5.3.2 (Eckart-Young-Mirski theorem). 𝑀𝑘 is the optimal rank-𝑘 approximation of 𝑀 ,

both in the Frobenius and in the spectral norms. More precisely:

min
𝑀 ′ of rank 𝑘

‖𝑀 −𝑀 ′‖2
𝐹 = ‖𝑀 −𝑀𝑘‖2

𝐹 =
𝑟∑︁

𝑖=𝑘+1
𝜎2

𝑖 ,

and

min
𝑀 ′ of rank 𝑘

‖𝑀 −𝑀 ′‖2
2 = ‖𝑀 −𝑀𝑘‖2

2 = 𝜎2
𝑘+1.

Projections. A square matrix Π is a projection matrix if Π2 = Π. It is furthermore

an orthogonal projection if Π = Π𝑇 . Let im(Π) be the image subspace of Π, and let im(Π)⊥

denote its orthogonal subspace. The orthogonal projection on im(Π)⊥ equals 𝐼 −Π, and we

will often denote it by Π⊥.

We remark that if 𝑈 is a matrix with orthonormal columns, then the orthogonal projection

matrix on the subspace spanned by its columns is 𝑈𝑈𝑇 .

The following is a well-known extension of the Pythagorean theorem.

Fact 5.3.3 (Pythagorean theorem). Let 𝐴 ∈ R𝑚×𝑛 and 𝐵 ∈ R𝑚′×𝑛 be such that 𝐴𝑇 𝐵 = 0.

Then,

‖𝐴 + 𝐵‖2
𝐹 = ‖𝐴‖2

𝐹 + ‖𝐵‖2
𝐹 .

In particular, if 𝑀 ∈ R𝑚×𝑛 and Π ∈ R𝑛×𝑛 is an orthogonal projection, then

‖𝑀‖2
𝐹 = ‖𝑀Π‖2

𝐹 + ‖𝑀Π⊥‖2
𝐹 .

Singular values under perturbation. The following fact, about singular values under

a perturbation of restricted rank, is a consequence of [Tho76, Theorem 1].
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Fact 5.3.4. Let 𝛽 > 𝛼 > 0. Let 𝑀 be a matrix of rank 𝑟, such that each of its nonzero

singular values lies in the interval [𝛼, 𝛽]. If 𝐿 is a matrix with rank at most ℓ, then 𝑀 + 𝐿

has at least 𝑟 − ℓ singular values in [𝛼,∞), and at least 𝑟 − ℓ singular values in [0, 𝛽].

5.3.2 Preliminaries: The Majority Problem on Random Instances

In the majority problem, the goal is to compute the majority bit of an input bitstring.

We will show the hardness of low-rank approximation via reduction from solving multiple

random instances of the majority problem. The sample complexity hardness of this problem

is well-known, and is stated in the following lemma. The proof is included for completeness.

Lemma 5.3.5. Let 𝑟, 𝑡 > 0 be integers. Any deterministic algorithm that gets a uniformly

random matrix 𝑆 ∈ {0, 1}𝑡×𝑟 as input, and outputs 𝑠* ∈ {0, 1}𝑡 such that for every 𝑖 ∈ [𝑡],

Pr[𝑠*(𝑖) = majority element of 𝑖th row of 𝑆] ≥ 2/3, must read in expectation at least Ω(𝑟𝑡)

entries of 𝑆.

Proof. The reduction is from the distributional Gap-Hamming communication problem,

which is defined as follows. Alice has a bit string 𝑥 in {0, 1}𝑟 and Bob has a bit string 𝑦 in

{0, 1}𝑟, where 𝑥 and 𝑦 are independent and uniformly distributed. Let Δ(𝑥, 𝑦) denote their

Hamming distance. The goal is to decide whether Δ(𝑥, 𝑦) ≥ 1
2𝑟 +

√
𝑟 or Δ(𝑥, 𝑦) ≤ 1

2𝑟−
√

𝑟.

If neither case holds, then any output is considered successful. The information cost under

this distribution is Ω(𝑟) [BGPW16].

Next consider the 𝑟-fold version of the same problem, i.e., Alice and Bob are given 𝑟

instances of distributional Gap-Hamming, and they need to solve a constant fraction of

them. By a standard direct sum theorem (see e.g. [BR14]), this requires Ω(𝑟𝑡) bits of

communication.

Finally we reduce this problem to the majority problem in the lemma statement. Let

𝑋 denote the xor matrix of Alice’s and Bob’s matrices. The Gap Hamming problem is

equivalent to finding the majority bit over rows of 𝑋 in which the majority bit appears at

least 1
2𝑟+
√

𝑟 times (call these rows “typical”). By binomial anti-concentration (Lemma 5.3.6

below), this happens in a large constant fraction of the rows. Given a black-box algorithm for

the majority problem that queries 𝑞 entries of the input matrix, Alice and Bob can simulate
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it on 𝑀 by communicating to each other only those entries of their matrices, which costs

them Θ(𝑞). The algorithm solves a large fraction of the rows, and thus a large fraction of

the typical rows. Hence they have solved the Gap Hamming problem, and 𝑞 = Ω(𝑟𝑡).

We will also need the following standard fact about anti-concentration of the binomial

distribution: in a random length-𝑟 bitstring, the majority bit is likely appear Ω(
√

𝑟) times

more than the other bit.

Lemma 5.3.6 (anti-concentration). Let 0 < 𝛿 < 1. Let 𝑠 ∈ {1, 2}𝑟 be a uniformly random

majority instance. Then, for 𝛾 = Ω(𝛿), the majority element of 𝑠 appears in it at least
1
2𝑟 + 𝛾

√
𝑟 times with probability at least 1− 𝛿.

Proof. Let 𝑋 ∼ Binomial(𝑟, 1
2). The statement we need to show is equivalent to Pr[|𝑋− 1

2𝑟| <
1
2𝛾
√

𝑟] < 𝛿, or equivalently,
⌈ 1

2 𝑟+ 1
2 𝛾

√
𝑟⌉∑︁

𝑖=⌊ 1
2 𝑟− 1

2 𝛾
√

𝑟⌋

Pr[𝑋 = 𝑖] < 𝛿.

Let 𝛾 =
√︁

𝜋/2 · 𝛿. Note that Pr[𝑋 = 𝑖] ≤ Pr[𝑋 = ⌊𝑟/2⌋] for every 𝑖, and Pr[𝑋 = ⌊𝑟/2⌋] =

2−𝑟
(︁

𝑟
⌊𝑟/2⌋

)︁
≤ 1/

√
2𝜋𝑟 by a known estimate. Therefore, the above left-hand side sum is

upper-bounded by 2𝛾
√

𝑟/
√

2𝜋𝑟 = 𝛿 as needed.

5.3.3 Hard Distribution over Distance Matrices

By Yao’s principle, in order to prove Theorem 5.3.1 it suffices to construct a distribution

over distance matrices, and prove the sampling lower bound for any deterministic algorithm

that operates on inputs from that distribution. We now define a suitable hard distribution

and prove some of its properties.

Random majority instances. Given 𝑛 and 𝜖 > 0, let 𝛽, 𝐶 > 0 be constants that will be

chosen later. (𝛽 will be sufficiently small and 𝐶 sufficiently large.) Let 𝑟 = 𝛽/𝜖, and assume

w.l.o.g. this is an integer by letting 𝜖 be sufficiently smaller. Note that in Lemma 5.3.5, we

can symbolically replace the majority alphabet {0, 1} with any alphabet of size 2, and here

we will use {1, 2}. Let 𝑆 ∈ {1, 2}𝑛×𝑟 be a uniformly random matrix. Let 𝑠1, . . . , 𝑠𝑛 be its
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rows. We call each of its rows an instance (of the majority problem). Thus 𝑆 is an instance

of the random multi-instance majority problem from Lemma 5.3.5 (with 𝑡 = 𝑛). For every

instance 𝑠𝑖, let 𝜇𝑖 = 1
𝑟

∑︀𝑟
𝑗=1 𝑠𝑖𝑗 denote its mean.

Typical and atypical instances. We call an instance 𝑠 in 𝑆 typical if its majority element

appears in it at least 1
2𝑟 +𝛾

√
𝑟 times, where 𝛾 is the constant from Lemma 5.3.6. Otherwise,

we call the instance atypical. Let Ψtypical denote the event there are at least 0.9𝑛 typical

instances. By Markov’s inequality, Pr[Ψtypical] ≥ 1− 10𝛿.

The hard distribution over distance matrices. Our goal is to solve 𝑆 via reduction

to rank-1 approximation of distance matrices. To this end, we transform 𝑆 into a random

distance matrix. First, we randomly permute the rows of 𝑆 to obtain a matrix 𝐴. The

random permutation is denoted by 𝜋 : [𝑛] → [𝑛].3 Then, we add an additional (𝑛 + 1)-th

row to 𝐴, whose entries are all equal 𝑀 =
√

𝐶𝑛. The matrix with the added row is denoted

by 𝐴, and this is the matrix sampled from our hard distribution. We now show that 𝐴 is

indeed an (asymmetric) distance matrix.

Lemma 5.3.7. Every supported 𝐴 is a distance matrix.

Proof. Consider a symbolic pointset 𝑋 = 𝑃 ∪ 𝑄 where 𝑃 ∩ 𝑄 = ∅, such that 𝑃 =

{𝑝1, . . . , 𝑝𝑛+1} corresponds to the rows of 𝐴, and 𝑄 = {𝑞1, . . . , 𝑞𝑟} to the columns of 𝐴.

Our goal is to define a metric d on 𝑋 such that d(𝑝𝑖, 𝑞𝑗) = 𝐴𝑖𝑗 for every 𝑖 ∈ [𝑛 + 1] and

𝑗 ∈ [𝑟]. We need to set the rest of the distances such that d is indeed a metric – that is,

such that d satisfies the triangle inequality. For every 𝑖, 𝑖′ ∈ [𝑛] we set d(𝑝𝑖, 𝑝𝑖′) = 1. For

every 𝑗, 𝑗′ ∈ [𝑟] we set d(𝑞𝑗, 𝑞𝑗′) = 1. Finally we need to set the distances from 𝑝𝑛+1. By

construction of 𝐴 we already have d(𝑝𝑛+1, 𝑞𝑗) = 𝑀 for every 𝑗 ∈ [𝑟]. We set all the remaining

distances, d(𝑝𝑖, 𝑝𝑛+1) for every 𝑖 ∈ [𝑛], to also be 𝑀 .

We need to verify that for all distinct triplets 𝑥, 𝑦, 𝑧 ∈ 𝑋, d(𝑥, 𝑦) ≤ d(𝑥, 𝑧) + d(𝑧, 𝑦).

Indeed, all distances are in {1, 2, 𝑀}. If d(𝑥, 𝑦) ∈ {1, 2} then the inequality holds for any
3The random permutation is for a technical reason and does not change the distribution. Specifically, our

reduction is assumes that we have a black-box algorithm 𝒜ℒ𝒢 that computes a rank-1 approximation of an
input distance matrix. The random permutation of the rows would ensure that 𝒜ℒ𝒢 solves each majority
instance 𝑠𝑖 with the same probability, rather than, say, focusing on a few fixed instances {𝑠𝑖}𝑛′

𝑖=1, 𝑛′ ≪ 𝑛,
and never attempting the rest.
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setting of d(𝑥, 𝑧) and d(𝑧, 𝑦). Otherwise d(𝑥, 𝑦) = 𝑀 , hence necessarily either 𝑥 = 𝑝𝑛+1 or

𝑦 = 𝑝𝑛+1, and in both cases d(𝑥, 𝑧) + d(𝑧, 𝑦) ≥ max{d(𝑥, 𝑧), d(𝑧, 𝑦)} ≥ d(𝑝𝑛+1, 𝑧) = 𝑀 =

d(𝑥, 𝑦) as needed.

Next, we state certain bounds on the best rank-1 approximation 𝐴1 error of 𝐴.

Lemma 5.3.8. ‖𝐴− 𝐴1‖2
𝐹 + 𝜖‖𝐴‖2

𝐹 ≤
∑︀𝑛

𝑖=1‖𝑠𝑖 − 𝜇𝑖1‖2
2 + (4 + 𝐶)𝛽𝑛.

Proof. Let 𝐴* be the matrix in which each row equals 1 times the mean of the corresponding

row of 𝐴. Then ‖𝐴 − 𝐴1‖2
𝐹 ≤ ‖𝐴 − 𝐴*‖2

𝐹 = ∑︀𝑛
𝑖=1‖𝑠𝑖 − 𝜇𝑖1‖2

2, where the first inequality is

since 𝐴* has rank 1 (each of its rows is a multiple of 1). Note that the sum ranges only

up to 𝑛 and not 𝑛 + 1, since in the (𝑛 + 1)th row all entries are equal (to 𝑀) and thus it

contributes 0 to ‖𝐴 − 𝐴*‖2
𝐹 . This bounds the first summand in the lemma. To bound the

second summand, note that each entry in the first 𝑛 rows of 𝐴 is at most 2, thus contributing

in total 4𝑟𝑛 to ‖𝐴‖2
𝐹 . The final row contributes 𝑟𝑀2 = 𝐶𝑟𝑛. Recalling that 𝜖𝑟 = 𝛽, we have

𝜖‖𝐴‖2
𝐹 ≤ (4 + 𝐶)𝛽𝑛.

Corollary 5.3.9. ‖𝐴− 𝐴1‖2
𝐹 + 𝜖‖𝐴‖2

𝐹 ≤ 1
4𝑛𝑟 + (4 + 𝐶)𝛽𝑛.

Proof. For every 𝑠𝑖, its mean 𝜇𝑖 minimizes the sum of squared differences from a single

value, namely ‖𝑠𝑖 − 𝜇𝑖1‖2
2 = min𝜈∈R‖𝑠𝑖 − 𝜈1‖2

2. In particular, ‖𝑠𝑖 − 𝜇𝑖1‖2
2 ≤ ‖𝑠𝑖 − 1.5 · 1‖2

2.

Furthermore, since 𝑠𝑖 ∈ {1, 2}𝑟, we have ‖𝑠𝑖−1.5·1‖2
2 = 𝑟·(1

2)2 = 1
4𝑟. Hence∑︀𝑛

𝑖=1‖𝑠𝑖−𝜇𝑖1‖2
2 ≤

1
4𝑛𝑟, and the corollary follows from Lemma 5.3.8.

5.3.4 Spectral Properties

We will require some facts from random matrix theory about the spectrum of 𝐴. For the

next two lemmas, write 𝐴 = 1.5𝐽 + 𝐵 where 𝐽 is the all-1’s matrix and 𝐵 is a matrix with

i.i.d. random entries chosen uniformly from {−1
2 , 1

2}. Let 𝑃1 denote the orthogonal projection

on the subspace spanned by 1.

Lemma 5.3.10. Suppose 𝑟3 = 𝑂(𝑛). With probability 1 − 𝑒−Ω(𝑛/𝑟3/2), ‖𝐴 − 𝐴1‖2
𝐹 ≥ 1

4𝑛𝑟 −

𝑂(𝑛).
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Proof. We use a sharp estimate of [FS10] on the smallest singular value of 𝐵 (see also eq. (2.5)

in [RV10]). It states that with probability 1−exp(−Ω(𝑛/𝑟3/2)), all 𝑟 singular values of 𝐵 are

at least 1
4𝑛−𝑂(

√
𝑛𝑟). Since 𝐴 is obtained from 𝐵 by adding a rank-1 matrix (namely 1.5𝐽),

then by Fact 5.3.4, 𝐴 has at least 𝑟 − 1 singular values which are at least 1
4𝑛 − 𝑂(

√
𝑛𝑟).

Therefore ‖𝐴−𝐴1‖2
𝐹 , which is the sum of all squared singular values of 𝐴 except the largest,

is at least (𝑟 − 2) · (1
4𝑛−𝑂(

√
𝑛𝑟)) = 1

4𝑛𝑟 −𝑂(𝑛)−𝑂(𝑟3/2√𝑛).

Lemma 5.3.11. Let 𝜁 > 0. Let 𝑍 be a rank-1 matrix such that ‖𝑍‖2 ≤ 𝜁
√

𝑛. Then with

probability 1− 𝑜(1), ‖𝐴𝑃 ⊥
1 − 𝑍‖2

𝐹 ≥ ‖𝐴𝑃 ⊥
1 ‖2

𝐹 − 𝜁 ·𝑂(𝑛).

Proof. By the Hoffman-Wielandt inequality [HW03] for singular values (see also Exercise

22(v) in [Tao10]), any 𝑋, 𝑌 ∈ R𝑛×𝑟 satisfy ‖𝑋 − 𝑌 ‖2
𝐹 ≥

∑︀𝑟
𝑗=1(𝜎𝑗(𝑋) − 𝜎𝑗(𝑌 ))2, where

𝜎1(𝑋) ≥ . . . ≥ 𝜎𝑟(𝑋) and 𝜎1(𝑌 ) ≥ . . . ≥ 𝜎𝑟(𝑌 ) are their respective sorted singular values.

In particular, letting 𝑋 = 𝐴𝑃 ⊥
1 and 𝑌 = 𝑍, since 𝑍 has rank 1, we have

‖𝐴𝑃 ⊥
1 − 𝑍‖2

𝐹 ≥
𝑟∑︁

𝑗=2
(𝜎𝑗(𝐴𝑃 ⊥

1 ))2 +
(︁
𝜎1(𝐴𝑃 ⊥

1 )− 𝜎1(𝑍)
)︁2

= ‖𝐴𝑃 ⊥
1 ‖2

𝐹 − 2𝜎1(𝐴𝑃 ⊥
1 )𝜎1(𝑍) + (𝜎1(𝑍))2

= ‖𝐴𝑃 ⊥
1 ‖2

𝐹 − 2‖𝐴𝑃 ⊥
1 ‖2‖𝑍‖2 + ‖𝑍‖2

2.

Therefore it suffices to show that ‖𝐴𝑃 ⊥
1 ‖2 = 𝑂(

√
𝑛). Indeed, ‖𝐴𝑃 ⊥

1 ‖2 = ‖(1.5𝐽 +𝐵)𝑃 ⊥
1 ‖2 =

‖𝐵𝑃 ⊥
1 ‖2 ≤ ‖𝐵‖2, and an upper bound ‖𝐵‖2 = 𝑂(

√
𝑛) is well known, e.g., see Proposition

2.4 in [RV10].

Since 𝑟 = 𝛽/𝜖 and in Theorem 5.3.1 we assume 𝜖−3 = 𝑂(𝑛), Lemma 5.3.10 is satisfied

with probability 1− 𝑜(1). Therefore,

Corollary 5.3.12. Denote by Ψspectral the event that the conclusions of both Lemma 5.3.10

and Lemma 5.3.11 hold. Then Pr[Ψspectral] ≥ 1− 𝑜(1), and therefore Pr[Ψtypical ∧Ψspectral] ≥

1− 10𝛿 − 𝑜(1).
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5.3.5 The Reduction

Suppose we have a deterministic algorithm for the rank-1 approximation problem of distance

matrices from the distribution from Section 5.3.3. That is, given 𝐴, it returns 𝐴′ = �̄�𝑏𝑇 ,

where �̄� ∈ R𝑛+1 and 𝑏 ∈ R𝑟, such that

‖𝐴− �̄�𝑏𝑇‖2
𝐹 ≤ ‖𝐴− 𝐴1‖2

𝐹 + 𝜖‖𝐴‖2
𝐹 . (5.4)

Let 𝑎 ∈ R𝑛 denote the restriction of �̄� to the first 𝑛 entries. By scaling (i.e., multiplying

�̄� by a constant and 𝑏 by its reciprocal), we can assume w.l.o.g. that �̄�𝑛+1 = 𝑀 . Since the

(𝑛 + 1)th row of 𝐴 equals 𝑀 · 1, we have

‖𝐴− �̄�𝑏𝑇‖2
𝐹 = ‖𝐴− 𝑎𝑏𝑇‖2

𝐹 + ‖𝑀 · 1− �̄�𝑛+1𝑏‖2
2 = ‖𝐴− 𝑎𝑏𝑇‖2

𝐹 + 𝑀2‖1− 𝑏‖2
2.

If we rearrange this, and use Equation (5.4) and Corollary 5.3.9 as an upper bound on

‖𝐴 − �̄�𝑏𝑇‖2
𝐹 and Lemma 5.3.10 as a lower bound on ‖𝐴 − 𝑎𝑏𝑇‖2

𝐹 , we get 𝑀2‖1 − 𝑏‖2
2 ≤

(4 + 𝐶)𝛽𝑛 + 𝑂(𝑛). Plugging 𝑀 =
√

𝐶𝑛,

‖1− 𝑏‖2
2 ≤

(︂ 4
𝐶

+ 1
)︂

𝛽 + 𝑂(1)
𝐶

= 𝑂(1)
𝐶

. (5.5)

This inequality yields the following two lemmas.

Lemma 5.3.13. We have 1− 𝜂/
√

𝑟 ≤ ‖𝑏𝑇 𝑃1‖/‖1‖ ≤ 1 + 𝜂/
√

𝑟, where 𝜂 > 0 is a constant

that can be made arbitrarily small by choosing 𝐶 > 0 sufficiently large.

Proof. By the triangle inequality we have

‖1‖2 − ‖1− 𝑏‖2 ≤ ‖𝑏‖2 ≤ ‖1‖2 + ‖1− 𝑏‖2.

The upper bound implies

‖𝑏𝑇 𝑃1‖ ≤ ‖𝑏‖ ≤ ‖1‖2 + ‖1− 𝑏‖2. (5.6)
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The lower bound implies

‖1− 𝑏‖2
2 = ‖1‖2

2 + ‖𝑏‖2
2 − 2𝑏𝑇 1 ≥ ‖1‖2

2 + ‖1‖2
2 + ‖1− 𝑏‖2

2 − 2‖1‖2‖1− 𝑏‖2 − 2𝑏𝑇 1,

which rearranges to 𝑏𝑇 1 ≥ ‖1‖2
2 − ‖1‖2‖1− 𝑏‖2, implying

‖𝑏𝑇 𝑃1‖ = 𝑏𝑇 ( 1
‖1‖2

1) ≥ ‖1‖2 − ‖1− 𝑏‖2. (5.7)

Putting Equations (5.6) and (5.7) together,

‖1‖2 − ‖1− 𝑏‖2 ≤ ‖𝑏𝑇 𝑃1‖ ≤ ‖1‖2 + ‖1− 𝑏‖2,

and the lemma follows since ‖1‖2 =
√

𝑟 and since by eq. (5.5), ‖1 − 𝑏‖2 is a constant that

can be made arbitrarily small by choosing 𝐶 > 0 sufficiently large.

Lemma 5.3.14. ‖𝑎‖ = 𝑂(
√

𝑛).

Proof. By the triangle inequality, ‖𝑏‖2 ≥ ‖1‖2 − ‖𝑏− 1‖2. Since ‖1‖2 =
√

𝑟 and ‖𝑏− 1‖2 is

an arbitrarily small constant by Equation (5.5), ‖𝑏‖2 ≥ 1
2
√

𝑟. Thus

‖𝑎𝑏𝑇‖2
𝐹 = ‖𝑎‖2

2‖𝑏‖2
2 ≥ 1

4𝑟‖𝑎‖2
2. (5.8)

We finish by showing that ‖𝑎𝑏𝑇‖2
𝐹 = 𝑂(𝑛𝑟). Indeed,

‖𝐴− 𝑎𝑏𝑇‖2
𝐹 ≤ ‖𝐴− �̄�𝑏𝑇‖2

𝐹

≤ ‖𝐴− 𝐴1‖2
𝐹 + 𝜖‖𝐴‖2

𝐹 by Equation (5.4)

≤ 1
4𝑛𝑟 + (4 + 𝐶)𝛽𝑛. by Corollary 5.3.9

Furthermore ‖𝐴‖2
𝐹 ≤ 4𝑛𝑟 since each entry of 𝐴 has absolute value at most 2. Finally, by

approximate triangle inequality (Claim 5.2.3),

‖𝑎𝑏𝑇‖2
𝐹 ≤ 2‖𝐴‖2

𝐹 + 2‖𝐴− 𝑎𝑏𝑇‖2
𝐹 = 𝑂(𝑛𝑟).
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With Equation (5.8) this implies the lemma.

We now show how to use 𝐴′ = �̄�𝑏𝑇 to solve the majority instance 𝑆 of the problem

in Lemma 5.3.5. We condition on the intersection of the events Ψtypical and Ψspectral. By

Corollary 5.3.12 it occurs with probability at least 1− 10𝛿 − 𝑜(1).

Let 𝑠1, . . . , 𝑠𝑛 ∈ {1, 2}𝑟 denote the random instances in 𝑆. Recall that we assigned them

to rows of 𝐴 by a uniformly random permutation 𝜋, that is, the 𝜋(𝑖)-th row of 𝐴 equals 𝑠𝑖.

We use 𝑎 to solve the majority problem as follows. For each 𝑠𝑖, if 𝑎𝜋(𝑖) ≤ 1.5 then we

output that the majority is 1, and otherwise we output that the majority is 2. We say that

𝑎 solves the instance 𝑠𝑖 if the output is correct. Due to 𝜋 being random, the probability that

𝑎 solves any instance 𝑠𝑖 is identical. Denote this probability by 𝑝. We need to show that

𝑝 ≥ 2/3.

Assume by contradiction that 𝑝 < 2/3. By Markov’s inequality, with probability at least

4/5 we have at least 𝑛/6 unsolved instances. Since by Ψtypical there are only 0.1𝑛 atypical

instances, we have at least 𝑛/15 unsolved typical instances. Denote by 𝑆 ′ the set of unsolved

typical instances. Consider such instance 𝑠𝑖 ∈ 𝑆 ′. Suppose its majority element is 1. Then,

since it is typical,

‖𝑠𝑖 − 𝜇𝑖1‖2
2 ≤ ‖𝑠𝑖 − (1.5− 𝛾/

√
𝑟)1‖2

2

≤
(︁

1
2𝑟 + 𝛾

√
𝑟
)︁ (︁

1
2 − 𝛾/

√
𝑟
)︁2

+
(︁

1
2𝑟 − 𝛾

√
𝑟
)︁ (︁

1
2 + 𝛾/

√
𝑟
)︁2

= 1
4𝑟 − 𝛾2. (5.9)

On the other hand, since 𝑠𝑖 is unsolved, 𝑎𝜋(𝑖) ≥ 1.5. Hence by Lemma 5.3.13,

‖𝑏𝑇 𝑃1‖2

‖1‖2
· 𝑎𝜋(𝑖) ≥ 1.5− 𝜂/

√
𝑟.
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Therefore, noting that 𝑏𝑇 𝑃1 = ‖𝑏𝑇 𝑃1‖2
‖1‖2

· 1, we have

‖𝑠𝑖 − 𝑎𝜋(𝑖)𝑏
𝑇 𝑃1‖2

2 = ‖𝑠𝑖 −
‖𝑏𝑇 𝑃1‖2

‖1‖2
· 𝑎𝜋(𝑖)1‖2

2

≥ ‖𝑠𝑖 − (1.5− 𝜂√
𝑟
) · 1‖2

2

≥
(︁

1
2𝑟 + 𝛾

√
𝑟
)︁ (︁

1
2 − 𝜂/

√
𝑟
)︁2

+
(︁

1
2𝑟 − 𝛾

√
𝑟
)︁ (︁

1
2 + 𝜂/

√
𝑟
)︁2

= 1
4𝑟 + 𝜂2 − 2𝛾𝜂. (5.10)

Similar calculations yield the same bounds when the majority element is 2. From Equa-

tion (5.9), together with Equation (5.4) and Lemma 5.3.8, we get:

‖𝐴− �̄�𝑏𝑇‖2
𝐹 ≤

𝑛∑︁
𝑖=1
‖𝑠𝑖 − 𝜇𝑖1‖2

2 ≤ 1
15𝑛(1

4𝑟 − 𝛾2) +
∑︁

𝑠𝑖 /∈𝑆′

‖𝑠𝑖 − 𝜇𝑖1‖2
2 + (4 + 𝐶)𝛽𝑛. (5.11)

On the other hand, by Equation (5.10),

‖𝐴− 𝑎𝑏𝑇 𝑃1‖2
𝐹 =

𝑛∑︁
𝑖=1
‖𝑠𝑖 − 𝑎𝜋(𝑖)𝑏

𝑇 𝑃1‖2
2 ≥ 1

15𝑛(1
4𝑟 + 𝜂2 − 2𝛾𝜂) +

∑︁
𝑠𝑖 /∈𝑆′

‖𝑠𝑖 − 𝜇𝑖1‖2
2. (5.12)

It remains to relate Equations (5.11) and (5.12) to derive a contradiction. By the Pythagorean

identity, ‖𝐴− 𝑎𝑏𝑇‖2
𝐹 = ‖𝐴𝑃1 − 𝑎𝑏𝑇 𝑃1‖2

𝐹 + ‖𝐴𝑃 ⊥
1 − 𝑎𝑏𝑇 𝑃 ⊥

1 ‖2
𝐹 , and

‖𝐴− 𝑎𝑏𝑇 𝑃1‖2
𝐹 = ‖𝐴𝑃1 − 𝑎𝑏𝑇 𝑃 2

1‖2
𝐹 + ‖𝐴𝑃 ⊥

1 − 𝑎𝑏𝑇 𝑃1𝑃 ⊥
1 ‖2

𝐹 = ‖𝐴𝑃1 − 𝑎𝑏𝑇 𝑃1‖2
𝐹 + ‖𝐴𝑃 ⊥

1 ‖2
𝐹 .

Together,

‖𝐴− 𝑎𝑏𝑇 𝑃1‖2
𝐹 = ‖𝐴− 𝑎𝑏𝑇‖2

𝐹 +
(︁
‖𝐴𝑃 ⊥

1 ‖2
𝐹 − ‖𝐴𝑃 ⊥

1 − 𝑎𝑏𝑇 𝑃 ⊥
1 ‖2

𝐹

)︁
. (5.13)

Let us upper-bound both terms in the right-hand side of Equation (5.13). For the first

term, we simply use ‖𝐴− 𝑎𝑏𝑇‖2
𝐹 ≤ ‖𝐴− �̄�𝑏𝑇‖2

𝐹 . For the second term, note that ‖𝑏𝑇 𝑃 ⊥
1 ‖2 =

‖1𝑃 ⊥
1 − 𝑏𝑇 𝑃 ⊥

1 ‖2 ≤ ‖1 − 𝑏‖2. Together with Lemma 5.3.14, ‖𝑎𝑏𝑇 𝑃 ⊥
1 ‖2 ≤ 𝑂(

√
𝑛) · ‖1 − 𝑏‖2.

Thus by Lemma 5.3.11,

(︁
‖𝐴𝑃 ⊥

1 ‖2
𝐹 − ‖𝐴𝑃 ⊥

1 − 𝑎𝑏𝑇 𝑃 ⊥
1 ‖2

𝐹

)︁
≤ 𝑂(𝑛) · ‖1− 𝑏‖2.
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By Equation (5.5), the latter is 𝑂(𝑛)/
√

𝐶. Plugging both upper bounds into Equation (5.13),

‖𝐴− 𝑎𝑏𝑇 𝑃1‖2
𝐹 ≤ ‖𝐴− �̄�𝑏𝑇‖2

𝐹 + 𝑂(𝑛) · 𝐶−1/2.

This relates Equations (5.11) and (5.12), yielding

1
15(𝛾2 + 𝜂2) ≤ 2

15 · 𝛾𝜂 + (4 + 𝐶)𝛽 + 𝑂(1) · 𝐶−1/2.

Since 𝛾 is fixed, choosing 𝛽, 𝜂 sufficiently small and 𝐶 sufficiently large leads to a contradic-

tion.

Thus 𝑝 ≥ 2/3, meaning the reduction solves each instance in the majority problem 𝑆

with probability at least 2/3. Accounting for the conditioning on Ψtypical and Ψspectral, the

determined low-rank approximation algorithm from Section 5.3.5 solves a random instance of

Lemma 5.3.5 with probability at least 2/3− 10𝛿− 𝑜(1) (the constants can be scaled without

changing the lower bound). Hence, it requires reading at least Ω(𝑛/𝜖) bits from the matrix,

which proves Theorem 5.3.1.

5.4 Lower Bound for General Rank-𝑘 Approximation

In this section we prove the full statement of Theorem 5.1.3. The proof largely goes by

reduction to the 𝑘 = 1 case, described as follows. We take 𝑘 copies (referred to as blocks) of

the hard distribution from the 𝑘 = 1 case, and concatenate them horizontally into an 𝑛×(𝑘𝑟)

matrix (where as previously, 𝑟 = Θ(1/𝜖)). Then, for each block we pick a Hadamard vector,

and add it to all columns in that block. This renders the blocks nearly orthogonal, forcing

any low-rank approximation algorithm to compute the majority element of most rows in most

blocks, thus solving Ω(𝑛𝑘/𝜖) instances of random majority, yielding the desired lower bound.

Even though the description is straightforward, the formal proof requires some elaborate

technical work, as given in the rest of this section.

Another rather minor difference is that due to having 𝑘 blocks (which correspond to 𝑘

clusters of points in the metric space), we cannot add a “heavy row” (which would correspond

to a very far point), with all entries set to a large 𝑀 > 0, to each block as we did in the
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𝑘 = 1 case. The reason is that the clusters are close (the distance between every two clusters

is at most 2), so any point which is far from one cluster must be far from all of them. Thus it

would sharpen the spectrum separation of the entire matrix, but not of each block separately,

which is the effect we wish to achieve (namely, it would increase the top singular value, but

not all top-𝑘 singular values.). This is solved by adding 𝑀2 light rows instead of a single

heavy row. In a light row, we can set all distances to a given cluster 𝑖 ∈ [𝑘] to 2, and the

rest of the distances to 1. This makes the corresponding point slightly further from cluster

𝑖 than from the rest of the clusters. Over many similar light rows, this yields the desired

effect.

5.4.1 Hard Distribution

Given 𝑛, 𝑘, 𝜖, let 𝛽, 𝐶 > 0 be constants that will be chosen later. (𝛽 will be sufficiently small

and 𝐶 sufficiently large.) Let 𝑟 = 𝛽/𝜖, and assume w.l.o.g. this is an integer by letting 𝜖 be

sufficiently smaller. Let 𝑁 = (1 + 𝐶)𝑛.

Next we use the Walsh construction of Hadamard vectors. Recall these are vectors

with entries in {±1}𝑁 which are pairwise orthogonal. Let 𝑣1, . . . , 𝑣𝑘 ∈ R𝑁 be 𝑘 Hadamard

column vectors, which are different than all-1’s. We rescale them to have entries in {±1
2}.

Let 𝑉 𝑖 ∈ R𝑁×𝑟 be made of 𝑟 copies of 𝑣𝑖 concatenated horizontally.

For every 𝑖 = 1, . . . , 𝑘 let 𝑆𝑖 ∈ {±1
2}

𝑛×𝑟 be made of 𝑛 vertically stacked random instances

of majority, after a random permutation of the rows. We complete it to a matrix 𝑆𝑖 ∈

{0,±1
2}

𝑁×𝑟 by adding all-0’s lines at the bottom. We use 𝐽 to denote the all-1’s matrix of

dimensions implied by context. We form a matrix 𝐴𝑖 ∈ R𝑁×𝑟 by

𝐴𝑖 = 2𝐽 + 𝑉 𝑖 + 𝑆𝑖.

We concatenate the 𝐴𝑖’s horizontally to obtain a matrix 𝐴 ∈ R𝑁×𝑘𝑟. This defines the hard

distribution over distance matrices 𝐴 ∈ R𝑁×𝑘𝑟.

Claim 5.4.1. Every supported 𝐴 is an (asymmetric) distance matrix.

Proof. Observe that all entries of 𝐴 are in {1, 11
2 , 2, 21

2 , 3} ⊂ [1, 3]. Let 𝒳 and 𝒴 be disjoint

symbolic point sets, which correspond to the rows and columns of 𝐴 respectively. For every
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𝑥 ∈ 𝒳 and 𝑦 ∈ 𝒴 , the distance d(𝑥, 𝑦) is determined by 𝐴. For every 𝑥, 𝑥′ ∈ 𝒳 we set the

distance to d(𝑥, 𝑥′) = 2, and for every 𝑦, 𝑦′ ∈ 𝒴 we set the distance to d(𝑦, 𝑦′) = 2. It can be

easily checked that the triangle inequality is satisfied for the metric space (𝒳 ∪ 𝒴 , d).

Let �̄� = 𝐴−2𝐽 and �̄�𝑖 = 𝑉 𝑖 +𝑆𝑖 (not the �̄� is the horizontal concatenation of the �̄�𝑖’s).

Moreover, let 𝐵 ∈ R𝑛×𝑘𝑟 denote the restriction of �̄� to its top 𝑛 rows. In most of the proof

we will actually work with the matrix �̄� instead of 𝐴 (cf. Lemma 5.4.6 later on).

For every 𝑖 ∈ [𝑘] and 𝑗 ∈ [𝑛] let us denote by 𝑠𝑖
𝑗 the majority instance which is at the

𝑗th line of 𝑆𝑖. Let 𝜇𝑖
𝑗 denote its mean. As in the 𝑘 = 1 case, let 1 denote the all-1’s vector

in R𝑟, and let 𝑃1 denote the orthogonal projection on the subspace spanned by it.

Lemma 5.4.2. ‖�̄� − �̄�𝑘‖2
𝐹 + 𝜖‖�̄�‖2

𝐹 ≤
∑︀𝑘

𝑖=1
∑︀𝑛

𝑗=1‖𝑠𝑖
𝑗 − 𝜇𝑖

𝑗1‖2
2 + (1 + 𝐶)𝛽𝑛𝑘.

Proof. For the first summand, consider the rank-𝑘 matrix given by replacing each majority

instance 𝑠𝑖
𝑗 in 𝐵 by 𝜇𝑖

𝑗1. For the second summand, note that each entry in �̄� has magnitude

at most 1, thus 𝜖‖�̄�‖2
𝐹 ≤ 𝜖 · (1 + 𝐶)𝑛 · 𝑘𝑟 = (1 + 𝐶)𝛽𝑛𝑘.

Corollary 5.4.3. ‖�̄� − �̄�𝑘‖2
𝐹 + 𝜖‖�̄�‖2

𝐹 ≤ 1
4𝑛𝑘𝑟 + (1 + 𝐶)𝛽𝑘𝑛.

Proof. In the term ∑︀𝑛
𝑖=1‖𝑠𝑖 − 𝜇𝑖1‖2

2 in the above lemma, if we replace 𝜇𝑖 by an all-0 vector

(which does not decrease the term, since the means 𝜇𝑖 are optimal for it), we pay exactly

(1
2)2 per entry.

5.4.2 Spectral Properties

Lemma 5.4.4. Suppose (𝑘𝑟)3 = 𝑂(𝑛). Let 𝜎𝑗(�̄�)𝑟𝑘
𝑗=1 denote the sorted singular values of �̄�

(so that 𝜎1(�̄�) ≥ 𝜎2(�̄�) ≥ . . .). With probability at least 1− 𝑒−Ω(𝑛/(𝑘𝑟)3/2,

1. For every 𝑗 ≥ 𝑘 + 1, 𝜎𝑗(�̄�)2 ≤ (1
4 + 𝑜(1))𝑛.

2. For every 𝑗 ≤ 𝑟𝑘 − 𝑘, 𝜎𝑗(�̄�)2 ≥ (1
4 − 𝑜(1))𝑛.

Proof. Consider the random portion of �̄�, which is the horizontal concatenations the blocks

𝑆𝑖. This is a matrix of order 𝑛 × 𝑟𝑘 with entries distributed uniformly i.i.d. in {±1
2}.

Thus, similarly to Lemma 5.3.10, all of its squared singular values are (1
4 ± 𝑜(1))𝑛 with high
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probability. Since �̄� is obtained by adding 𝑘 rank-1 matrices to that random portion, both

parts of the lemma follow from Fact 5.3.4.

Lemma 5.4.5. Suppose (𝑘𝑟)3 = 𝑂(𝑛). With probability at least 1 − 𝑒−Ω(𝑛/(𝑘𝑟)3/2, for every

𝑘′ ≤ 𝑘, the sum of squares of the top 𝑘′ singular values of �̄� is at most (1 + 𝑜(1)) · 1
4((𝐶 +

1)𝑛𝑘′𝑟 + 2𝑛𝑘).

Proof. Fix a block 𝑖. Its corresponding Hadamard vector is 𝑣𝑖. Denote by 𝑒𝑖 its corresponding

block-indicator vector (this is a column vector in R𝑘𝑟 which has 1 in entries corresponding

to block 𝑖 and 0 everywhere else). Note that ‖𝑣𝑖‖ =
√︁

1
4(𝐶 + 1)𝑛 and ‖𝑒𝑖‖ =

√
𝑟.

Consider the multiplication of �̄� on the left by 𝑣𝑖 and on the right by 𝑒𝑖. This yields a

scalar value 𝜑𝑖 which we now calculate. It equals 𝑟 times the inner product of 𝑣𝑖 with itself,

which is 1
4(𝐶 + 1)𝑛, plus 𝑟 times the inner product of the first 𝑛 entries of 𝑣𝑖 with a column

of 𝑆𝑖, which has entries i.i.d. uniformly random in {±1
2}. Each summand in this latter inner

product is i.i.d. uniformly random from {±1
4}, and thus with high probability, the inner

product is between −𝑂(
√

𝑛) and 𝑂(
√

𝑛). Thus, in total, 𝜑𝑖 ≥ (1 − 𝑜(1)) · 1
4(𝐶 + 1)𝑛. This

implies that �̄� has a singular value which is at least

(1− 𝑜(1)) · 1
4(𝐶 + 1)𝑛𝑟

‖𝑣‖ · ‖𝑒𝑖‖
=
√︁

(1− 𝑜(1)) · 1
4(𝐶 + 1)𝑛𝑟.

Since we have 𝑘 blocks, and their Hadamard vectors {𝑣𝑖} are orthogonal, and their block

indicators {𝑒𝑖} are orthogonal, this implies we have at least 𝑘 singular values whose square is

at least (1−𝑜(1)) · 1
4(𝐶 +1)𝑛𝑟. Consequently, if we let {𝜎𝑗(�̄�)}𝑘𝑟

𝑗=1 denote the sorted singular

values of �̄�, then

𝑘∑︁
𝑗=𝑘′+1

𝜎𝑗(�̄�)2 ≥ (𝑘 − 𝑘′) · (1− 𝑜(1)) · 1
4(𝐶 + 1)𝑛𝑟.

By Lemma 5.4.4, �̄� has at least 𝑟𝑘 − 2𝑘 additional singular values whose squared value is
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at least (1− 𝑜(1)) · 1
4𝑛. Together,

𝑘∑︁
𝑗=1

𝜎𝑗(�̄�)2 =
𝑘′∑︁

𝑗=1
𝜎𝑗(�̄�)2 +

𝑘∑︁
𝑗=𝑘′+1

𝜎𝑗(�̄�)2 +
𝑟𝑘∑︁

𝑗=𝑘+1
𝜎𝑗(�̄�)2

≥
𝑘′∑︁

𝑗=1
𝜎𝑗(�̄�)2 + (𝑘 − 𝑘′) · (1− 𝑜(1)) · 1

4(𝐶 + 1)𝑛𝑟 + (𝑟𝑘 − 2𝑘) · (1− 𝑜(1)) · 1
4𝑛.

On the other hand, consider the squared Frobenius norm of �̄�. In the top 𝑛 rows, the

absolute value of each entry is i.i.d. uniform in {0, 1} (since it is the sum of a fixed entry

from the Hadamard vector, either 1
2 or −1

2 , with a uniformly random value in {±1
2}, so

their total contribution is tightly concentrated at 1
2𝑛𝑘𝑟. In the bottom 𝐶𝑛 rows each entry

has absolute value of 1
2 (an entry of a fixed Hadamard vector) so their total contribution is

1
4𝐶𝑛𝑘𝑟. Together,

𝑘∑︁
𝑗=1

𝜎𝑗(�̄�)2 = ‖�̄�‖2
𝐹 ≤ 1

4𝐶𝑛𝑘𝑟 + (1 + 𝑜(1)) · 1
2𝑛𝑘𝑟.

Rearranging this with the above, ∑︀𝑘′

𝑗=1 𝜎𝑗(�̄�)2 ≤ (1+𝑜(1))· 14((𝐶+1)𝑛𝑘′𝑟+2𝑛𝑘) as needed.

5.4.3 The Reduction

Suppose we have a deterministic algorithm that given 𝐴, returns 𝐴′ of rank 𝑘 + 1 that with

probability at least (2/3) + 𝛿 satisfies

‖𝐴− 𝐴′‖2
𝐹 ≤ ‖𝐴− 𝐴𝑘+1‖2

𝐹 + 𝜖‖𝐴‖2
𝐹 . (5.14)

This the hypothesis of Theorem 5.1.3, except with 𝑘 + 1 instead of 𝑘; this will be more

convenient to work with, and does not change the theorem statement (one can shift 𝑘 by 1

everywhere).

We now move from working with 𝐴 to working with �̄�.

Lemma 5.4.6. We can obtain an approximation �̄�′ of rank 𝑘 + 2 that satifies

‖�̄� − �̄�′‖2
𝐹 ≤ ‖�̄� − �̄�𝑘‖2

𝐹 + 𝑂(𝜖) · ‖�̄�‖2
𝐹 . (5.15)
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Proof. Recall that �̄� = 𝐴− 2𝐽 . We take �̄�′ = 𝐴′ − 2𝐽 . Then, for a constant 𝑐 > 0,

‖�̄� − �̄�′‖2
𝐹 = ‖(𝐴− 2𝐽)− (𝐴′ − 2𝐽)‖2

𝐹

= ‖𝐴− 𝐴′‖2
𝐹

≤ ‖𝐴− 𝐴𝑘+1‖2
𝐹 + 𝜖‖𝐴‖2

𝐹 Equation (5.14)

≤ ‖𝐴− �̄�𝑘 − 2𝐽‖2
𝐹 + 𝜖‖𝐴‖2

𝐹 (*)

≤ ‖�̄� − �̄�𝑘‖2
𝐹 + 𝑐𝜖‖�̄�‖2

𝐹 , (**)

where (*) is since �̄�𝑘 +2𝐽 has rank 𝑘 +1 and 𝐴𝑘+1 is the optimal rank-(𝑘 +1) approximation

of 𝐴, and (**) is since ‖𝐴‖2
𝐹 and ‖�̄�‖2

𝐹 are equal up to a constant (both are Θ(𝑛𝑘𝑟)). The

lemma follows since we can scale 𝜖 down by the constant 𝑐.

Combined with Corollary 5.4.3, we get

Corollary 5.4.7. ‖�̄� − �̄�′‖2
𝐹 ≤ 1

4𝑛𝑘𝑟 + (1 + 𝐶)𝛽𝑘𝑛.

Recall that �̄�′
𝑘 denotes the optimal rank-𝑘 approximation of �̄�′, and thus ‖�̄�′

𝑘‖2
𝐹 is the

sum of squares of the top-𝑘 singular values of �̄�′ (which has a total of 𝑘 + 2 singular values).

Lemma 5.4.8. The singular values of �̄�′ satisfy

𝑘+2∑︁
𝑖=1

(︁
𝜎𝑖(�̄�)− 𝜎𝑖(�̄�′)

)︁2
≤ 𝑂(𝐶𝛽𝑛𝑘).

Furthermore, the two bottom squared singular values are each 𝑂(𝐶𝛽𝑛𝑘).

Proof. Using Lemma 5.4.6 as an upper bound and the Hoffman-Weilandt inequality as a

lower bound on ‖�̄� − �̄�′‖2
𝐹 ,

𝑘+2∑︁
𝑖=1

(︁
𝜎𝑖(�̄�)− 𝜎𝑖(�̄�′)

)︁2
+ ‖�̄� − �̄�𝑘+2‖2

𝐹 ≤ ‖�̄� − �̄�′‖2
𝐹 ≤ ‖�̄� − �̄�𝑘‖2

𝐹 + 𝑂(𝐶𝛽𝑛𝑘).

Observe that ‖�̄� − �̄�𝑘‖2
𝐹 − ‖�̄� − �̄�𝑘+2‖2

𝐹 = 𝜎𝑘+1(�̄�)2 + 𝜎𝑘+2(�̄�)2, and by Lemma 5.4.4 each

of these two summands is 𝑂(𝑛), which is less than 𝑂(𝐶𝛽𝑛𝑘).4 Plugging this above yields
4Note that 𝛽 and 𝐶 are constants that will eventually be chosen such that 𝐶𝛽 is smaller than a sufficiently

small constant. It holds that 𝑛 = 𝑂(𝐶𝛽𝑛𝑘) if 𝑘 is larger than a sufficiently large constant, which we can
assume w.l.o.g. since we have already proven the 𝑘 = 1 case.
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the desired inequality, ∑︀𝑘+2
𝑖=1

(︁
𝜎𝑖(�̄�)− 𝜎𝑖(�̄�′)

)︁2
≤ 𝑂(𝐶𝛽𝑛𝑘).

As for the bottom two singular values of �̄�′, the inequality just proven yields in particular(︁
𝜎𝑘+1(�̄�)− 𝜎𝑘+1(�̄�′)

)︁2
≤ 𝑂(𝐶𝛽𝑛𝑘), hence 𝜎𝑘+1(�̄�′) ≤ 𝜎𝑘+1(�̄�) + 𝑂(

√
𝐶𝛽𝑛𝑘). As already

mentioned above, 𝜎𝑘+1(�̄�) = 𝑂(
√

𝑛) = 𝑂(
√

𝐶𝛽𝑛𝑘) by Lemma 5.4.4. Thus 𝜎𝑘+1(�̄�′)2 ≤

𝑂(𝐶𝛽𝑛𝑘). The same holds for 𝜎𝑘+2(�̄�′).

5.4.4 Averaging Columns in Blocks

We now carry out the main part of the reduction to the rank-1 case. We do this by showing

that �̄� can be approximated by the matrix resulting from taking �̄�′ and replacing each

column in each block by the average of columns in that block. Note that in the resulting

matrix, each block has rank-1 since its columns are identical. Therefore, by averaging, we

could get a rank-1 approximation for a large constant fraction of the blocks. Let us now

argue this formally.

Let Π1 be the orthogonal projection of R𝑘𝑟 on the subspace spanned by block indicators.

Note that for a matrix 𝑍 ∈ R𝑁×𝑘𝑟, the operation 𝑍Π1 averages the columns in each block.

The main lemma for this part of this following.

Lemma 5.4.9. ‖�̄� − �̄�′Π1‖2
𝐹 ≤ ‖�̄� − �̄�′‖2

𝐹 + 𝑂(
√

𝐶𝛽 · 𝑛𝑘).

The proof will go by showing that the row space of �̄�′ has to be close to the span of the

block indicators, which is the subspace on which Π1 projects. (This would yield �̄�′ ≈ �̄�′Π1

and hence ‖�̄� − �̄�′‖2
𝐹 ≈ ‖�̄� − �̄�′Π1‖2

𝐹 , as the lemma asserts). The way we show this

is by transitivity, by showing that both subspaces are close to the top-𝑘 row space of �̄�.

We will require the following technical linear algebraic claims, whose proofs are deferred

to Section 5.4.6 for better readability.

Lemma 5.4.10. Let 𝐴, 𝐵 ∈ R𝑛×𝑚. Let 𝐵 = 𝑈Σ𝑉 𝑇 be the SVD of 𝐵. Suppose ‖𝐴−𝐵‖2
𝐹 ≤

‖𝐴‖2
𝐹 −Δ. Then ‖𝐴𝑉 ‖2

𝐹 ≥ Δ.

Lemma 5.4.11. Let 𝐴 ∈ R𝑛×𝑛 and let 𝐴 = 𝑈Σ𝑉 𝑇 be its SVD. Let 𝑉𝑘 be the restriction

of 𝑉 to the top-𝑘 right singular vectors of 𝐴. Let Π an orthogonal projection on some

𝑘-dimensional subspace. If

(1− 𝜖)𝑘 ≤ ‖𝑉 𝑇
𝑘 Π‖2

𝐹 ≤ 𝑘,
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then

‖(𝐴Π⊥)𝑘‖2
𝐹 ≤ ‖𝐴𝜖𝑘‖2

𝐹 + ‖(𝐴𝑛−𝑘)𝑘‖2
𝐹 .

(Recall that ‖𝑋𝑘‖2
𝐹 is the sum of squared top-𝑘 singular values for every matrix 𝑋.)

Remark. As a small digression, let us preview that we will use this lemma twice, on the

matrices �̄� and �̄�′. In both cases the projection would be Π1. In the former case the

bound yielded by the lemma would be 𝑂(𝑛𝑘), and it the latter case it would be (the better

bound) 𝑂(𝐶𝛽𝑛𝑘). That is, we will get ‖(�̄�Π⊥)𝑘‖2
𝐹 = 𝑂(𝑛𝑘) and ‖(�̄�′Π⊥)𝑘‖2

𝐹 = 𝑂(𝐶𝛽𝑛𝑘)

(see Section 5.4.6 for an elaboration why). However we still need to establish the condition

(1− 𝜖)𝑘 ≤ ‖𝑉 𝑇
𝑘 Π‖2

𝐹 ≤ 𝑘 for both invocations, which we will do shortly.

Lemma 5.4.12. Let 𝑉, 𝑈, 𝑊 ∈ R𝑛×𝑘 matrices such that each has orthonormal columns.

Suppose ‖𝑉 𝑇 𝑈‖2
𝐹 ≥ (1− 𝜖)𝑘 and ‖𝑈𝑇 𝑊‖2

𝐹 ≥ (1− 𝜖)𝑘. Then ‖𝑉 𝑇 𝑊‖2
𝐹 ≥ (1−𝑂(𝜖))𝑘.

We now prove Lemma 5.4.9. Let �̄� = 𝑈Σ𝑉 𝑇 denote the SVD of �̄�. Write it as �̄� =

𝑈Σ𝑉 𝑇 = 𝑈𝑇 Σ𝑇 𝑉 𝑇
𝑇 + 𝑈𝐵Σ𝐵𝑉 𝑇

𝐵 where Σ𝑇 are the top 𝑘 singular values and Σ𝐵 are the

remaining (bottom) singular values.

Lemma 5.4.13. Let �̄�* ∈ R𝑁×𝑘𝑟 be a rank-𝑘′ matrix such that ‖�̄�− �̄�*‖2
𝐹 ≤ 1

4𝑛𝑘𝑟 +𝑂(𝑛𝑘).

Let 𝑊 ∈ R𝑘′×𝑘𝑟 be an orthonormal basis for the row span of �̄�*. Then ‖𝑊𝑉𝑇‖2
𝐹 ≥ 𝑘 −

𝑂(𝜖(𝑘 + 𝑘′)).

Proof. On one hand, since ‖�̄�‖2
𝐹 ≥ 1

2𝑛𝑘𝑟−𝑂(𝑘𝑛), the hypothesis ‖�̄�−�̄�*‖2
𝐹 ≤ 1

4𝑛𝑘𝑟+𝑂(𝑘𝑛)

implies, by Lemma 5.4.10, ‖�̄�𝑊 𝑇‖2
𝐹 ≥ 1

4𝑛𝑘𝑟 −𝑂(𝑘𝑛). On the other hand,

1
4𝑛𝑘𝑟 −𝑂(𝑘𝑛) ≤ ‖�̄�𝑊 𝑇‖2

𝐹 = ‖𝑈𝑇 Σ𝑇 𝑉 𝑇
𝑇 𝑊 𝑇 + 𝑈𝐵Σ𝐵𝑉 𝑇

𝐵 𝑊 𝑇‖2
𝐹

= ‖Σ𝑇 𝑉 𝑇
𝑇 𝑊 𝑇‖2

𝐹 + ‖Σ𝐵𝑉 𝑇
𝐵 𝑊 𝑇‖2

𝐹

≤ ‖Σ𝑇‖2
2‖𝑉 𝑇

𝑇 𝑊 𝑇‖2
𝐹 + ‖Σ𝐵‖2

2‖𝑉 𝑇
𝐵 𝑊 𝑇‖2

𝐹

≤ (1
4𝑛𝑟 + 𝑂(𝑛)) · ‖𝑉 𝑇

𝑇 𝑊 𝑇‖2
𝐹 + 𝑂(𝑛) · ‖𝑉 𝑇

𝐵 𝑊 𝑇‖2
𝐹

≤ (1
4𝑛𝑟 + 𝑂(𝑛)) · ‖𝑉 𝑇

𝑇 𝑊 𝑇‖2
𝐹 + 𝑂(𝑛) · 𝑘′.

The lemma follows by rearranging and recalling that 𝑟 = Θ(1/𝜖).
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We apply the above lemma twice: once with �̄�* being �̄�′ (whose rank is 𝑘 + 2), and once

with �̄�* being the matrix obtained from averaging the columns in each block of �̄� (note that

this matrix has rank is 𝑘). Since Π1 is the orthogonal projection on the row space of that

matrix, then by the latter application of Lemma 5.4.13 we have

𝑘 ≥ ‖𝑉 𝑇
𝑇 Π1‖2

𝐹 ≥ 𝑘 −𝑂(𝜖𝑘), (5.16)

which establishes the condition of Lemma 5.4.11, yielding

‖(�̄�Π⊥
1 )𝑘‖2

𝐹 ≤ 𝑂(𝑛𝑘).

For the former application, let �̄�′ = 𝑈 ′Σ′(𝑉 ′)𝑇 denote the SVD of �̄�′. Corollary 5.4.7

provides the requirement of Lemma 5.4.13, which in turn yields ‖(𝑉 ′)𝑇 𝑉𝑇‖2
𝐹 ≥ 𝑘 − 𝑂(𝜖𝑘).

Together with Equation (5.16), by transitivity (Lemma 5.4.12),

𝑘 ≥ ‖(𝑉 ′)𝑇 Π1‖2
𝐹 ≥ 𝑘 −𝑂(𝜖𝑘),

which establishes the condition of Lemma 5.4.11, yielding

‖(�̄�′Π⊥
1 )𝑘‖2

𝐹 ≤ 𝑂(𝐶𝛽𝑛𝑘).

Together with the above,

‖(�̄�Π⊥
1 )𝑘‖𝐹‖(�̄�′Π⊥

1 )𝑘‖𝐹 ≤ 𝑂(
√︁

𝐶𝛽 · 𝑛𝑘). (5.17)

We can extend this from rank-𝑘 to rank-(𝑘 + 2) since the additional two square singular

value of each of the matrices is 𝑂(𝐶𝛽𝑛𝑘) (cf. Lemmas 5.4.4 and 5.4.8).5 Since �̄�′Π⊥
1 has

5Recall again that we set 𝐶𝛽 < 1.

152



rank 𝑘 + 2, then by Hoffman-Weilandt,

‖�̄�Π⊥
1 − �̄�′Π⊥

1 ‖2
𝐹 ≥

∑︁
𝑖

(︁
𝜎𝑖(�̄�Π⊥

1 )− 𝜎𝑖(�̄�′Π⊥
1 )
)︁2

by Hoffman-Weilandt

= ‖�̄�Π⊥
1 ‖2

𝐹 −
𝑘+2∑︁
𝑖=1

𝜎𝑖(�̄�Π⊥
1 )𝜎𝑖(�̄�′Π⊥

1 ) + ‖�̄�′Π⊥
1 ‖2

𝐹 rank(�̄�′Π⊥
1 ) = 𝑘 + 2

≥ ‖�̄�Π⊥
1 ‖2

𝐹 −
𝑘+2∑︁
𝑖=1

𝜎𝑖(�̄�Π⊥
1 )𝜎𝑖(�̄�′Π⊥

1 )

≥ ‖�̄�Π⊥
1 ‖2

𝐹 − ‖(�̄�Π⊥
1 )𝑘+2‖𝐹‖(�̄�′Π⊥

1 )𝑘+2‖𝐹 by Cauchy-Schwartz

≥ ‖�̄�Π⊥
1 ‖2

𝐹 −𝑂(
√︁

𝐶𝛽 · 𝑛𝑘) by Equation (5.17) .

Finally, by Pythagorean identities,

‖�̄� − �̄�′Π1‖2
𝐹 = ‖�̄�Π1 − �̄�′Π1‖2

𝐹 + ‖�̄�Π⊥
1 ‖2

𝐹

= ‖�̄� − �̄�′‖2
𝐹 +

(︁
‖�̄�Π⊥

1 ‖2
𝐹 − ‖�̄�Π⊥

1 − �̄�′Π⊥
1 ‖2

𝐹

)︁
≤ ‖�̄� − �̄�′‖2

𝐹 + 𝑂(
√︁

𝐶𝛽 · 𝑛𝑘).

This proves Lemma 5.4.9.

Relevant Blocks

Lemma 5.4.14. There is a subset 𝐼 ⊂ [𝑘] of size at least |𝐼| ≥ 0.99𝑘 such that for every

𝑖 ∈ 𝐼,

‖�̄�𝑖 − (�̄�′)𝑖𝑃1‖2
𝐹 ≤ ‖�̄�𝑖 = (�̄�𝑖)1‖2

𝐹 + 𝑂(
√︁

𝐶𝛽 · 𝑛), (5.18)

where (�̄�𝑖)1 is (as usual) the optimal rank-1 approximation of �̄�𝑖. We refer to blocks 𝐵𝑖 with

𝑖 ∈ 𝐼 as relevant blocks.

Proof. By Lemma 5.4.9, ‖�̄� − �̄�′Π1‖2
𝐹 ≤ ‖�̄� − �̄�′‖2

𝐹 + 𝑂(
√

𝐶𝛽 · 𝑛𝑘). Note that the left-

hand side equals ∑︀𝑘
𝑖=1‖�̄�𝑖 − (�̄�′)𝑖𝑃1‖2

𝐹 . As for the right-hand side, by Equation (5.15) we

have ‖�̄� − �̄�′‖2
𝐹 ≤ ‖�̄� − �̄�𝑘‖2

𝐹 + 𝑂(𝜖) · ‖𝐵‖2
𝐹 , and we recall that ‖𝐵‖2

𝐹 = 𝑂(𝐶𝑛𝑘𝑟) =

𝑂(𝐶𝛽𝑛𝑘/𝜖). Furthermore, ‖�̄� − �̄�𝑘‖2
𝐹 ≤

∑︀𝑘
𝑖=1‖�̄�𝑖 − (�̄�𝑖)1‖2

𝐹 . Putting it all together yields
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∑︀𝑘
𝑖=1‖�̄�𝑖 − (�̄�′)𝑖𝑃1‖2

𝐹 ≤
∑︀𝑘

𝑖=1‖�̄�𝑖 − (�̄�𝑖)1‖2
𝐹 + 𝑂(

√
𝐶𝛽 · 𝑛𝑘), or rearranging,

𝑘∑︁
𝑖=1

(︁
‖�̄�𝑖 − (�̄�′)𝑖𝑃1‖2

𝐹 − ‖�̄�𝑖 − (�̄�𝑖)1‖2
𝐹

)︁
≤ 𝑂(

√︁
𝐶𝛽 · 𝑛𝑘).

Each term in the sum on the left-hand side is non-negative, by the optimality of (�̄�𝑖)1

for rank-1 approximation of �̄�𝑖. Therefore we can use an averaging argument (Markov’s

inequality) and conclude that at least 0.99𝑘 of the 𝑘 summands on the left-hand side are at

most 100/𝑘 times the right-hand side. The lemma follows.

Fix 𝑖 ∈ 𝐼. Since (�̄�′)𝑖𝑃1 is a rank-1 matrix we can write it as �̄�𝑖(𝑏𝑖)𝑇 where �̄�𝑖 ∈ R𝑁

and 𝑏𝑖 ∈ R𝑟. Let 𝑎𝑖 ∈ R𝑛 denote the restriction of �̄�𝑖 to the first 𝑛 entries. Consider

‖�̄�𝑖 − �̄�𝑖(𝑏𝑖)𝑇‖2
𝐹 . Note that the last 𝐶𝑛 rows of are either all 1 or all −1, depending on the

Hadamard vector 𝑣𝑖. Let 𝜎𝑖
𝑗 ∈ {±1} denote the sign of row 𝑗. Then the contribution of the

last 𝐶𝑛 rows is ∑︀𝐶𝑛
𝑗=𝑛+1‖𝜎𝑖

𝑗1 − 𝑎𝑖
𝑗𝑏

𝑖‖2
2 which can be rewritten as ∑︀𝐶𝑛

𝑗=𝑛+1‖1 − 𝜎𝑖
𝑗𝑎

𝑖
𝑗𝑏

𝑖‖2
2. Pick

the 𝑗 that minimizes the term ‖1− 𝜎𝑖
𝑗𝑎

𝑖
𝑗𝑏

𝑖‖2
2 and set all entries 𝑎𝑖

𝑛+1, . . . , 𝑎𝑖
𝐶𝑛 to 𝑎𝑖

𝑗 with the

appropriate sign, to obtain a vector �̂�𝑖. By choice of 𝑗 we have

‖�̄�𝑖 − �̂�𝑖(𝑏𝑖)𝑇‖2
𝐹 ≤ ‖�̄�𝑖 − �̄�𝑖(𝑏𝑖)𝑇‖2

𝐹 . (5.19)

Furthermore,

‖�̄�𝑖 − �̂�𝑖(𝑏𝑖)𝑇‖2
𝐹 = ‖𝐵𝑖 − 𝑎𝑖(𝑏𝑖)𝑇‖2

𝐹 + 𝐶𝑛‖𝑏𝑖 − 1‖2
2. (5.20)

Combining Equations (5.19) and (5.20),

‖𝐵𝑖 − 𝑎𝑖(𝑏𝑖)𝑇‖2
𝐹 + 𝐶𝑛‖𝑏𝑖 − 1‖2

2 ≤ ‖�̄�𝑖 − �̄�𝑖(𝑏𝑖)𝑇‖2
𝐹 . (5.21)

If we use Lemma 5.4.14 as an upper bound on ‖�̄�𝑖− �̄�𝑖(𝑏𝑖)𝑇‖2
𝐹 and Lemma 5.3.10 as a lower

bound on ‖𝐵𝑖 − 𝑎𝑖(𝑏𝑖)𝑇‖2
𝐹 , we get 𝐶𝑛‖1− 𝑏𝑖‖2

2 ≤ 𝑂(𝑛), which rearranges to

‖1− 𝑏𝑖‖2
2 ≤

𝑂(1)
𝐶

. (5.22)

This implies Lemmas 5.3.13 and 5.3.14 for every relevant block, by the same proofs as their
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original proofs.

5.4.5 Solving Majority

Recall we have a total of 𝑛𝑘 majority instances (each of length 𝑟) embedded in �̄�. Note by

the construction of �̄�, each of them has alphabet either {0, 1} or {0,−1}, depending on the

sign of the corresponding entry of the Hadamard vector 𝑣𝑖, where 𝑖 the block in which the

instance is embedded.

By Lemma 5.3.6 and Markov’s inequality, at least 0.9𝑛𝑘 of the instances are typical. For

an instance with alphabet {0, 1}, we solve it using �̄�′ by reporting that the majority element

is 1 if the average over the corresponding entries in �̄�′ is larger than 0.5, and reporting 0 if

it is smaller than 0.5. Instances with alphabet {0,−1} are solved similarly with threshold

−0.5. Note that the solution procedure compares the threshold to the mutual value of the

corresponding entries of �̄�′Π1. If we are correct on an instance, we say it is solved, and

otherwise unsolved. For relevant block 𝑖 ∈ 𝐼, let 𝑆 ′
𝑖 denote the subset of majority instances

which are both typical and unsolved. Let 𝑆 ′ = ∪𝑖∈𝐼𝑆 ′
𝑖 be the subset of all instances which

are typical, unsolved, and embedded in a relevant block.

Our goal is to show that we solve each instance with probability at least 2/3. Since the

instances were placed in �̄� by random permutation, every instance has the same probability

𝑝 to be solved, thus we need to show 𝑝 ≥ 2/3. Suppose by contradiction that 𝑝 < 2/3. Since

at least 0.9𝑛𝑘 instances are typical, and at least 0.99𝑘 blocks are relevant, then there is a

fixed constant 𝜁 > 0 (this was 1
15 in the 𝑘 = 1 case) such that |𝑆 ′| ≥ 𝜁𝑛𝑘.

For every 𝑖 ∈ 𝐼 we have (by definition of relevant blocks),

‖�̄�𝑖 − (�̄�′Π1)𝑖‖2
𝐹 ≤ ‖�̄�𝑖 − (�̄�𝑖)1‖2

𝐹 + 𝑂(
√︁

𝐶𝛽 · 𝑛) ≤
𝑛∑︁

𝑗=1
‖𝑠𝑗 − 𝜇𝑗1‖2

2 + 𝑂(
√︁

𝐶𝛽 · 𝑛).

By bounding ∑︀𝑛
𝑗=1‖𝑠𝑗 − 𝜇𝑗1‖2

2 in the same way as in the 𝑘 = 1 case,

‖�̄�𝑖 − (�̄�′Π1)𝑖‖2
𝐹 ≤ |𝑆 ′

𝑖|(1
4𝑟 − 𝛾2) +

∑︁
𝑠𝑗 /∈𝑆′

𝑖

‖𝑠𝑗 − 𝜇𝑗1‖2
2 + 𝑂(

√︁
𝐶𝛽 · 𝑛). (5.23)

Similarly, if we denote (�̄�′)𝑖𝑃1 = �̄�𝑖(𝑏𝑖)𝑇 (since this is a rank-1 matrix), then as in the 𝑘 = 1
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case,

‖𝐵𝑖 − (𝐵′Π1)𝑖‖2
𝐹 =

𝑛∑︁
𝑖=1
‖𝑠𝑖 − �̄�𝑖

𝑗(𝑏𝑖)𝑇‖2
2 ≥ |𝑆 ′

𝑖|(1
4𝑟 + 𝜂2 − 2𝛾𝜂) +

∑︁
𝑠𝑗 /∈𝑆′

𝑖

‖𝑠𝑗 − 𝜇𝑗1‖2
2. (5.24)

(We remark that the latter inequality relies on Lemmas 5.3.13 and 5.3.14, which were proven

in the previous section for relevant blocks, based on eq. (5.22); as per Lemma 5.3.13, 𝜂 =

Θ(1/
√

𝐶).)

Together,

|𝑆 ′
𝑖|(1

4𝑟 + 𝜂2 − 2𝛾𝜂) ≤ |𝑆 ′
𝑖|(1

4𝑟 − 𝛾2) + 𝑂(
√︁

𝐶𝛽 · 𝑛).

We sum this over all 𝑖 ∈ 𝐼, and recall that ∑︀𝑖∈𝐼 |𝑆 ′
𝑖| = |𝑆 ′|. This yields,

|𝑆 ′|(1
4𝑟 + 𝜂2 − 2𝛾𝜂) ≤ |𝑆 ′|(1

4𝑟 − 𝛾2) + 𝑂(
√︁

𝐶𝛽 · 𝑘𝑛),

which rearranges to |𝑆 ′|(𝛾−𝜂)2 ≤ 𝑂(
√

𝐶𝛽 ·𝑛𝑘). Recalling that |𝑆 ′| ≥ 𝜁𝑛𝑘, we get 𝜁(𝛾−𝜂)2 ≤

𝑂(
√

𝐶𝛽·). Since 𝜁 and 𝛾 are fixed constant, we can take 𝜂 and 𝛽 to be sufficiently small,

and arrive at the desired contradiction.

5.4.6 Deferred Proofs from Appendix 5.4.4

Lemma 5.4.15. Let 𝐴, 𝐵 ∈ R𝑛×𝑚. Let 𝐵 = 𝑈Σ𝑉 𝑇 be the SVD of 𝐵. Suppose ‖𝐴−𝐵‖2
𝐹 ≤

‖𝐴‖2
𝐹 −Δ. Then ‖𝐴𝑉 ‖2

𝐹 ≥ Δ.

Proof.

‖𝐴𝑉 ‖2
𝐹 = ‖𝐴𝑉 𝑉 𝑇‖2

𝐹

= ‖𝐴‖2
𝐹 − ‖𝐴(𝐼 − 𝑉 𝑉 𝑇 )‖2

𝐹 Pythagorean theorem

≥ Δ + ‖𝐴−𝐵‖2
𝐹 − ‖𝐴(𝐼 − 𝑉 𝑉 𝑇 )‖2

𝐹

= Δ + ‖𝐴𝑉 𝑉 𝑇 −𝐵𝑉 𝑉 𝑇‖2
𝐹 + ‖𝐴(𝐼 − 𝑉 𝑉 𝑇 )‖2

𝐹 − ‖𝐴(𝐼 − 𝑉 𝑉 𝑇 )‖2
𝐹 Pythagorean theorem

≥ Δ.
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Lemma 5.4.16. Let 𝐴 ∈ R𝑛×𝑛 and let 𝐴 = 𝑈Σ𝑉 𝑇 be its SVD. Let 𝑉𝑘 be the restriction

of 𝑉 to the top-𝑘 right singular vectors of 𝐴. Let Π an orthogonal projection on some

𝑘-dimensional subspace. If

(1− 𝜖)𝑘 ≤ ‖𝑉 𝑇
𝑘 Π‖2

𝐹 ≤ 𝑘,

then

‖(𝐴Π⊥)𝑘‖2
𝐹 ≤ ‖𝐴𝜖𝑘‖2

𝐹 + ‖(𝐴𝑛−𝑘)𝑘‖2
𝐹 .

(Recall again that ‖𝑋𝑘‖2
𝐹 denotes the sum of squared top-𝑘 singular values for every matrix

𝑋.)

Proof. We have ‖(𝐴Π⊥)𝑘‖2
𝐹 = ‖(𝐴𝑛−𝑘Π⊥+𝐴𝑘Π⊥)𝑘‖2

𝐹 . We can write 𝐴Π⊥ as 𝐴𝑛−𝑘Π⊥+𝐴𝑘Π⊥,

and for any vector 𝑥, 𝐴𝑛−𝑘Π⊥𝑥 and 𝐴𝑘Π⊥𝑥 are orthogonal, and so ‖𝐴Π⊥𝑥‖2
2 = ‖𝐴𝑛−𝑘Π⊥𝑥‖2

2+

‖𝐴𝑘Π⊥𝑥‖2
2. It follows that

‖(𝐴Π⊥)𝑘‖2
𝐹 ≤ ‖𝐴𝑘Π⊥‖2

𝐹 + ‖(𝐴𝑛−𝑘Π⊥)𝑘‖2
𝐹 .

Note that ‖(𝐴𝑛−𝑘Π⊥)𝑘‖2
𝐹 ≤ ‖(𝐴𝑛−𝑘)𝑘‖2

𝐹 . Thus it remains to show ‖𝐴𝑘Π⊥‖2
𝐹 ≤ ‖𝐴𝜖𝑘‖2

𝐹 , or

equivalently, by the Pythagorean theorem, ‖𝐴𝑘Π‖2
𝐹 ≥ ‖𝐴𝑘‖2

𝐹 − ‖𝐴𝜖𝑘‖2
𝐹 = ∑︀𝑘

𝑖=𝜖𝑘+1 𝜎2
𝑖 (𝐴).

We have ‖𝐴𝑘Π‖2
𝐹 = ‖Σ𝑘𝑉 𝑇

𝑘 Π‖2
𝐹 and we know ‖𝑉 𝑇

𝑘 Π‖2
𝐹 ≥ 𝑘(1 − 𝜖). Let 𝑅 be an 𝑛 × 𝑛

rotation matrix that takes 𝑉 𝑇
𝑘 to [𝐼𝑘 0], where here 𝐼𝑘 is the identity matrix of order 𝑘 and

0 is an 𝑘× (𝑛− 𝑘) zero matrix. Replace Π with 𝑅𝑇 Π. Then ‖𝐴𝑘Π‖2
𝐹 = ‖Σ𝑘(𝑉 𝑇

𝑘 𝑅)(𝑅𝑇 Π)‖2
𝐹

and ‖(𝑉 𝑇
𝑘 𝑅)(𝑅𝑇 Π)‖2

𝐹 ≥ 𝑘(1 − 𝜖). Thus, we can assume w.l.o.g. that 𝑉 𝑇
𝑘 = [𝐼𝑘 0], and so

𝑅𝑇 Π has the form [Φ 0], where Φ is 𝑘 × 𝑘.

Thus ‖𝐴𝑘Π‖2
𝐹 = ‖Σ𝑘Φ‖2

𝐹 subject to ‖Φ‖2
𝐹 ≥ 𝑘(1 − 𝜖). Also each row of Φ has squared

norm at most 1 since it is a submatrix of a rotation matrix. Consequently, since Σ𝑘 is a

diagonal matrix, ‖Σ𝑘Φ‖2
𝐹 is minimized when placing all mass of Φ on the bottom 𝑘(1 − 𝜖)

rows, and in this case it is exactly ∑︀𝑘
𝑖=𝜖𝑘+1 𝜎2

𝑖 (𝐴).

We have applied this lemma in Appendix 5.4.4 to both �̄�𝑘 and �̄�′. Let us show the

resulting upper bound ‖𝐴𝜖𝑘‖2
𝐹 + ‖(𝐴𝑛−𝑘)𝑘‖2

𝐹 in each case.

For �̄�𝑘, by Lemma 5.4.5, the top 𝑘′ = ⌈𝜖𝑘⌉ squared singular values of �̄� sum to 𝑂(𝑛𝑘′𝑟 +

2𝑛𝑘). Since 𝑟 = 𝑂(1/𝜖), this bound is 𝑂(𝑛𝑘). By Lemma 5.4.4, the rest of the squared
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singular values are Θ(𝑛), thus ‖(�̄�𝑛−𝑘)𝑘‖2
𝐹 = 𝑂(𝑘𝑛), and the total bound is 𝑂(𝑛𝑘).

For �̄�′,

‖�̄�′
𝜖𝑘‖2

𝐹 =
𝜖𝑘∑︁

𝑖=1
𝜎𝑖(�̄�′)2

=
𝜖𝑘∑︁

𝑖=1

(︁
𝜎𝑖(�̄�′)− 𝜎𝑖(�̄�) + 𝜎𝑖(�̄�)

)︁2

≤
𝜖𝑘∑︁

𝑖=1
2
(︁
𝜎𝑖(�̄�)2 + (𝜎𝑖(�̄�)− 𝜎𝑖(�̄�′))2

)︁
Similarly to Claim 5.2.3

= 2‖�̄�𝜖𝑘‖2
𝐹 + 2

𝜖𝑘∑︁
𝑖=1

(𝜎𝑖(�̄�)− 𝜎𝑖(�̄�′))2.

The first term was already upper bounded by 𝑂(𝐶𝛽𝑛𝑘) above, and the second sum is upper

bounded by 𝑂(𝐶𝛽𝑛𝑘) by Lemma 5.4.8. The term ‖(�̄�′
𝑛−𝑘)𝑘‖2

𝐹 is 𝑂(𝐶𝛽𝑛𝑘) since there are two

remaining eigenvalues and each is 𝑂(𝐶𝛽𝑛𝑘) by Lemma 5.4.8. The total bound is 𝑂(𝐶𝛽𝑛𝑘).

Lemma 5.4.17. Let 𝑉, 𝑈, 𝑊 ∈ R𝑛×𝑘 matrices such that each has orthonormal columns.

Suppose ‖𝑉 𝑇 𝑈‖2
𝐹 ≥ (1− 𝜖)𝑘 and ‖𝑈𝑇 𝑊‖2

𝐹 ≥ (1− 𝜖)𝑘. Then ‖𝑉 𝑇 𝑊‖2
𝐹 ≥ (1−𝑂(𝜖))𝑘.

Proof. Note we can replace 𝑉 𝑇 with 𝑉 𝑇 𝑅 and 𝑈 with 𝑅𝑇 𝑈 and 𝑊 with 𝑅𝑇 𝑊 , where 𝑅

is an 𝑛 × 𝑛 rotation which takes 𝑈 to the top 𝑘 standard unit vectors. All norms in the

premise and goal of the claim are preserved. So we can assume that ‖𝑉𝑡𝑜𝑝‖2
𝐹 ≥ 𝑘(1 − 𝜖),

‖𝑊𝑡𝑜𝑝‖2
𝐹 ≥ 𝑘(1−𝜖), and need to show ‖𝑉 𝑇 𝑊‖2

𝐹 ≥ 𝑘−𝑂(𝑘𝜖), where “top“ means the top 𝑘×𝑘

submatrix with remaining rows replaced with 0s. Let 𝑊 = 𝑊𝑡𝑜𝑝 +𝑊𝑟𝑒𝑠𝑡 and 𝑉 = 𝑉𝑡𝑜𝑝 +𝑉𝑟𝑒𝑠𝑡.
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Then,

‖𝑉 𝑇 𝑊‖2
𝐹 = ‖𝑉 𝑇

𝑡𝑜𝑝𝑊𝑡𝑜𝑝 + 𝑉 𝑇
𝑟𝑒𝑠𝑡𝑊𝑟𝑒𝑠𝑡‖2

𝐹

≥ ‖𝑉 𝑇
𝑡𝑜𝑝𝑊𝑡𝑜𝑝‖2

𝐹 − 2𝑇𝑟(𝑊 𝑇
𝑟𝑒𝑠𝑡𝑉𝑟𝑒𝑠𝑡𝑉

𝑇
𝑡𝑜𝑝𝑊𝑡𝑜𝑝) (i)

= ‖𝑉 𝑇
𝑡𝑜𝑝𝑊𝑡𝑜𝑝‖2

𝐹 − 2𝑇𝑟(𝑊𝑡𝑜𝑝𝑊 𝑇
𝑟𝑒𝑠𝑡𝑉𝑟𝑒𝑠𝑡𝑉

𝑇
𝑡𝑜𝑝) (ii)

≥ ‖𝑉 𝑇
𝑡𝑜𝑝𝑊𝑡𝑜𝑝‖2

𝐹 − 2‖𝑊𝑡𝑜𝑝𝑊𝑟𝑒𝑠𝑡‖𝐹‖𝑉𝑟𝑒𝑠𝑡𝑉
𝑇

𝑡𝑜𝑝‖𝐹 (iii)

≥ ‖𝑉 𝑇
𝑡𝑜𝑝𝑊𝑡𝑜𝑝‖2

𝐹 − 2‖𝑊𝑡𝑜𝑝‖2‖𝑊𝑟𝑒𝑠𝑡‖𝐹‖𝑉𝑡𝑜𝑝‖2‖𝑉𝑟𝑒𝑠𝑡‖𝐹 (iv)

≥ ‖𝑉 𝑇
𝑡𝑜𝑝𝑊𝑡𝑜𝑝‖2

𝐹 − 2‖𝑊𝑟𝑒𝑠𝑡‖𝐹‖𝑉𝑟𝑒𝑠𝑡‖𝐹 (v)

= ‖𝑉 𝑇
𝑡𝑜𝑝𝑊𝑡𝑜𝑝‖2

𝐹 − 2(1− ‖𝑊𝑡𝑜𝑝‖2
𝐹 )1/2(1− ‖𝑉𝑡𝑜𝑝‖2

𝐹 )1/2

= ‖𝑉 𝑇
𝑡𝑜𝑝𝑊𝑡𝑜𝑝‖2

𝐹 − 2(𝜖𝑘)1/2(𝜖𝑘)1/2

= ‖𝑉 𝑇
𝑡𝑜𝑝𝑊𝑡𝑜𝑝‖2

𝐹 − 2𝜖𝑘, (*)

where,

∙ (i) is by expanding the square and dropping a non-negative term;

∙ (ii) is by cyclicity of trace;

∙ (iii) is since 𝑇𝑟(𝐴𝐵) <= ‖𝐴‖𝐹‖𝐵‖𝐹 ;

∙ (iv) is by submultiplicativity of operator and Frobenius norm;

∙ (v) is since 𝑊 and 𝑉 are orthonormal so their operator norm is 1, and operator norm

does not decrease by taking submatrices.

So we just need to lower bound ‖𝑉 𝑇
𝑡𝑜𝑝𝑊𝑡𝑜𝑝‖2

𝐹 , and we can drop the last 𝑛 − 𝑘 rows of

𝑉𝑡𝑜𝑝 and 𝑊𝑡𝑜𝑝 since they are zeros. Next, we write 𝑉𝑡𝑜𝑝 in its SVD, 𝑉𝑡𝑜𝑝 = 𝐴Σ𝐵𝑇 . Then

since ‖𝑉𝑡𝑜𝑝‖2
𝐹 ≥ 𝑘(1 − 𝜖) and ‖𝑉𝑡𝑜𝑝‖2

2 ≤ 1 (since it is a submatrix of 𝑉 ), necessarily, there

are at least 𝑘(1 − 2𝜖) singular values of squared value at least 1 − 2𝜖. Indeed, otherwise

‖𝑉𝑡𝑜𝑝‖2
𝐹 ≤ 𝑘(1− 2𝜖)(1− 2𝜖) + 2𝜖𝑘 · 1 < 𝑘(1− 𝜖) for 𝜖 less than a small enough constant. Let

Σℎ be these singular values and Σ𝑙 be the remaining ones. Then

‖𝑉 𝑇
𝑡𝑜𝑝𝑊𝑡𝑜𝑝‖2

𝐹 = ‖Σ𝐵𝑇 𝑊𝑡𝑜𝑝‖2
𝐹 ≥ (1− 2𝜖)‖𝐵𝑇

ℎ 𝑊𝑡𝑜𝑝‖2
𝐹 .
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Now ‖𝑊𝑡𝑜𝑝‖2
𝐹 ≥ 𝑘(1 − 𝜖), and 𝐵ℎ is a 𝑘(1 − 2𝜖)-dimensional subspace of span(𝑒1, ..., 𝑒𝑘)

(the standard unit vectors), and so we can extend it with an orthonormal basis 𝐵′ so that

span(𝐵ℎ, 𝐵′) = span(𝑒1, ..., 𝑒𝑘). Then by the Pythagorean theorem

𝑘(1− 𝜖) ≤ ‖𝑊𝑡𝑜𝑝‖2
𝐹 = ‖𝐵𝑇

ℎ 𝑊𝑡𝑜𝑝‖2
𝐹 + ‖𝐵′𝑊𝑡𝑜𝑝‖2

𝐹 ,

and since ‖𝑊𝑡𝑜𝑝‖2
2 ≤ 1, we have ‖𝐵′𝑊𝑡𝑜𝑝‖2

𝐹 ≤ ‖𝐵′‖2
𝐹 ≤ 2𝜖𝑘. Consequently, ‖𝐵𝑇

ℎ 𝑊𝑡𝑜𝑝‖2
𝐹 ≥

𝑘(1− 𝜖)− 2𝜖𝑘 = 𝑘 − 3𝜖𝑘. Hence, ‖𝑉 𝑇
𝑡𝑜𝑝𝑊𝑡𝑜𝑝‖2

𝐹 ≥ (1− 2𝜖)𝑘(1− 3𝜖) ≥ 𝑘(1− 𝑂(𝜖)). Plugging

into (*) gives us our desired 𝑘(1−𝑂(𝜖)) lower bound on ‖𝑉 𝑇 𝑊‖2
𝐹 .

5.5 Lower Bound for Symmetric Distance Matrices

The lower bounds in Sections 5.3 and 5.4 are proven for asymmetric distance matrices. In

this section we show that they hold also for symmetric distance matrices, completing the

proof of Theorem 5.1.3. The proof is by a reduction of the asymmetric case to the symmetric

case.

5.5.1 General Rank 𝑘

We start by reducing rank-𝑘 approximation of asymmetric distance matrices to rank-(2𝑘+2)

approximation of symmetric distance matrices. The lower bound in Section 5.4 defined a

hard distribution over asymmetric distance matrices of order 𝑁 × 𝑘𝑟, where 𝑁 = 𝑂(𝑛) and

𝑟 = Ω(1/𝜖). For clarity let us use 𝑛 for 𝑁 (as they are only a constant apart, this does not

change the result asymptotically). Furthermore, we suppose w.l.o.g. that 𝑘𝑟 is an integer

divisor of 𝑛. This does lose generality since we can increase 𝑛 by up to 𝑂(𝑛) without changing

the result asymptotically, and we need to add at most 𝑘𝑟 in order to arrive at an integer

multiple of 𝑘𝑟. By hypothesis of Theorem 5.1.3, 𝑘𝑟 ≤ 𝑘/𝜖≪ 𝑛.

Let 𝐵 ∈ R𝑛×𝑘𝑟 be an asymmetric distance matrix drawn from the hard distribution

defined in Section 5.4. Recall that all of its entries are in {1, 2, 3}. We can scale them by

half so they are all in the interval [1, 2].
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We construct a symmetric distance matrix 𝐴 ∈ R2𝑛×2𝑛. It is partitioned into 𝑛×𝑛 blocks,

𝐴 =

⎡⎢⎣ 𝐴11 𝐴12

𝐴21 𝐴22

⎤⎥⎦ .

We set its entries as follows. Its main diagonal is all-zeros. 𝐴11 and 𝐴22 both have all

off-diagonal entries set to 1. 𝐴21 consists of 𝑛/(𝑘𝑟) copies of 𝐵, concatenated horizontally.

𝐴12 is determined symmetrically. Since all entries of 𝐴 are in the interval [1, 2], the triangle

inequality is satisfied trivially and thus 𝐴 is a distance matrix.

We will show here that any rank-(2𝑘 + 2) approximation algorithm for 𝐴 must read

at least Ω(𝑛𝑘/𝜖) of its entries. Let 0 and 1 denote the all-0’s and all-1’s vectors in R𝑛,

respectively. For any 𝑥, 𝑦 ∈ R𝑛 let [𝑥 𝑦] denote their concatenation into a vector in R2𝑛. Let

𝐵𝑘 be the optimal rank-𝑘 approximation of 𝐵. Write 𝐵𝑘 as 𝐵𝑘 = 𝑈𝑉 𝑇 where 𝑈 ∈ R𝑛×𝑘 and

𝑉 ∈ R𝑘𝑟×𝑘. Let 𝑢1, . . . , 𝑢𝑘 be the columns of 𝑈 , and let 𝑣1, . . . , 𝑣𝑘 be the columns of 𝑉 𝑇 . For

every 𝑖 ∈ [𝑘], let 𝑣𝑖 be the vector given by concatenating 𝑛/(𝑘𝑟) copies of 𝑣𝑖. Consider the

rank-(2𝑘 + 2) approximation of 𝐴 given by the column vectors {[0 𝑢𝑖] : 𝑖 ∈ [𝑘]}∪{[𝑣𝑖 0] : 𝑖 ∈

[𝑘]} ∪ {[1 0], [0 1]}. This means we aim to bound the error ‖𝐴− 𝐴′′‖2
𝐹 , where 𝐴′′ ∈ R2𝑛×2𝑛

is a matrix of our choice whose columns are spanned by these 2𝑘 + 2 column vectors. We

partition 𝐴′′ into 𝑛× 𝑛 blocks:

𝐴′′ =

⎡⎢⎣ 𝐴′′
11 𝐴′′

12

𝐴′′
21 𝐴′′

22

⎤⎥⎦ ,

and define them as follows: in 𝐴′′
11 and 𝐴′′

22 all entries are set to 1; 𝐴′′
21 consists of 𝑛/(𝑘𝑟)

copies of 𝐵𝑘, concatenated horizontally; 𝐴′′
12 is the transpose of 𝐴′′

21. It is not hard to see

that the columns of 𝐴′′ are indeed spanned by the 2𝑘 + 2 column vectors specified above.

Let us bound the error ‖𝐴−𝐴′′‖2
𝐹 . On 𝐴12 and 𝐴21, which contain concatenated copies

of 𝐵, the error on each copy of 𝐵 is exactly ‖𝐵 −𝐵𝑘‖2
𝐹 . On 𝐴11 and 𝐴11, which contain 0’s

on the diagonal and 1’s off the diagonal, the error is zero on the off-diagonal entries, and 2𝑛

in total over the diagonal entries. Consequently,

‖𝐴− 𝐴2𝑘+2‖2
𝐹 ≤ ‖𝐴− 𝐴′′‖2

𝐹 ≤ 𝑡 · ‖𝐵 −𝐵𝑘‖2
𝐹 + 2𝑛,
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where 𝑡 = 2𝑛/(𝑘𝑟) is the number of copies of 𝐵 embedded in 𝐴.

Suppose we have an algorithm 𝒜ℒ𝒢 that given 𝐴, returns a rank-(2𝑘 + 2) matrix 𝐴′ that

satisfies Equation (5.1). Let 𝐴′
1, . . . , 𝐴′

𝑡 denote the restriction of 𝐴′ to the blocks matching

the copies of 𝐵 embedded in 𝐴. Thus, ‖𝐴 − 𝐴′‖2
𝐹 ≥

∑︀𝑡
𝑖=1‖𝐵 − 𝐴′

𝑖‖2
𝐹 . Furthermore, since

‖𝐴‖2
𝐹 = Θ(𝑛2) = Θ(𝑡𝑛𝑘𝑟) and ‖𝐵‖2

𝐹 = Θ(𝑛𝑘𝑟), we have ‖𝐴‖2
𝐹 = 𝑂(1) · 𝑡 · ‖𝐵‖2

𝐹 . Putting

everything into Equation (5.1),

𝑡∑︁
𝑖=1
‖𝐵 − 𝐴′

𝑖‖2
𝐹 ≤ 𝑡 ·

(︁
‖𝐵 −𝐵𝑘‖2

𝐹 + 𝑂(𝑛) + 𝑂(𝜖) · ‖𝐵‖2
𝐹

)︁
.

By averaging, for at least one 𝑖 ∈ [𝑡] we have ‖𝐵 − 𝐴′
𝑖‖2

𝐹 ≤ ‖𝐵 − 𝐵𝑘‖2
𝐹 + 𝑂(𝜖) · ‖𝐵‖2

𝐹 . By

scaling 𝜖 by a constant, 𝐴′
𝑖 satisfies Equation (5.1) as a rank-𝑘

solves the rank-𝑘 approximation problem for 𝐵. By the proof for the asymmetric case,

this requires reading Ω(𝑛𝑘/𝜖) entries of 𝐵. 𝒜ℒ𝒢

5.5.2 Rank 1

The previous section proves hardness for rank-𝑘 approximation of symmetric distance matri-

ces, for 𝑘 ≥ 4. For completeness let us also show hardness for the 𝑘 = 1 case, by a somewhat

more refined analysis of the reduction in that case.

To this end we slightly modify the construction of 𝐴 from the previous section. We draw

𝐵 ∈ R𝑛×𝑟 from the hard distribution for asymmetric distance matrices in the 𝑘 = 1 case

(Section 5.3.3). 𝐴 ∈ R2𝑛×2𝑛 is constructed as above, except that in 𝐴22, we change the

off-diagonal entries from 1 to 1.52 = 2.25. To make sure 𝐴 is a distance matrix, we can scale

it by 8/9; it is not hard to verify that this renders 𝐴 a distance matrix (the constant 8/9

is chosen to “squeeze” the new 2.25-valued entries into the interval [1, 2], which ensures the

triangle inequality is satisfied), and for the sake of clarity we ignore this scaling below.

Let 𝐵1 = 𝑢𝑣𝑇 be the best rank-1 approximation of 𝐵, where 𝑢 ∈ R𝑛 and 𝑣 ∈ R𝑟. As

above we let 𝑣 denote 𝑛/𝑟 copies of 𝑣 concatenated to form a vector in R𝑛. Let 𝐴′ ∈ R2𝑛×2𝑛
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be the outer product of [𝑣 𝑢] with itself, meaning,

𝐴′ =

⎡⎢⎣ 𝑣𝑣𝑇 𝑣𝑢𝑇

𝑢𝑣𝑇 𝑢𝑢𝑇

⎤⎥⎦ ,

and consider it as a rank-1 approximation of 𝐴. Let us bound the error ‖𝐴−𝐴′‖2
𝐹 . The error

on 𝐴12 and 𝐴21 is optimal by construction. We need to show that the error on 𝐴11 and 𝐴22

is at most 𝜖 ·𝑂(𝑛2). To this end we use the fact that in our hard distribution that generated

𝐵 in Section 5.3, for all supported 𝐵, the top left and right singular vectors are nearly the

same. Namely, the top-right one is close to 1, and the top-left one is close to 1.5 · 1, for any

matrix 𝐵 in the support.

Concretely, consider an entry in 𝐴22 whose value is 2.25. The corresponding entry in

𝐴′ is 𝑣𝑖𝑣𝑗 for 𝑖 ̸= 𝑗. Each 𝑣𝑖 is the mean of a uniformly random vector in {1, 2}𝑟. Thus

it is a scaled binomial random variable with mean 1.5 and variance 1/(4𝑟) = 1
4𝛽𝜖. (Recall

that 𝑟 = 𝛽/𝜖 where 𝛽 > 0 is a small constant.) Furthermore, 𝑣𝑖 and 𝑣𝑗 are independent.

Therefore, the expected squared Frobenius norm error on that entry is

E[(2.25− 𝑣𝑖𝑣𝑗)2] = Var[𝑣𝑖𝑣𝑗] = Var[𝑣𝑖] ·Var[𝑣𝑗] = (1
4𝛽𝜖)2.

Thus the expected total error over all of the 2.25 entries (of which there are 𝑂(𝑛2)) is 𝜖·𝑂(𝑛2).

The concentration for the 1-entries in 𝐴11 is even stronger. This completes the proof of the

symmetric case for 𝑘 = 1.

5.6 Experiments

In this section, we evaluate the empirical performance of Algorithm 1 compared to the

existing methods in the literature:

∙ Conventional SVD, from NumPy’s linear algebra package.6

6https://docs.scipy.org/doc/numpy-1.15.1/reference/routines.linalg.html. This performs full SVD. The
iterative SVD algorithms built into MATLAB and Python yielded errors larger by a few orders of magnitude
than the reported methods, so they are not included.
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∙ the input-sparsity time algorithm of Clarkson and Woodruff [CW17], referred to below

as IS, which computes a low-rank approximation for arbitrary matrices in near-linear

time (proportional to the number of nonzero entries in the input matrix).

∙ The algorithm of [BW18], referred to below as BW, which is the previous best algorithm

for distance matrices.

The experimental setup is analogous to that in [BW18]. Specifically, we consider two

datasets:

∙ Synthetic clustering dataset: This data set is generated using the scikit-learn pack-

age. We generate 10, 000 points with 200 features and partition the points into 20

clusters. As observed in our experiments, the dataset is expected to have a good

rank-20 approximation.

∙ MNIST dataset: The dataset contains 70, 000 handwritten characters, and each is

considered a point. We subsample 10, 000 points.

For each dataset we construct a symmetric distance matrix 𝐴𝑖,𝑗 = d(𝑝𝑖, 𝑝𝑗). We use four

distances d: Manhattan (ℓ1), Euclidean (ℓ2), Chebyshev (ℓ∞) and Canberra7 (ℓ𝑐). Figures 5-1

and 5-2 show the approximation error for each distance on each dataset, for varying values of

the rank 𝑘. Note that the rank-𝑘 approximation error attained by SVD is the best possible.

Table 5.1 lists the running times for 𝑘 = 40. Figure 5-3 shows the running time of our

algorithm on MNIST subsampled to varying sizes, for target rank 𝑘 = 40.

Overall, the results show that our algorithm achieves similar accuracy to previous low-

rank approximation algorithms, and close to the optimal SVD error, while being faster.

7The Canberra distance d𝑐 between vectors 𝑝, 𝑞 ∈ R𝑛 is defined as d𝑐(𝑝, 𝑞) =
∑︀𝑛

𝑖=1
|𝑝𝑖−𝑞𝑖|

|𝑝𝑖|+|𝑞𝑖| .
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Figure 5-1: Approximation error of low-rank approximation algorithms on the synthetic
clustering dataset

Figure 5-2: Approximation error of low-rank approximation algorithms on MNIST
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Synthetic MNIST
Metric SVD IS BW Ours SVD IS BW Ours

ℓ2 398.77 8.95 1.70 1.17 398.50 34.32 4.17 1.23
ℓ1 410.60 8.16 1.82 1.197 560.91 39.50 3.71 1.23
ℓ∞ 427.90 9.18 1.63 1.16 418.01 39.33 4.00 1.14
ℓ𝑐 452.17 8.49 1.76 1.15 390.07 38.34 3.91 1.24

Table 5.1: Running times (in seconds) of the compared methods for rank 𝑘 = 40 approxi-
mation
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Figure 5-3: Running time of our algorithm on subsets of MNIST, with 𝑘 = 40.
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Chapter 6

Scalable Nearest Neighbor Search

for Optimal Transport

The Optimal Transport distance (a.k.a. Wasserstein or Earth Mover distance) is a notion of

similarity between subsets or distributions of points in a ground metric space. It is increas-

ingly popular in applications involving rich data domains, such as images or text documents.

However, it is costly to compute, which hinders its applicability to large datasets.

In this chapter we introduce Flowtree, an approximation algorithm for the Optimal Trans-

port distance, based on efficient tree representations of the ground metric space. It is prov-

ably accurate for approximate nearest neighbor search, while also being fast and accurate

in practice. Our extensive experimental evaluation on real data shows that compared to

previous state of the art, Flowtree achieves up to 7.4 times faster running time.

6.1 Introduction

Given a finite metric space ℳ = (𝑋, d), and two distributions 𝜇 and 𝜈 supported on 𝑋,

the Wasserstein-1 distance (a.k.a. Earth Mover’s Distance or Optimal Transport) between 𝜇

and 𝜈 is defined as

𝑊1(𝜇, 𝜈) = min
𝜏

∑︁
𝑥1,𝑥2∈𝑋

𝜏(𝑥1, 𝑥2) · d(𝑥1, 𝑥2), (6.1)
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Figure 6-1: Illustration of the Optimal Transport distance, computed in R𝑑 between a uni-
form distribution over a red set of 5 points, and a uniform distribution over a blue set of
3 points. The Optimal Transport distance is the cost of the minimum cost flow on the bi-
partite graph between the blue and red points (in gray), where the cost of each edge is the
Euclidean distance between its endpoints. The flow is marked in green.

where the minimum is taken over all distributions 𝜏 on 𝑋 × 𝑋 whose marginals are equal

to 𝜇 and 𝜈.1 See Figure 6-1 for illustration. The Wasserstein-1 distance and its variants are

heavily used in applications to measure similarity in structured data domains, such as im-

ages [RTG00] and natural language text [KSKW15]. In particular, Kusner et al. [KSKW15]

proposed the Word Mover Distance (WMD) for text documents. Each document is seen

as a uniform distribution over the words it contains, and the underlying metric between

words is induced by high-dimensional word embeddings such as word2vec [MSC+13] or

GloVe [PSM14]. It is shown in [KSKW15] (see also [LYFC19, YCC+19, WYX+18]) that

the Wasserstein-1 distance between the two distributions is a high-quality measure of se-

mantic similarity between the associated documents.

To leverage the Wasserstein-1 distance for classification tasks, the above line of work uses

the 𝑘-nearest neighbor classifier. For example, given a query document, [KSKW15] perform

nearest neighbor search with respect to WMD on a dataset of documents labeled by topics,

and the query document is given the same topic label as its nearest neighbor. This poses a
1For mathematical foundations of Wasserstein distances, see [Vil03].
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notorious bottleneck for large datasets, necessitating the use of fast approximate similarity

search algorithms. While such algorithms are widely studied for ℓ𝑝 distances (chiefly ℓ2;

see [AIR18] for a survey), much less is known for Wasserstein distances, and a comprehensive

study appears to be lacking. In particular, two properties of the 𝑊1 distance make the nearest

neighbor search problem very challenging. First, the 𝑊1 distance is fairly difficult to compute

(the most common approaches are combinatorial flow algorithms [Kuh55] or approximate

iterative methods [Cut13]). Second, the 𝑊1 distance is strongly incompatible with Euclidean

(and more generally, with ℓ𝑝) geometries [Bou86, KN06, NS07, AIK08, ANN15, AKR18],

which renders many of the existing techniques for nearest neighbor search inadequate (e.g.,

Johnson-Lindenstrauss-type random projections).

In this chapter, we systematically study the 𝑘-nearest neighbor search (𝑘-NNS) problem

with respect to the 𝑊1 distance. In accordance with the above applications, we focus on the

case where the ground set 𝑋 is a finite subset of R𝑑, endowed with the Euclidean distance,

where 𝑑 can be a high dimension, and each distribution over 𝑋 has finite support of size at

most 𝑠.2 Given a dataset of 𝑛 distributions 𝜇1, 𝜇2, . . . , 𝜇𝑛, the goal is to preprocess it, such

that given a query distribution 𝜈 (also supported on 𝑋), we can quickly find the 𝑘 distri-

butions 𝜇𝑖 closest to 𝜈 in the 𝑊1 distance. To speed up search, the algorithms we consider

rely on efficient estimates of the distances 𝑊1(𝜇𝑖, 𝜈). This may lead to retrieving approx-

imate nearest neighbors rather than the exact ones, which is often sufficient for practical

applications.

6.1.1 Prior Work

Kusner et al. [KSKW15] sped up 𝑘-NNS for WMD by designing two approximations of 𝑊1.

The first algorithm estimates 𝑊1(𝜇, 𝜈) as the Euclidean distance between their respective

means. The second algorithm, called “Relaxed WMD” (abbrev. R-WMD), assigns every

point in the support of 𝜇 to its closest point in the support of 𝜈, and vice versa, and

returns the maximum of the two assignments. Both of these methods produce an estimate

no larger than the true distance 𝑊1(𝜇, 𝜈). The former is much faster to compute, while the

2In the application to [KSKW15], 𝑋 is the set word embeddings of (say) all terms in the English language,
and 𝑠 is the maximum number of terms per text document.
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latter has a much better empirical quality of approximation. The overall 𝑘-NNS pipeline

in [KSKW15] consists of the combination of both algorithms, together with exact 𝑊1 distance

computation. Recently, [AM19] proposed modifications to R-WMD by instating additional

capacity constraints, resulting in more accurate estimates that can be computed almost as

efficiently as R-WMD.

Indyk and Thaper [IT03] studied the approximate NNS problem for the 𝑊1 distance in

the context of image retrieval. Their approach capitalizes on a long line of work of tree-based

methods, in which the given metric space is embedded at random into a tree metric. This is

a famously fruitful approach for many algorithmic and structural statements [Bar96, Bar98,

CCG+98, Ind01, GKL03, FRT04, CKR05, MN06]. It is useful in particular for Wasserstein

distances, since the optimal flow (𝜏 in (6.1)) on a tree can be computed in linear time, and

since a tree embedding of the underlying metric yields an ℓ1-embedding of the Wasserstein

distance, as shown by [KT02, Cha02]. This allowed [IT03] to design an efficient NNS

algorithm for 𝑊1 based on classical locality-sensitive hashing (LSH). Recently, [LYFC19]

introduced a kernel similarity measure based on the same approach, and showed promising

empirical results for additional application domains.

6.1.2 Our Results

Flowtree. The tree-based method used in [IT03, LYFC19] is the classical Quadtree algo-

rithm, which we have already used in Chapter 4. Here its application is even more straightfor-

ward, as we describe in detail Section 6.2. In this method, the ground metric 𝑋 is embedded

into a randomly shifted quadtree, and the cost of the optimal flow is computed with respect

to the tree metric. We suggest a modification to this algorithm, which we call Flowtree: It

computes the optimal flow on the same random tree, but evaluates the cost of that flow in

the original ground metric.

While this may initially seem like a small modification, it in fact leads to an algorithm

with vastly different properties. On one hand, while both algorithms run asymptotically

in time 𝑂(𝑠) (where we recall that 𝑠 is an upper bound on the support sizes of the input

distributions), Quadtree is much faster in practice. The reason is that the cost of the optimal

flow on the tree can be computed very efficiently, without actually computing the flow itself.
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On the other hand, Flowtree is dramatically more accurate. Formally, we prove it has an

asymptotically better approximation factor than Quadtree. Empirically, our experiments

show that Flowtree is as accurate as state-of-the-art 𝑂(𝑠2) time methods, while being much

faster.

Theoretical results. A key difference between Flowtree and Quadtree is that the ap-

proximation quality of Flowtree is independent of the dataset size, i.e., of the number 𝑛 of

distributions 𝜇1, . . . , 𝜇𝑛 that need to be searched. Quadtree, on the other hand, degrades in

quality as 𝑛 grows. We expose this phenomenon in two senses:

∙ Worst-case analysis: We prove that Flowtree reports an 𝑂(log2 𝑠)-approximate near-

est neighbor w.h.p if the input distributions are uniform, and an 𝑂(log(𝑑Φ) · log 𝑠)-

approximate nearest neighbor (where 𝑑 is the dimension and Φ is the coordinate

range of 𝑋) even if they are non-uniform. Quadtree, on the other hand, reports an

𝑂(log(𝑑Φ) · log(𝑠𝑛))-approximate nearest neighbor, and we show the dependence on 𝑛

is necessary.

∙ Random model: We analyze a popular random data model, in which both Flowtree and

Quadtree recover the exact nearest neighbor with high probability. Nonetheless, here

too, we show that Flowtree’s success probability is independent of 𝑛, while Quadtree’s

degrades as 𝑛 grows.

Empirical results. We evaluate Flowtree, as well as several baselines and state-of-the-art

methods, for nearest neighbor search in the 𝑊1 distance on real-world datasets.

Our first set of experiments evaluates each algorithm individually. Our results yield

a sharp divide among existing algorithms: The linear time ones are very fast in practice

but only moderately accurate, while the quadratic time ones are much slower but far more

accurate. Flowtree forms an intermediate category: it is slower and more accurate than

the other linear time algorithms, and is at least 5.5 (and up to 30) times faster than the

quadratic time algorithms, while attaining similar or better accuracy.

The above results motivate a sequential combination of algorithms, that starts with a

fast and coarse algorithm to focus on the most promising candidates nearest neighbors, and
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gradually refines the candidate list by slower and more accurate algorithms. Such pipelines

are commonly used in practice, and in particular were used in [KSKW15] (termed “prefetch

and prune”). Our second set of experiments evaluates pipelines of various algorithms. We

show that incorporating Flowtree into pipelines substantially improves the overall running

times, by a factor of up to 7.4.

6.2 Preliminaries: Quadtree

In this section we explain the classical Quadtree algorithm for Optimal Transport. It has

been described as part of our QuadSketch algorithm in Chapter 4 with various modifications

and annotations. As it forms the basis for Flowtree, we now describe it in detail in its most

generic form, and then its application to Optimal Transport.

Generic Quadtree. Let 𝑋 ⊂ R𝑑 be a finite set of points. Our goal is to embed 𝑋 into a

random tree metric, so as to approximately preserve each pairwise distance in 𝑋. To simplify

the description, suppose that the minimum pairwise distance in 𝑋 is exactly 1, and that

all points in 𝑋 have coordinates in [0, Φ]. This is without loss of generality, as we can set

the minimum distance to 1 by scaling, and we can shift all the points to have non-negative

coordinates without changing internal distances.

The first step is to obtain a randomly shifted hypercube that encloses all points in 𝑋.

To this end, let 𝐻0 = [−Φ, Φ]𝑑 be the hypercube with side length 2Φ centered at the origin.

Let 𝜎 ∈ R𝑑 be a random vector with i.i.d. coordinates uniformly distributed in [0, Φ]. We

shift 𝐻0 by 𝜎, obtaining the hypercube 𝐻 = [−Φ, Φ]𝑑 + 𝜎. Observe that 𝐻 has side length

2Φ and encloses 𝑋. The random shift is needed in order to obtain formal guarantees for

arbitrary 𝑋.

Now, we construct a tree of hypercubes by letting 𝐻 be the root, halving 𝐻 along each

dimension, and recursing on the resulting sub-hypercubes. We add to the tree only those

hypercubes that are non-empty (i.e., contain at least one point from 𝑋). Furthermore, we

do not partition hypercubes that contain exactly one point from 𝑋; they become leaves.
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Figure 6-2: Quadtree illustration. Left: Input metric space. Right: Corresponding quadtree.

The resulting tree has at most 𝑂(log(𝑑Φ)) levels and exactly |𝑋| leaves, one per point in 𝑋.3

We number the root level as log Φ + 1, and the rest of the levels are numbered downward

accordingly (log Φ, log Φ − 1, . . .). We set the weight of each tree edge between level ℓ + 1

and level ℓ to be 2ℓ. See Figure 6-2 for illustration.

The resulting quadtree has 𝑂(|𝑋|𝑑 · log(𝑑Φ)) nodes, and it is straightforward to build it

in time ̃︀𝑂(|𝑋|𝑑 · log(𝑑Φ)). Note that although the construction partitions each hypercube

into 2𝑑 sub-hypercubes, eliminating empty hypercubes ensures that the tree size does not

depend exponentially on 𝑑.

Wasserstein-1 on Quadtree. The tree distance between each pair 𝑥, 𝑥′ ∈ 𝑋 is defined as

the total edge weight on the unique path between their corresponding leaves in the quadtree.

Given two distributions 𝜇, 𝜈 on 𝑋, the Wasserstein-1 distance with this underlying metric

(as a proxy for the Euclidean metric on 𝑋) admits the closed-form

∑︁
𝑣

2ℓ(𝑣)|𝜇(𝑣)− 𝜈(𝑣)|,

where 𝑣 ranges over all nodes in the tree, ℓ(𝑣) is the level of 𝑣, 𝜇(𝑣) is the total 𝜇-mass

of points enclosed in the hypercube associated with 𝑣, and 𝜈(𝑣) is defined similarly for the

3This is since the diameter of the root hypercube 𝐻 is
√

𝑑Φ, and the diameter of a leaf is no less than
1/2, since by scaling the minimal distance in 𝑋 to 1 we have assured that a hypercube of diameter 1/2
contains a single point and thus becomes a leaf. Since the diameter is halved in each level, there are at most
𝑂(log(𝑑Φ)) levels.
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𝜈-mass. If 𝜇, 𝜈 have supports of size at most 𝑠, then this quantity can be computed in time

𝑂(𝑠 · log(𝑑Φ)).

The above closed-form implies, in particular, that 𝑊1 on the quadtree metric embeds

isometrically into ℓ1, as originally observed by [Cha02] following [KT02]. Namely, the ℓ1

space has a coordinate associated with each tree node 𝑣, and a distribution 𝜇 is embedded

in that space by setting the value of each coordinate 𝑣 to 2ℓ(𝑣)𝜇(𝑣), where 𝜇(𝑣) is defined

as above. Furthermore, observe that if 𝜇 has support size at most 𝑠, then its corresponding

ℓ1 embedding w.r.t the tree metric has at most 𝑠ℎ non-zero entries, where ℎ is the height

of the tree. Thus, computing 𝑊1 on the tree metric amounts to computing the ℓ1 distance

between sparse vectors, which further facilitates fast implementation in practice.

6.3 Flowtree

The Flowtree algorithm for 𝑘-NNS w.r.t. the 𝑊1 distance is as follows. In the preprocessing

stage, we build a quadtree 𝑇 on the ground set 𝑋, as described in Section 6.2. Let 𝑡(𝑥, 𝑥′)

denote the quadtree distance between every pair 𝑥, 𝑥′ ∈ 𝑋. In the query stage, in order to

estimate 𝑊1(𝜇, 𝜈) between two distributions 𝜇, 𝜈, we compute the optimal flow 𝑓 w.r.t. the

tree metric, that is,

𝑓 = argmin𝑓

∑︁
𝑥,𝑥′∈𝑋

𝑓(𝑥, 𝑥′) · 𝑡(𝑥, 𝑥′),

where the argmin is taken over all distributions on 𝑋 × 𝑋 with marginals 𝜇, 𝜈. Then, the

estimate of the distance between 𝜇 and 𝜈 is given by

̃︁𝑊1(𝜇, 𝜈) =
∑︁

𝑥,𝑥′∈𝑋

𝑓(𝑥, 𝑥′) · ‖𝑥− 𝑥′‖.

See Figure 6-3 for illustration.

Note that if the support sizes of 𝜇 and 𝜈 are upper-bounded by 𝑠, then the Flowtree

estimate of their distance can be computed in time linear in 𝑠. The precise algorithm, and

the proof of the next lemma, are given in Section 6.5.1.

Lemma 6.3.1. ̃︁𝑊1(𝜇, 𝜈) can be computed in time 𝑂(𝑠(𝑑 + log(𝑑Φ))).
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Figure 6-3: Flowtree illustration. Right: The optimal flow on the quadtree is computed by
a greedy bottom-up process. Left: The flow cost is measured in the original metric space
(the flow is marked in green).

Unlike Quadtree, Flowtree does not reduce to sparse ℓ1 distance computation. Instead,

one needs to compute the optimal flow tree 𝑓 explicitly by bottom-up greedy algorithm,

and then use it to compute ̃︁𝑊1(𝜇, 𝜈). (See Section 6.5.1.) On the other hand, Flowtree has

the notable property mentioned earlier: its NNS approximation factor is independent of the

dataset size 𝑛. In comparison, the classical Quadtree does not possess this property, and its

accuracy deteriorates as the dataset becomes larger. We formally establish this distinction

in two senses: first by analyzing worst-case bounds, and then by analyzing a popular random

data model.

6.3.1 Worst-Case Bounds

We start with an analytic worst-case bound on the performance of quadtree. Let us recall

notation: 𝑋 is a finite subset of R𝑑, and Φ > 0 is the side length of a hypercube enclosing 𝑋.

We are given a dataset of 𝑛 distributions 𝜇1, . . . , 𝜇𝑛, and a query distribution 𝜈, where each

of these distributions is supported on a subset of 𝑋 of size at most 𝑠. Our goal is to find

a near neighbor of 𝜈 among 𝜇1, . . . 𝜇𝑛. A distribution 𝜇𝑖 is called a 𝑐-approximate nearest

neighbor of 𝜈 if 𝑊1(𝜇𝑖, 𝜈) ≤ 𝑐 ·min𝑖* 𝑊1(𝜇𝑖* , 𝜈).

The following theorem adapts a result by Andoni, Indyk and Krauthgamer [AIK08]
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(where it is proven for a somewhat different algorithm, with similar analysis). All proofs

appear in Section 6.5.

Theorem 6.3.2 (Quadtree upper bound). With probability ≥ 0.99, the nearest neighbor of

𝜈 among 𝜇1, . . . 𝜇𝑛 in the Quadtree distance is an 𝑂(log(min{𝑠𝑛, |𝑋|}) log(𝑑Φ))-approximate

nearest neighbor in the 𝑊1 distance.

Next, we show that the log 𝑛 factor in the above upper bound is necessary for Quadtree.

Theorem 6.3.3 (Quadtree lower bound). Suppose 𝑐 is such that Quadtree is guaranteed to

return a 𝑐-approximate nearest neighbor, for any dataset, with probability more than (say)

1/2. Then 𝑐 = Ω(log 𝑛).

In contrast, Flowtree attains an approximation factor that does not depend on 𝑛.

Theorem 6.3.4 (Flowtree upper bound). With probability ≥ 0.99, the nearest neighbor

of 𝜈 among 𝜇1, . . . 𝜇𝑛 in the Flowtree distance is an 𝑂(log(𝑠) log(𝑑Φ))-approximate nearest

neighbor for the 𝑊1 distance.

Finally, we combine ideas from [AIK08] and Backurs and Indyk [BI14] to prove another

upper bound for Flowtree, which is also independent of the dimension 𝑑 and the numerical

range Φ. No such result is known for Quadtree (nor does it follow from our techniques).

Theorem 6.3.5 (Flowtree upper bound for uniform distributions4). For an integer 𝑠, as-

sume that for every distribution there exists an integer 𝑠′ ≤ 𝑠 such that the weights of all

elements in the support are integer multiples of 1/𝑠′. With probability ≥ 0.99, the nearest

neighbor of 𝜈 among 𝜇1, . . . 𝜇𝑛 in the Flowtree distance is an 𝑂(log2 𝑠)-approximate nearest

neighbor for the 𝑊1 distance.

6.3.2 Random Model

The above worst-case results appear to be overly pessimistic for real data. Indeed, in practice

we observe that Quadtree and especially Flowtree often recover the exact nearest neighbor.
4For simplicity, Theorem 6.3.5 is stated for uniform distribution (or close to uniform), such as documents

in [KSKW15]. A similar result holds for any distribution, with additional dependence on the numerical range
of mass values.
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Figure 6-4: Random model illustration with 𝑠 = 4. Left: The blue points are the 𝑁 random
data points. The data distributions are all subsets of 4 points. Right: The red points
form a query distribution whose planted nearest neighbor is the distribution supported on
{𝑥1, 𝑥2, 𝑥3, 𝑥4}.

This motivates us to study their performance on a simple model of random data, which is

standard in the study of nearest neighbor search.

The data is generated as follows. We choose a ground set 𝑋 of 𝑁 points i.i.d. uniformly

at random on the 𝑑-dimensional unit sphere 𝒮𝑑−1. For each subset of 𝑁 of size 𝑠, we form

a uniform distribution supported on that subset. These distributions make up the dataset

𝜇1, . . . , 𝜇𝑛 (so 𝑛 =
(︁

𝑁
𝑠

)︁
).

To generate a query, pick any 𝜇𝑖 as the “planted” nearest neighbor, and let 𝑥1, . . . , 𝑥𝑠

denote its support. For 𝑘 = 1, . . . , 𝑠, choose a uniformly random point 𝑦𝑘 among the points

on 𝒮𝑑−1 at distance at most 𝜖 from 𝑥𝑘, where 𝜖 is a model parameter. The query distribution

𝜈 is defined as the uniform distribution over 𝑦1, . . . , 𝑦𝑠. By known concentration of measure

results, the distance from 𝑦𝑘 to every point in 𝑋 except 𝑥𝑘 is
√

2−𝑜(1) with high probability.

Thus, the optimal flow from 𝜈 to 𝜇𝑖 is the perfect matching {(𝑥𝑘, 𝑦𝑘)}𝑠
𝑘=1, and 𝜇𝑖 is the nearest

neighbor of 𝜈. The model is illustrated in Figure 6-4.

Theorem 6.3.6. In the above model, the success probability of Quadtree in recovering the

planted nearest neighbor decays exponentially with 𝑁 , while the success probability of Flowtree

is independent of 𝑁 .

6.4 Experiments

In this section we empirically evaluate Flowtree and compare it to various existing methods.
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6.4.1 Synthetic Data

We implement the random model from Section 6.3.2. The results are in Figure 6-5. The

x-axis is 𝑁 (the number of points in the ground metric), and the y-axis is the fraction of

successes over 100 independent repetitions of planting a query and recovering its nearest

neighbor. As predicted by Theorem 6.3.6, Quadtree’s success rate degrades as 𝑁 increases

(and we recall that 𝑛 =
(︁

𝑁
𝑠

)︁
), while Flowtree’s does not.

Figure 6-5: Results on random data, with two settings of parameters. Top: 𝑑 = 𝑠 = 10,
𝜖 = 0.25. Bottom: 𝑑 = 10, 𝑠 = 100, 𝜖 = 0.4.
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Name Size Queries Underlying metric Avg. support size (𝑠)

20news 11, 314 1, 000 Word embedding 115.9
Amazon 10, 000 1, 000 Word embedding 57.44
MNIST 60, 000 10, 000 2D Euclidean 150.07

Table 6.1: Dataset properties

6.4.2 Real Data

Datasets. We use three datasets from two application domains. Their properties are

summarized in Table 6.1.

∙ Text documents: We use the standard benchmark 20news dataset of news-related on-

line discussion groups, and a dataset of Amazon reviews split evenly over 4 product

categories. Both have been used in [KSKW15] to evaluate the Word-Move Distance.

Each document is interpreted as a uniform distribution supported on the terms it

contains (after stopword removal). For the underlying metric, we use GloVe word

embeddings [PSM14] with 400, 000 terms and 50 dimensions.

∙ Image recognition: We use the MNIST dataset of handwritten digits. As in [Cut13],

each image is interpreted as a distribution over 28× 28 pixels, with mass proportional

to the greyscale intensity of the pixel (normalized so that the mass sums to 1). Note

that the distribution is supported on only the non-white pixels in the image. The

underlying metric is the 2-dimensional Euclidean distance between the 28× 28 pixels,

where they are identified with the points {(𝑖, 𝑗)}28
𝑖,𝑗=1 on the plane.

Algorithms. We evaluate the following algorithms:

∙ Mean: 𝑊1(𝜇, 𝜈) is estimated as the Euclidean distance between the means of 𝜇 and 𝜈.

This method has been suggested and used in [KSKW15].5

∙ Overlap: A simple baseline that estimates 𝑊1(𝜇, 𝜈) by the size of the intersection of

their supports.
5There it is called Word Centroid Distance (WCD).
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∙ TF-IDF: A well-known similarity measure for text documents. It is closely related to

Overlap.6 For MNIST we omit this baseline since it is not a text dataset.

∙ Quadtree: See Section 6.2.

∙ Flowtree: See Section 6.3.

∙ R-WMD: The Relaxed WMD method of [KSKW15], described in Section 6.1.1. We

remark that this method does not produce an admissible flow (i.e., it does not adhere

to the capacity and demand constraints of 𝑊1).

∙ ACT-1 : The Approximate Constrained Transfers method of [AM19] gradually adds

constraints to R-WMD over 𝑖 iterations, for a parameter 𝑖. The 𝑖 = 0 case is identical to

R-WMD, and increasing 𝑖 leads to increasing both the accuracy and the running time.

Like R-WMD, this method does not produce an admissible flow. In our experiments,

the optimal setting for this method is 𝑖 = 1,7 which we denote by ACT-1. The appendix

(Section 6.6) contains additional results for larger 𝑖.

∙ Sinkhorn with few iterations: The iterative Sinkhorn method of [Cut13] is designed to

converge to a near-perfect approximation of 𝑊1. Nonetheless, it can be adapted into

a fast approximation algorithm by invoking it with a fixed small number of iterations.

We use 1 and 3 iterations, referred to as Sinkhorn-1 and Sinkhorn-3 respectively. Since

the Sinkhorn method requires tuning certain parameters (the number of iterations

as well as the regularization parameter), the experiments in this section evaluate the

method at its optimal setting, and the appendix (Section 6.6) includes experiments

with other parameter settings.

As mentioned in Section 6.1.2, these methods can be grouped by their running time

dependence on 𝑠:

∙ “Fast” linear-time: Mean, Overlap, TF-IDF, Quadtree

∙ “Slow” linear-time: Flowtree
6Namely, it is a weighted variant of Overlap, where terms are weighted according to their frequency in

the dataset.
7This coincides with the results reported in [AM19].
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∙ Quadratic time: R-WMD, ACT-1, Sinkhorn

The difference between “fast” and “slow” linear time is that the former algorithms reduce

to certain simple cache-efficient operations, and furthermore, Mean greatly benefits from

SIMD vectorization. In particular, Overlap, TF-IDF and Quadtree require computing a

single ℓ1 distance between sparse vectors, while Mean requires computing a single Euclidean

distance in the ground metric. This renders them an order of magnitude faster than the

other methods, as our empirical results will show.

Runtime measurement. All running times are measured on a “Standard F72s_v2” Mi-

crosoft Azure instance equipped with Intel Xeon Platinum 8168 CPU. In our implementa-

tions, we use NumPy linked with OpenBLAS, which is used in a single-threaded mode.

Implementation. We implement R-WMD, ACT and Sinkhorn in Python with NumPy, as

they amount to standard matrix operations which are handled efficiently by the underlying

BLAS implementation. We implement Mean, Overlap, TF-IDF, Quadtree and Flowtree in

C++ (wrapped in Python for evaluation). For Mean we use the Eigen library to compute

dense ℓ2 distances efficiently. For Exact 𝑊1 we use the POT library in Python, which in

turn calls the Lemon graph library written in C++. The accuracy and pipeline evaluation

code is in Python.

6.4.3 Individual Accuracy Experiments

Our first set of experiments evaluates the runtime and accuracy of each algorithm indi-

vidually. The results are depicted in Figures 6-6 to 6-8. The plots report the recall@𝑚

accuracy as 𝑚 grows. The recall@𝑚 accuracy is defined as the fraction of queries for which

the true nearest neighbors is included in the top-𝑚 ranked neighbors (called candidates) by

the evaluated method.

For each dataset, the left plot reports the accuracy of all of the methods for large values of

𝑚. The right plot reports the accuracy of the high-accuracy methods for smaller values of 𝑚

(since they cannot be discerned in the left plots). The high-accuracy methods are Flowtree,

R-WMD, ACT, Sinkhorn, and on MNIST also Quadtree. For Quadtree and Flowtree, which
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Figure 6-6: Individual accuracy and runtime results on 20news

Figure 6-7: Individual accuracy and runtime results on Amazon

Figure 6-8: Individual accuracy and runtime results on MNIST (see footnote (*) in Table 6.2
regarding runtimes)
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Dataset Mean TF-IDF Overlap Quadtree Flowtree

20news 0.22ms 8.0ms 8.4ms 13ms 0.24s
Amazon 0.18ms 3.8ms 3.9ms 5.8ms 90ms
MNIST* 0.58ms — 47ms 68ms 0.94s

Dataset R-WMD ACT-1** Sinkhorn-1 Sinkhorn-3 Exact 𝑊1

20news 1.46s 2.23s 4.16s 4.93s 41.5s
Amazon 0.51s 0.74s 1.25s 1.58s 4.23s
MNIST* 5.73s 20.8s 23.7s 28.0s 154.0s

* On MNIST, the accuracy of R-WMD, ACT and Sinkhorn is evaluated on 1, 000 random queries. The
running time of R-WMD, ACT, Sinkhorn and Exact 𝑊1 is measured on 100 random queries. The running
time of Flowtree is measured 1, 000 random queries.
** ACT takes a faster form when applied to uniform distributions. We use a separate implementation for
this case. This accounts for the large difference in its performance on 20news and Amazon (where
distributions are uniform) compared to MNIST (where they are not).

Table 6.2: Running times

are randomized methods, we report the mean and standard deviation (shown as error bars)

of 5 executions. The other methods are deterministic. The legend of each plot is annotated

with the running time of each method, also summarized in Table 6.2.

Results. The tested algorithms yield a wide spectrum of different time-accuracy tradeoffs.

The “fast” linear time methods (Mean, TF-IDF, Overlap and Quadtree) run in order of

milliseconds, but are less accurate than the rest. The quadratic time methods (R-WMD,

ACT-1 and Sinkhorn) are much slower, running in order of seconds, but are dramatically

more accurate.

Flowtree achieves comparable accuracy to the quadratic time baselines, while being faster

by a margin. In particular, its accuracy is either similar to or better than R-WMD, while

being 5.5 to 6 times faster. Compared to ACT-1, Flowtree is either somewhat less or more

accurate (depending on the dataset), while being at least 8 times faster. Compared to

Sinkhorn, Flowtree achieves somewhat lower accuracy, but is at least 13.8 and up to 30

times faster.
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Figure 6-9: Nearest neighbor search pipeline illustration

6.4.4 Pipeline Experiments

The above results exhibit a sharp divide between fast and coarse algorithms to slow and

accurate ones. In practical nearest neighbor search system, both types of algorithms are often

combined sequentially as a pipeline (e.g., [SZ03, JDS08, JDS11]). First, a fast and coarse

method is applied to all points, pruning most of them; then a slower and more accurate

method is applied to the surviving points, pruning them further; and so on, until finally

exact computation is performed on a small number of surviving points. See Figure 6-9 for

illustration. In particular, [KSKW15] employ such a pipeline for the Word Mover Distance,

which combines Mean, R-WMD, and exact 𝑊1 computation.

In this section, we systematically evaluate pipelines built of the algorithms tested above,

on the 20news dataset.

Experimental setup. We perform two sets of experiments: In one, the pipeline reports

one candidate, and its goal is to output the true nearest neighbor (i.e., recall@1). In the

other, the pipeline reports 5 candidates, and its goal is to include the true nearest neighbor

among them (i.e., recall@5). We fix the target accuracy to 0.9 (i.e., the pipeline must achieve

the recall goal on 90% of the queries), and report its median running time over 3 identical

runs.

Evaluated pipelines. The baseline pipelines we consider contain up to three methods:

∙ First: Mean, Overlap or Quadtree.
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Figure 6-10: Best performing pipelines for recall@1 ≥ 0.9 (on the left) and recall@5 ≥ 0.9
(on the right). Each vertical bar denotes a pipeline, built of the methods indicated by the
color encoding, bottom-up. The y-axis measures the running time up to each step of the
pipeline. The plot depicts 4 baseline pipelines, consisting of Quadtree, then the method 𝑋
indicated on the x-axis (R-WMD, ACT-1, Sinkhorn-1 or Sinkhorn-3), and then (optionally)
Exact 𝑊1. Next to each baseline bar we show the bar obtained by adding Flowtree to the
pipeline as an intermediate algorithm between Quadtree and 𝑋. The rightmost bar in each
plot shows the pipeline obtained by using Flowtree instead of 𝑋.

∙ Second: R-WMD, ACT-1, Sinkhorn-1, or Sinkhorn-3.

∙ Third: Exact 𝑊1 computation. For recall@5 pipelines whose second method is Sinkhorn,

this third step is omitted, since they already attain the accuracy goal without it.

To introduce Flowtree into the pipelines, we evaluate it both as an intermediate stage between

the first and second methods, and as a replacement for the second method.

Pipeline parameters. A pipeline with ℓ algorithms has parameters 𝑐1, . . . , 𝑐ℓ−1, where 𝑐𝑖

is the number of output candidates (non-pruned points) of the 𝑖𝑡ℎ algorithm in the pipeline.8

We tune the parameters of each pipeline optimally on a random subset of 300 queries (fixed

for all pipelines). The optimal parameters are listed in the appendix.

Results. We found that in the first step of the pipeline, Quadtree is significantly preferable

to Mean and Overlap, and the results reported in this section are restricted to it. More results
8The final algorithm always outputs either 1 or 5 points, according to the recall goal.

185



Recall@1 ≥ 0.9 Recall@5 ≥ 0.9

Without Flowtree 0.221s 0.200s
With Flowtree 0.059s 0.027s

Table 6.3: Best pipeline runtime results

are included in the appendix.

Figure 6-10 shows the runtimes of pipelines that start with Quadtree. Note that each

pipeline is optimized by different parameters, not depicted in the figure. For example,

Sinkhorn-3 is faster than Sinkhorn-1 on the right plot, even though it is generally a slower

algorithm. However, it is also more accurate, which allows the preceding Quadtree step to

be less accurate and report fewer candidates, while still attaining overall accuracy of 0.9.

Specifically, in the optimal recall@5 setting, Sinkhorn-3 runs on 227 candidates reported by

Quadtree, while Sinkhorn-1 runs on 295.

The best runtimes are summarized in Table 6.3. The results show that introducing

Flowtree improves the best runtimes by a factor of 3.7 for recall@1 pipelines, and by a factor

of 7.4 for recall@5 pipelines.

In the recall@1 experiments, the optimally tuned baseline pipelines attain runtimes be-

tween 0.22 to 0.25 seconds. Introducing Flowtree before the second method in each pipeline

improves its running time by a factor of 1.7 to 4.15. Introducing Flowtree instead of the

second method improves the runtime by a factor of 2.4 to 2.7.

Once Flowtree is introduced into the recall@1 pipelines, the primary bottleneck becomes

the final stage of exact 𝑊1 computations. In the recall@5 experiments, this step is not always

required, which enables larger gains for Flowtree. In these experiments, the optimally tuned

baseline pipelines attain runtimes between 0.2 to 0.22 seconds. Introducing Flowtree before

the second method in each pipeline improves its running time by a factor of 1.64 to 6.75.

Introducing Flowtree instead of the second method improves the runtime by a factor of 7.4

to 8.

Overall, Flowtree significantly improves the running time of every pipeline, both as an

addition and as a replacement.
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6.5 Proofs

6.5.1 Flowtree Computation

In this section we prove Lemma 6.3.1. We begin by specifying the greedy flow computation

algorithm on the tree. Let ℎ denote the height of the tree (for the quadtree the height is

ℎ = 𝑂(log(𝑑Φ)). Suppose we are given a pair of distributions 𝜇, 𝜈, each supported on at

most 𝑠 leaves of the tree. For every node 𝑣 in the tree, let 𝐶𝜇(𝑣) denote the set of points in

𝑥 ∈ 𝑋 such that 𝜇(𝑥) > 0 and the tree leaf that contains 𝑥 is a descendant of 𝑣. Similarly

define 𝐶𝜈(𝑣). Note that we only need to consider nodes for which either 𝐶𝜇(𝑣) or 𝐶𝜈(𝑣) is

non-empty, and there are at most 2𝑠ℎ such nodes.

The algorithm starts with a zero flow 𝑓 , and processes the nodes in a bottom-up order

starting at the leaf. In each node, the unmatched demands collected from its children are

matched arbitrarily, and the demands that cannot be matched are passed on to the parent.

In more detail, a node is processed as follows:

1. Collect from the children the list of unmatched 𝜇-demands for the nodes in 𝐶𝜇(𝑣) and

the list of unmatched 𝜈-demands for the nodes in 𝐶𝜈(𝑣). Let {𝜇𝑣(𝑥) : 𝑥 ∈ 𝐶𝜇(𝑣)}

denote the unmatched 𝜈-demands and let {𝜈𝑣(𝑥) : 𝑥 ∈ 𝐶𝜈(𝑣)} denote the unmatched

𝜈-demands.

2. While there is a pair 𝑥 ∈ 𝐶𝜇(𝑣) and 𝑥′ ∈ 𝐶𝜇(𝑣) with 𝜇𝑣(𝑥) > 0 and 𝜈𝑣(𝑥′) > 0, let

𝜂 = min{𝜇𝑣(𝑥), 𝜈𝑣(𝑥′)}, and update:

(a) 𝑓(𝑥, 𝑥′) += 𝜂,

(b) 𝜇𝑣(𝑥) −= 𝜂,

(c) 𝜈𝑣(𝑥′) −= 𝜂.

3. Now either 𝜇𝑣 or 𝜈𝑣 is all-zeros. If the other one is not all-zeros (i.e., there is either

remaining unmatched 𝜇-demand or remaining unmatched 𝜈-demand), pass it on to the

parent.

A leaf 𝑣 contains a single point 𝑥 ∈ 𝑋 with either 𝜇(𝑥) > 0 or 𝜈(𝑥) > 0; it simply passes it

on to its parent without processing.

187



It is well known that the above algorithm computes an optimal flow on the tree (with

respect to tree distance costs), see, e.g., [KK95]. Let us now bound its running time. The

processing time per node 𝑣 in the above algorithm is 𝑂(|𝐶𝜇(𝑣)|+|𝐶𝜈(𝑣)|). In every given level

in the tree, if 𝑣1, . . . , 𝑣𝑘 are the nodes in that level, then {𝐶𝜇(𝑣1), . . . , 𝐶𝜇(𝑣𝑘)} is a partition

of the support of 𝜇, and {𝐶𝜈(𝑣1), . . . , 𝐶𝜈(𝑣𝑘)} is a partition of the support of 𝜈. Therefore

the total processing time per level is 𝑂(𝑠), and since there are ℎ levels, the flow computation

time is 𝑂(𝑠ℎ). Then we need to compute the Flowtree output ̃︁𝑊1(𝜇, 𝜈). Observe that in

the above algorithm, whenever we match demands between a pair 𝑥, 𝑥′, we fully satisfy the

unmatched demand of one of them. Therefore the output flow 𝑓 puts non-zero flow between

at most 2𝑠 pairs. For each such pair we need to compute the Euclidean distance in time

𝑂(𝑑), and the overall running time is 𝑂(𝑠(𝑑 + ℎ)).

6.5.2 Quadtree Upper Bound

Proof of Theorem 6.3.2. Let 𝑥, 𝑦 ∈ 𝑋. Let 𝑝ℓ(𝑥, 𝑦) be the probability that 𝑥, 𝑦 fall into the

same cell (hypercube) in level ℓ of the quadtree. It satisfies,

1− ‖𝑥− 𝑦‖1

2ℓ
≤ 𝑝ℓ(𝑥, 𝑦) ≤ exp

(︃
−‖𝑥− 𝑦‖1

2ℓ

)︃
. (6.2)

To see this, recall that in level ℓ we impose a grid with side length 2ℓ, shifted at random by

an i.i.d. uniform shift in [0, 2ℓ] in each coordinate. The probability that 𝑥, 𝑦 are separated

in coordinate 𝑖 is 2−ℓ|𝑥𝑖 − 𝑦𝑖|, and thus 𝑝ℓ(𝑥, 𝑦) = ∏︀𝑑
𝑖=1(1 − 2−ℓ|𝑥𝑖 − 𝑦𝑖|). The lower bound

in Equation (6.2) follows by a union bound, and the upper bound follows by applying the

general estimate 1− 𝑧 ≤ exp(−𝑧) to each term in the product.

Let 𝑡 be the tree metric induced on 𝑋 by the quadtree. Note that for 𝑡(𝑥, 𝑦) to be at

most 𝑂(2ℓ), 𝑥, 𝑦 must fall into the same hypercube in level ℓ. For any 𝛿 > 0, we can round

‖𝑥− 𝑦‖1/ log(1/𝛿) to its nearest power of 2 and obtain ℓ such that

2ℓ = Θ
(︃
‖𝑥− 𝑦‖1

log(1/𝛿)

)︃
.
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It satisfies,

Pr
[︃
𝑡(𝑥, 𝑦) <

𝑂(1)
log(1/𝛿)‖𝑥− 𝑦‖1

]︃
≤ 𝛿.

By letting 𝛿 = Ω(min{1/|𝑋|, 1/(𝑠2𝑛)}), we can take union bound either over all pairwise

distances in 𝑋 (of which there are
(︁

|𝑋|
2

)︁
), or over all distances between the support of the

query 𝜈 and the union of supports of the dataset 𝜇1, . . . , 𝜇𝑛 (of which there are at most 𝑠2𝑛,

if every support has size at most 𝑠). Then, with probability say 0.995, all those distances

are contracted by at most 𝑂(log(min{𝑠𝑛, |𝑋|})), i.e.,

𝑡(𝑥, 𝑦) ≥ 1
𝑂(log(1/𝛿))‖𝑥− 𝑦‖1. (6.3)

On the other hand,

E[𝑡(𝑥, 𝑦)] =
∑︁

ℓ

2ℓ · (1− 𝑝ℓ(𝑥, 𝑦))

≤
∑︁

ℓ

2ℓ · ‖𝑥− 𝑦‖1

2ℓ

≤ 𝑂(log(𝑑Φ)) · ‖𝑥− 𝑦‖1.

Let 𝜇* be the true nearest neighbor of 𝜈 in 𝜇1, . . . , 𝜇𝑛. Let 𝑓 *
𝜇*,𝜈 be the optimal flow

between them. Then by the above,

E

⎡⎣ ∑︁
(𝑥,𝑦)∈𝑋×𝑋

𝑓 *
𝜇*,𝜈(𝑥, 𝑦)𝑡(𝑥, 𝑦)

⎤⎦ ≤ 𝑂(log(𝑑Φ))
∑︁

(𝑥,𝑦)∈𝑋×𝑋

𝑓 *
𝜇*,𝜈(𝑥, 𝑦)‖𝑥− 𝑦‖1.

By Markov, with probability say 0.995,

∑︁
(𝑥,𝑦)∈𝑋×𝑋

𝑓 *
𝜇*,𝜈(𝑥, 𝑦) · 𝑡(𝑥, 𝑦) ≤ 𝑂(log(𝑑Φ))

∑︁
(𝑥,𝑦)∈𝑋×𝑋

𝑓 *
𝜇*,𝜈(𝑥, 𝑦) · ‖𝑥− 𝑦‖1. (6.4)

Let 𝜇′ be the nearest neighbor of 𝜈 in the dataset according to the quadtree distance.

Let 𝑓 *
𝜇′,𝜈 be the optimal flow between them in the true underlying metric (ℓ1 on 𝑋), and let

𝑓𝜇,𝜈 be the optimal flow in the quadtree. Finally let 𝑊𝑡 denote the Wasserstein-1 distance
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on the quadtree. Then,

𝑊1(𝜇′, 𝜈)

=
∑︁

(𝑥,𝑦)∈𝑋×𝑋

𝑓 *
𝜇′,𝜈(𝑥, 𝑦) · ‖𝑥− 𝑦‖1

≤
∑︁

(𝑥,𝑦)∈𝑋×𝑋

𝑓𝜇′,𝜈 · ‖𝑥− 𝑦‖1 𝑓 *
𝜇*,𝜈 is optimal for ‖·‖1

≤ 𝑂(log(min{𝑠𝑛, |𝑋|}))
∑︁

(𝑥,𝑥′)∈𝑋×𝑋

𝑓𝜇′,𝜈 · 𝑡(𝑥, 𝑦) eq. (6.3)

= 𝑂(log(min{𝑠𝑛, |𝑋|})) ·𝑊𝑡(𝜇′, 𝜈) definition of 𝑊𝑡

≤ 𝑂(log(min{𝑠𝑛, |𝑋|})) ·𝑊𝑡(𝜇*, 𝜈) 𝜇′ is the nearest neighbor in 𝑊𝑡

= 𝑂(log(min{𝑠𝑛, |𝑋|}))
∑︁

(𝑥,𝑦)∈𝑋×𝑋

𝑓𝜇*,𝜈 · 𝑡(𝑥, 𝑦) definition of 𝑊𝑡

≤ 𝑂(log(min{𝑠𝑛, |𝑋|}))
∑︁

(𝑥,𝑦)∈𝑋×𝑋

𝑓 *
𝜇*,𝜈 · 𝑡(𝑥, 𝑦) 𝑓𝜇*,𝜈 is optimal for 𝑡(·, ·)

≤ 𝑂(log(min{𝑠𝑛, |𝑋|}) log(𝑑Φ))
∑︁

(𝑥,𝑦)∈𝑋×𝑋

𝑓 *
𝜇*,𝜈 · ‖𝑥− 𝑦‖1 eq. (6.4)

= 𝑂(log(min{𝑠𝑛, |𝑋|}) log(𝑑Φ)) ·𝑊1(𝜇*, 𝜈),

so 𝜇′ is a 𝑂(log(min{𝑠𝑛, |𝑋|}) log(𝑑Φ))-approximate nearest neighbor.

6.5.3 Quadtree Lower Bound

Proof of Theorem 6.3.3. It suffices to prove the claim for 𝑠 = 1 (i.e., the standard ℓ1-

distance). Let 𝑑 > 0 be an even integer. Consider the 𝑑-dimensional hypercube. Our

query point is the origin. The true nearest neighbor is 𝑒1 (standard basis vector). The other

data points are the hypercube nodes whose hamming weight is exactly 𝑑/2. The number of

such points is Θ(2𝑑/
√

𝑑), and this is our 𝑛.

Consider imposing the grid with cell side 2 on the hypercube. The probability that 0

and 1 are uncut in a given axis is exactly 1/2, and since the shifts in different axes are

independent, the number of uncut axes is distributed as 𝐵𝑖𝑛(𝑑, 1/2). Thus with probability

1/2 there are at least 𝑑/2 uncut dimensions. If this happens, we have a data point hashed into

the same grid cell as the origin (to get such data point, put 1 in any 𝑑/2 uncut dimensions
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and 0 in the rest), so its quadtree distance from the origin is 1. On the other hand, the

distance of the origin to its true nearest neighbor 𝑒1 is at least 1, since they will necessarily

be separated in the next level (when the grid cells have side 1). Thus the quadtree cannot

tell between the true nearest neighbor and the one at distance 𝑑/2, and we get the lower

bound 𝑐 ≥ 𝑑/2. Since 𝑛 = Θ(2𝑑/
√

𝑑), we have 𝑑/2 = Ω(log 𝑛) as desired.

6.5.4 Flowtree Upper Bound

Proof of Theorem 6.3.4. The proof is the same as for Theorem 6.3.2, except that in eq. (6.3),

we take a union bound only over the 𝑠2 distances between the supports of 𝜈 and 𝜇* (the

query and its true nearest neighbor). Thus each distance between 𝜇* and 𝜈 is contracted by

at most 𝑂(log 𝑠).

Let 𝑊𝐹 denote the Flowtree distance estimate of 𝑊1. Let 𝜇′ be the nearest neighbor of

𝜈 in the Flowtree distance. With the same notation in the proof of Theorem 6.3.2,

𝑊1(𝜇′, 𝜈) =
∑︁

(𝑥,𝑦)∈𝑋×𝑋

𝑓 *
𝜇′,𝜈(𝑥, 𝑦) · ‖𝑥− 𝑦‖1

≤
∑︁

(𝑥,𝑦)×𝑋×𝑋

𝑓𝜇′,𝜈(𝑥, 𝑦) · ‖𝑥− 𝑦‖1 𝑓 *
𝜇′,𝜈 is optimal for ‖·‖1

= 𝑊𝐹 (𝜇′, 𝜈) Flowtree definition

≤ 𝑊𝐹 (𝜇*, 𝜈) 𝜇′ is nearest in Flowtree distance

=
∑︁

(𝑥,𝑦)∈𝑋×𝑋

𝑓𝜇*,𝜈(𝑥, 𝑦) · ‖𝑥− 𝑦‖1 Flowtree definition

≤ 𝑂(log 𝑠)
∑︁

(𝑥,𝑦)∈𝑋×𝑋

𝑓𝜇*,𝜈(𝑥, 𝑦) · 𝑡(𝑥, 𝑦) eq. (6.3)

≤ 𝑂(log 𝑠)
∑︁

(𝑥,𝑦)∈𝑋×𝑋

𝑓 *
𝜇*,𝜈(𝑥, 𝑦) · 𝑡(𝑥, 𝑦) 𝑓𝜇*,𝜈 is optimal for 𝑡(·, ·)

≤ 𝑂(log(𝑑Φ) log 𝑠)
∑︁

(𝑥,𝑦)∈𝑋×𝑋

𝑓 *
𝜇*,𝜈(𝑥, 𝑦) · ‖𝑥− 𝑦‖1 eq. (6.4)

= 𝑂(log(𝑑Φ) log 𝑠) ·𝑊1(𝜇*, 𝜈),

as needed. Note that the difference from the proof of Theorem 6.3.2 is that we only needed

the contraction bound (eq. (6.3)) for distances between 𝜇* and 𝜈.
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6.5.5 Flowtree Upper Bound for Uniform Distributions

Proof of Theorem 6.3.5. We set 𝜀 = 1/ log 𝑠. Let 𝑡′(𝑥, 𝑦) denote the quadtree distance where

the weight corresponding to a cell 𝑣 in level ℓ(𝑣) is 2ℓ(𝑣)(1−𝜀) instead of 2ℓ(𝑣). Let 𝑓𝜇,𝜈 be the

optimal flow in the quadtree defined by weights 𝑡′.

Let 𝛿 = 𝑐/𝑠2 where 𝑐 > 0 is a sufficiently small constant. For a every 𝑥, 𝑦, let ℓ𝑥𝑦 be the

largest integer such that

2ℓ𝑥𝑦 ≤ ‖𝑥− 𝑦‖1

(log(1/𝛿))1/(1−𝜖) .

The probability that 𝑥, 𝑦 are separated (i.e., they are in different quadtree cells) in level ℓ𝑥𝑦

is

1− 𝑝ℓ𝑥𝑦(𝑥, 𝑦) ≥ 1− exp
(︃
−‖𝑥− 𝑦‖1

2ℓ𝑥𝑦

)︃
≥ 1− 𝛿

1− 𝜖
.

By the setting of 𝛿, we can take a union bound over all 𝑥 ∈ support(𝜇*) and 𝑦 ∈ support(𝜈)

and obtain that with say 0.99 probability, simultaneously, every pair 𝑥, 𝑦 is separated at level

ℓ𝑥𝑦. We denote this event by ℰ𝑙𝑜𝑤𝑒𝑟 and suppose it occurs. Then for every 𝑥, 𝑦 we have

𝑡′(𝑥, 𝑦) ≥ 2 · 2ℓ𝑥𝑦(1−𝜖) ≥ 2 ·
(︃

1
2 ·

‖𝑥− 𝑦‖1

(log(1/𝛿))1/(1−𝜖)

)︃1−𝜖

≥ ‖𝑥− 𝑦‖1−𝜖
1

log(1/𝛿) = ‖𝑥− 𝑦‖1−𝜖
1

Θ(log 𝑠) .

Next we upper-bound the expected tree distance 𝑡′(𝑥, 𝑦). (Note that we are not condi-

tioning on ℰ𝑙𝑜𝑤𝑒𝑟.) Observe that

𝑡′(𝑥, 𝑦) = 2
∞∑︁

ℓ=−∞
2ℓ(1−𝜖) · 1{𝑥, 𝑦 are separated at level ℓ}.

Let 𝐿𝑥,𝑦 be the largest integer such that 2𝐿𝑥𝑦 ≤ ‖𝑥 − 𝑦‖1. We break up 𝑡′(𝑥, 𝑦) into two

terms,

𝑡′
𝑙𝑜𝑤𝑒𝑟(𝑥, 𝑦) = 2

𝐿𝑥𝑦∑︁
ℓ=−∞

2ℓ(1−𝜖) · 1{𝑥, 𝑦 are separated at level ℓ},

and

𝑡′
𝑢𝑝𝑝𝑒𝑟(𝑥, 𝑦) = 2

∞∑︁
ℓ=𝐿𝑥𝑦+1

2ℓ(1−𝜖) · 1{𝑥, 𝑦 are separated at level ℓ},
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thus 𝑡′(𝑥, 𝑦) = 𝑡′
𝑙𝑜𝑤𝑒𝑟(𝑥, 𝑦) + 𝑡′

𝑢𝑝𝑝𝑒𝑟(𝑥, 𝑦). For 𝑡′
𝑙𝑜𝑤𝑒𝑟(𝑥, 𝑦) it is clear that deterministically,

𝑡′
𝑙𝑜𝑤𝑒𝑟(𝑥, 𝑦) ≤ 2

𝐿𝑥𝑦∑︁
ℓ=−∞

2ℓ(1−𝜖) = 𝑂
(︁
2𝐿𝑥𝑦(1−𝜖)

)︁
= 𝑂

(︁
‖𝑥− 𝑦‖1−𝜖

1

)︁
.

For 𝑡′
𝑢𝑝𝑝𝑒𝑟(𝑥, 𝑦), we have

E[𝑡′
𝑢𝑝𝑝𝑒𝑟(𝑥, 𝑦)] = 2

∞∑︁
ℓ=𝐿𝑥𝑦+1

2ℓ(1−𝜖)𝑝ℓ(𝑥, 𝑦)

≤ 2
∞∑︁

ℓ=𝐿𝑥𝑦

2ℓ(1−𝜖) · ‖𝑥− 𝑦‖1

2ℓ

= 2‖𝑥− 𝑦‖1

∞∑︁
ℓ=𝐿𝑥𝑦

2−𝜖ℓ

= 2‖𝑥− 𝑦‖1 ·
2−𝐿𝑥𝑦 ·𝜖

1− 2−𝜖

≤ 𝑂(log 𝑠) · ‖𝑥− 𝑦‖1−𝜖
1 ,

where in the final bound we have used that 2𝐿𝑥𝑦 = Θ(‖𝑥−𝑦‖1) and 1−2−𝜖 = Θ(𝜖) = Θ(log 𝑠).

Together,

E[𝑡′(𝑥, 𝑦)] = E[𝑡′
𝑙𝑜𝑤𝑒𝑟(𝑥, 𝑦) + 𝑡′

𝑢𝑝𝑝𝑒𝑟(𝑥, 𝑦)] ≤ Θ(log 𝑠) · ‖𝑥− 𝑦‖1−𝜖
1 . (6.5)

Now we are ready to show the 𝑂(log2 𝑠) upper bound on the approximation factor. We

start with,

𝑊1(𝜇′, 𝜈) =
∑︁

(𝑥,𝑦)∈𝑋×𝑋

𝑓 *
𝜇′,𝜈(𝑥, 𝑦) · ‖𝑥− 𝑦‖1 𝑓 *

𝜇′,𝜈 is optimal for ‖·‖1

≤
∑︁

(𝑥,𝑦)×𝑋×𝑋

𝑓𝜇′,𝜈(𝑥, 𝑦) · ‖𝑥− 𝑦‖1

= 𝑊𝐹 (𝜇′, 𝜈) Flowtree definition

≤ 𝑊𝐹 (𝜇*, 𝜈) 𝜇′ is nearest to 𝜈 in Flowtree distance

=
∑︁

(𝑥,𝑦)∈𝑋×𝑋

𝑓𝜇*,𝜈(𝑥, 𝑦) · ‖𝑥− 𝑦‖1 Flowtree definition.
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By subadditivity of (·)1−𝜀,

∑︁
(𝑥,𝑦)∈𝑋×𝑋

𝑓𝜇*,𝜈(𝑥, 𝑦) · ‖𝑥− 𝑦‖1 ≤

⎛⎝ ∑︁
(𝑥,𝑦)∈𝑋×𝑋

𝑓 1−𝜀
𝜇*,𝜈(𝑥, 𝑦) · ‖𝑥− 𝑦‖1−𝜀

1

⎞⎠1/(1−𝜀)

.

Next we use the assumption of the lemma, that there are integers 1 ≤ 𝑠′, 𝑠′′ ≤ 𝑠 such each

nonzero probability mass in 𝜇* is an integer multiple if 1/𝑠′, and each nonzero probability

mass in 𝜈 is an integer multiple of 1/𝑠′′. This implies that for every 𝑥, 𝑦, the flow value

𝑓𝜇*,𝜈(𝑥, 𝑦) is of the form 𝑖/(𝑠′𝑠′′) for some integer 0 ≤ 𝑖 ≤ 𝑠′𝑠′′. Consequently, for every 𝑥, 𝑦

we have two cases:

∙ If 𝑓𝜇*,𝜈(𝑥, 𝑦) > 0, then necessarily 𝑓𝜇*,𝜈(𝑥, 𝑦) ≥ 1/𝑠2, and hence, recalling that 𝜖 =

1/ log 𝑠, we have (𝑓𝜇*,𝜈(𝑥, 𝑦))𝜖 ≥ 𝑠2/ log 𝑠 = 4. Hence, (𝑓𝜇*,𝜈(𝑥, 𝑦))1−𝜖 ≤ 4𝑓𝜇*,𝜈(𝑥, 𝑦).

∙ If 𝑓𝜇*,𝜈(𝑥, 𝑦) = 0, then trivially (𝑓𝜇*,𝜈(𝑥, 𝑦))1−𝜖 ≤ 4𝑓𝜇*,𝜈(𝑥, 𝑦).

Therefore,

⎛⎝ ∑︁
(𝑥,𝑦)∈𝑋×𝑋

𝑓 1−𝜀
𝜇*,𝜈(𝑥, 𝑦) · ‖𝑥− 𝑦‖1−𝜀

1

⎞⎠1/(1−𝜀)

≤ 𝑂(1)
⎛⎝ ∑︁

(𝑥,𝑦)∈𝑋×𝑋

𝑓𝜇*,𝜈(𝑥, 𝑦) · ‖𝑥− 𝑦‖1−𝜀
1

⎞⎠1/(1−𝜀)

.

Continuing the chain of upper bounds, by Equation (6.5),

⎛⎝ ∑︁
(𝑥,𝑦)∈𝑋×𝑋

𝑓𝜇*,𝜈(𝑥, 𝑦) · ‖𝑥− 𝑦‖1−𝜀
1

⎞⎠1/(1−𝜀)

≤ 𝑂(log 𝑠)
⎛⎝ ∑︁

(𝑥,𝑦)∈𝑋×𝑋

𝑓𝜇*,𝜈(𝑥, 𝑦) · 𝑡′(𝑥, 𝑦)
⎞⎠1/(1−𝜀)

.

Since the flow 𝑓𝜇*,𝜈 is optimal with respect to the distance 𝑡′(·, ·),

⎛⎝ ∑︁
(𝑥,𝑦)∈𝑋×𝑋

𝑓𝜇*,𝜈(𝑥, 𝑦) · 𝑡′(𝑥, 𝑦)
⎞⎠1/(1−𝜀)

≤

⎛⎝ ∑︁
(𝑥,𝑦)∈𝑋×𝑋

𝑓 *
𝜇*,𝜈(𝑥, 𝑦) · 𝑡′(𝑥, 𝑦)

⎞⎠1/(1−𝜀)

.

By Equation (6.5),

⎛⎝ ∑︁
(𝑥,𝑦)∈𝑋×𝑋

𝑓 *
𝜇*,𝜈(𝑥, 𝑦) · 𝑡′(𝑥, 𝑦)

⎞⎠1/(1−𝜀)

≤ 𝑂(log 𝑠)
⎛⎝ ∑︁

(𝑥,𝑦)∈𝑋×𝑋

𝑓 *
𝜇*,𝜈(𝑥, 𝑦) · ‖𝑥− 𝑦‖1−𝜀

1

⎞⎠1/(1−𝜀)

.
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Finally, by the concavity of (·)1−𝜀, and since ∑︀ 𝑓 *
𝜇*,𝜈(𝑥, 𝑦) = 1, we have

⎛⎝ ∑︁
(𝑥,𝑦)∈𝑋×𝑋

𝑓 *
𝜇*,𝜈(𝑥, 𝑦) · ‖𝑥− 𝑦‖1−𝜀

1

⎞⎠1/(1−𝜀)

≤ ·𝑊1(𝜇*, 𝜈).

Following the chain of upper bounds, we see that

𝑊1(𝜇′, 𝜈) ≤ 𝑂(log2 𝑠) ·𝑊1(𝜇*, 𝜈),

as was to be shown.

6.5.6 Random Model

Proof of Theorem 6.3.6. Quadtree. For every 𝑘 = 1, . . . , 𝑠, let 𝐻𝑘 be the smallest hyper-

cube in the quadtree that contains both 𝑥𝑘 and 𝑦𝑘. (Note that 𝐻𝑘 is a random variable,

determined by the initial random shift in the Quadtree construction.) In order for Quadtree

to correctly identify 𝜇𝑖 as the nearest neighbor of 𝜈, every 𝐻𝑘 must not contain any addi-

tional points from 𝑋. Otherwise, if say 𝐻1 contains a point 𝑥′ ̸= 𝑥1, the 𝑊1 distance on the

quadtree from 𝜈 to 𝜇𝑖 is equal to its distance to the uniform distribution over {𝑥′, 𝑥2, . . . , 𝑥𝑠}.

Since the points in 𝑋 are chosen uniformly i.i.d. over 𝒮𝑑−1, the probability of the above event,

and thus the success probability of Quadtree, is upper bounded by E[(1 − 𝑉 )𝑁−𝑠], where

𝑉 = volume(∪𝑠
𝑘=1𝐻𝑘 ∩ 𝒮𝑑−1). This 𝑉 is a random variable whose distribution depends only

on 𝑑, 𝑠, 𝜖, and is independent of 𝑁 . Thus the success probability decays exponentially with

𝑁 .

Flowtree. On the other hand, suppose that each 𝐻𝑘 contains no other points from

{𝑥1, . . . , 𝑥𝑠} other than 𝑥𝑘 (but is allowed to contain any other points from 𝑋). This event

guarantees that the optimal flow on the tree between 𝜇𝑖 and 𝜈 is the planted perfect matching,

i.e., the true optimal flow, and thus the estimated Flowtree distance between them equals

𝑊1(𝜇𝑖, 𝜈). This guarantees that Flowtree recovers the planted nearest neighbor, and this

event depends only on 𝑑, 𝑠, 𝜖, and is independent of 𝑁 .
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6.6 Appendix: Additional Experiments

6.6.1 Additional Sinkhorn and ACT Experiments

Number of iterations. Both ACT and Sinkhorn are iterative algorithms, and the number

of iterations is a parameter to set. Our main experiments use ACT with 1 iteration and

Sinkhorn with 1 or 3 iterations. The next experiments motivate these choices. Figures 6-

11(a)–(c) depict the accuracy and running time of ACT-1, ACT-7, Sinkhorn-1, Sinkhorn-3

and Sinkhorn-5 on each of our datasets.9 It can be seen that for both algorithms, increasing

the number of iterations beyond the settings used in Section 6.4 yields comparable accuracy

with a slower running time. Therefore in Section 6.4 we restrict our evaluation to ACT-

1, Sinkhorn-1 and Sinkhorn-3. We also remark that in the pipeline experiments, we have

evaluated Sinkhorn with up to 9 iterations. In those experiments too, the best results are

achieved with either 1 or 3 iterations

Sinkhorn regularization parameter. Sinkhorn has a regularization parameter 𝜆 that

needs to be tuned per dataset. We set 𝜆 = 𝜂 ·𝑀 , where 𝑀 is the maximum value in the

cost matrix (of the currently evaluated pair of distributions), and tune 𝜂. In all of our three

datasets the optimal setting is 𝜂 = 30, which is the setting we use in Section 6.4. As an

example, Figure 6-11(d) depicts the 1-NN accuracy (y-axis) of Sinkhorn-1 per 𝜂 (x-axis).

6.6.2 Additional Pipeline Results

The next tables summarize the running times and parameters settings of all pipelines con-

sidered in our experiments (whereas the main text focuses on pipelines that start with

Quadtree, since it is superior as a first step to Mean and Overlap). The listed parameters

are the number of output candidates of each step in the pipeline.

In the baseline pipelines, parameters are tuned to achieve optimal performance (i.e.,

minimize the running time while attaining the recall goal on at least 90% of the queries).

The details of the tuning procedure are as follows. For all pipelines we use the same random

subset of 300 queries for tuning. Suppose the pipeline has ℓ algorithms. For 𝑖 = 1, . . . , ℓ,
9ACT-1 and ACT-7 are the settings reported in [AM19].
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Figure 6-11: Additional Sinkhorn and ACT experiments

(a) 20news dataset (b) Amazon dataset

(c) MNIST dataset
(d) 1-NN accuracy of Sinkhorn-1 with varying reg-
ularization

let 𝑐𝑖 the output number of candidates of the 𝑖th algorithm in the pipeline. Note that 𝑐ℓ

always equals either 1 or 5, according to the recall goal of the pipeline, so we need to set

𝑐1, . . . , 𝑐ℓ−1. Let 𝑝1 be the recall@1 accuracy of the first algorithm in the pipeline. Namely,

𝑝1 is the fraction of queries such that the top-ranked 𝑐1 candidates by the first algorithm

contain the true nearest neighbor. We calculate 10 possible values of 𝑐1, corresponding to

𝑝1 ∈ {0.9, 0.91, . . . , 0.99}. We optimize the pipeline by a full grid search over those values of

𝑐1 and all possible values of 𝑐2, . . . , 𝑐ℓ−1.

When introducing Flowtree into a pipeline as an intermediate method, we do not re-

optimize the parameters, but rather set its output number of candidates to the maximum

between 10 and twice the output number of candidates of the subsequent algorithm in the

pipeline. Re-optimizing the parameters could possibly improve results.
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Pipeline methods Candidates Time
Mean, Sinkhorn-1, Exact 1476, 11, 1 0.543
Mean, Sinkhorn-3, Exact 1476, 5, 1 0.598
Mean, R-WMD, Exact 1850, 28, 1 0.428
Mean, ACT-1, Exact 1677, 14, 1 0.420
Overlap, Sinkhorn-1, Exact 391, 6, 1 0.610
Overlap, Sinkhorn-3, Exact 391, 5, 1 0.691
Overlap, R-WMD, Exact 576, 14, 1 0.367
Overlap, ACT-1, Exact 434, 10, 1 0.429
Quadtree, Sinkhorn-1, Exact 295, 5, 1 0.250
Quadtree, Sinkhorn-3, Exact 227, 3, 1 0.248
Quadtree, R-WMD, Exact 424, 12, 1 0.221
Quadtree, ACT-1, Exact 424, 8, 1 0.236

Table 6.4: Recall@1, no Flowtree.

Pipeline methods Candidates Time
Mean, Flowtree, Sinkhorn-1, Exact 1850, 10, 5, 1 0.089
Mean, Flowtree, Sinkhorn-3, Exact 1677, 10, 4, 1 0.077
Mean, Flowtree, R-WMD, Exact 2128, 48, 24, 1 0.242
Mean, Flowtree, ACT-1, Exact 2128, 20, 10, 1 0.138
Overlap, Flowtree, Sinkhorn-1, Exact 489, 10, 5, 1 0.087
Overlap, Flowtree, Sinkhorn-3, Exact 576, 10, 3, 1 0.076
Overlap, Flowtree, R-WMD, Exact 576, 28, 14, 1 0.173
Overlap, Flowtree, ACT-1, Exact 576, 16, 8, 1 0.119
Quadtree, Flowtree, Sinkhorn-1, Exact 424, 10, 5, 1 0.074
Quadtree, Flowtree, Sinkhorn-3, Exact 424, 10, 3, 1 0.059
Quadtree, Flowtree, R-WMD, Exact 424, 22, 11, 1 0.129
Quadtree, Flowtree, ACT-1, Exact 424, 16, 8, 1 0.104
Mean, Flowtree, Exact 1850, 9, 1 0.105
Overlap, Flowtree, Exact 489, 9, 1 0.100
Quadtree, Flowtree, Exact 424, 9, 1 0.092

Table 6.5: Recall@1, with Flowtree.
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Pipeline methods Candidates Time
Mean, Sinkhorn-1 1476, 5 0.464
Mean, Sinkhorn-3 1476, 5 0.549
Mean, R-WMD, Exact 1850, 28, 5 0.426
Mean, ACT-1, Exact 1677, 14, 5 0.423
Overlap, Sinkhorn-1 391, 5 0.560
Overlap, Sinkhorn-3 391, 5 0.650
Overlap, R-WMD, Exact 576, 14, 5 0.368
Overlap, ACT-1, Exact 434, 10, 5 0.428
Quadtree, Sinkhorn-1 295, 5 0.222
Quadtree, Sinkhorn-3 227, 5 0.200
Quadtree, R-WMD, Exact 424, 11, 5 0.216
Quadtree, ACT-1, Exact 424, 7, 5 0.222

Table 6.6: Recall@5, no Flowtree.

Pipeline methods Candidates Time
Mean, Flowtree, Sinkhorn-1 1850, 10, 5 0.046
Mean, Flowtree, Sinkhorn-3 1476, 10, 5 0.043
Mean, Flowtree, R-WMD, Exact 2128, 48, 24, 5 0.237
Mean, Flowtree, ACT-1 2128, 10, 5 0.048
Overlap, Flowtree, Sinkhorn-1 391, 10, 5 0.042
Overlap, Flowtree, Sinkhorn-3 391, 10, 5 0.044
Overlap, Flowtree, R-WMD, Exact 576, 28, 14, 5 0.173
Overlap, Flowtree, ACT-1 576, 10, 5 0.046
Quadtree, Flowtree, Sinkhorn-1 424, 10, 5 0.033
Quadtree, Flowtree, Sinkhorn-3 424, 10, 5 0.034
Quadtree, Flowtree, ACT-1 424, 10, 5 0.029
Mean, Flowtree 2128, 5 0.043
Overlap, Flowtree 576, 5 0.039
Quadtree, Flowtree 645, 5 0.027
Quadtree, Flowtree, R-WMD, Exact 424, 22, 11, 5 0.131
Quadtree, Flowtree, ACT-1, Exact 424, 16, 8, 5 0.103

Table 6.7: Recall@5, with Flowtree.
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