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Over the past several years,electronics has seen
enormous advances in almost any application that has
to do with information processing: following Moore’s
law,data density on a chip has doubled every 18 months.
Although this trend is likely to continue for another
decade, it clearly cannot last indefinitely: within the next
two decades this growth is predicted to hit the
insurmountable wall presented by the inherent physical
limitations of electronics.Some of these limitations are
already becoming manifest: as electronics in modern
computers is forced to operate at ever-higher
frequencies,power dissipation and consequent
hardware heating are becoming a serious problem.
The problem is greater still in nodes of optical
telecommunication networks,where data must be
processed electronically at even higher operational
frequencies.Electronics is simply not suitable for
operation at very high frequencies or bandwidths.
In contrast, the optical domain is perfectly suited to
operation at high frequencies.Consequently, it has been
a trend in telecommunication networks to try to
minimize the involvement of electronics in signal
manipulation and to keep signals in the optical domain
for as long as possible.Moreover, it is likely that even
data transport between various electronic desktop
computer parts will soon be done optically.

Unfortunately,optics too has inherent physical
limitations that make signal manipulation in the optical
domain difficult.There is a pressing need to find new
physical mechanisms that would improve our ability to

manipulate light.Any possible solution has to be
integrable: integration of many functions on the same
chip leads to much lower production and operating
costs.Furthermore, the constituent materials have to be
compatible with other materials and devices on the
same chip. In the quest for the optimal solution,
photonic crystals1,2 have emerged as a unique and
promising family of materials.

Photonic crystals (PhCs) are artificially created
materials3–9 in which the index of refraction varies
periodically between high-index regions and low-index
regions.Such an environment presents to photons what
the periodic atomic potential of a semiconductor
presents to electrons. In particular,under the right
conditions,a complete photonic bandgap opens:
light for any frequency within the photonic bandgap is
prohibited from propagation in any direction inside a
PhC.Because of these similarities,PhCs are sometimes
even called ‘semiconductors for photons’. Just as
semiconductors led to integration of electronics,
PhCs are thought to be the most promising candidate 
to enable optical integration.They can be created from
almost any material, so the material-compatibility
requirement is automatically satisfied.

PhCs offer unprecedented opportunities for
moulding the flow of light3,7,8.Where the optical
response remains linear, these opportunities have
already been very successfully explored to create many
elements (all with characteristic scales smaller than the
wavelength of light) needed for passive control of light
flow.To name a few examples,Noda et al. have
demonstrated waveguides9,Fan et al. have proposed 
T-branches10,Chow et al. have produced sharp bends11

and Fan et al. have designed channel-drops12.
But for true all-optical signal processing,one needs

a way of influencing light with light itself: one has to use
optical nonlinearities. In optically nonlinear media, the
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Enhancement of nonlinear effects using
photonic crystals

The quest for all-optical signal processing is generally deemed to be impractical because optical nonlinearities

are usually weak. The emerging field of nonlinear photonic crystals seems destined to change this view

dramatically. Theoretical considerations show that all-optical devices using photonic crystal designs promise

to be smaller than the wavelength of light, and to operate with bandwidths that are very difficult to achieve

electronically. When created in commonly used materials, these devices could operate at powers of only a

few milliwatts. Moreover, if these designs are combined with materials and systems that support

electromagnetically induced transparency, operation at single-photon power levels could be feasible.
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index of refraction is modified by the presence of a light
signal; this modification can be exploited to influence
another light signal, thereby performing an all-optical
signal processing operation.To operate efficiently at
high bandwidths,one would prefer to use nonlinearities
with ultra-fast (or nearly instantaneous) response and
recovery times.Unfortunately, such nonlinearities are
extraordinarily weak, thus requiring unacceptably 
huge operational powers, large interaction lengths or
both.Two general approaches are usually taken to 
boost nonlinear effects.The first approach is material-
oriented: one can try to find a material in which
nonlinear effects are strongest.The second approach is

structural: one tries to find a structure whose
geometrical properties optimize the nonlinear
interaction of interest.Here again,PhCs offer
unprecedented opportunities for structural
enhancement of nonlinear effects. It is precisely these
opportunities that are the topic of this review.

We focus on theoretical investigations; the PhC
community is fortunate that the mathematical equations
that describe PhC systems (nonlinear Maxwell’s
equations) are very suitable for numerical solutions.
There are many powerful numerical tools available for
modelling such systems,but one in particular deserves a
special mention: finite-difference time domain (FDTD)
calculations (for a review,see ref.13) can simulate
Maxwell’s equations ‘exactly’with no approximations
apart from the discretization.Consequently,they are
known to be able to reproduce experiments very closely,
and are often referred to as ‘numerical experiments’.
They are the most widely used numerical tool in the PhC
community,and most of the results presented here were
obtained using such simulations.

The subsequent sections show how nonlinear
PhCs14,15 allow the design of ultra-fast, all-optical
signal processing devices that are miniature and
suitable for integration. These devices could be made
in many commonly used materials (for example,
AlGaAs, or Si, or As2Se3), yet operate at powers of only
a few milliwatts (thus being compatible with powers
used in telecommunications today).We start by
demonstrating how PhCs can be used to design
waveguides in which signal propagation is orders of
magnitude slower than the speed of light in air, and
how nonlinear effects in such waveguides are greatly
increased16–18.We then look at how optimal bistable
switching19–22 could be achieved in PhC microcavities.
Finally, because PhCs impose minimal requirements
on choice of materials, they are perfectly suited 
for taking advantage of both material and 
structural approaches for nonlinearity enhancement.
For example, one could take materials that show the
extraordinarily large nonlinearities enabled by
electromagnetically induced transparency (EIT)23 and
combine them with PhC microcavities. One intriguing
result might be to produce devices that display
nonlinear effects at single-photon power levels.
This possibility is discussed briefly in the section on
EIT and in the concluding remarks.

SLOW-LIGHT WAVEGUIDES

Most commonly used optical switches and logical 
gates are based on interferometric designs. In an
interferometric device,a signal is split into two
waveguide-branches.To achieve a switching operation,
one (or both) of these waveguides is manipulated with
some stimuli,either external or internal, to control the
relative phase difference between the two parts of the
signal.At the output of the device, the two parts of the
signal are made to interfere, so their relative phase
determines the behaviour observed at the output.
For example,constructive interference (relative phase
∆φ= 0) could mean a switch is ON (maximum output),
whereas destructive interference (relative phase ∆φ=π)
would then imply the switch is OFF (minimum
output).As described below,the slow-light waveguides
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Figure 1 Numerical simulation of a coupled-cavities waveguide.a,A photonic crystal of high-index
rods embedded in a low-index medium.The CCW is formed by decreasing the radius of every sixth rod in a
line.The electric field of the guided mode is shown:blue denotes high-positive amplitude regions,whereas
red denotes high-negative amplitude regions.The light tends to be localized close to the defects.b,The
dispersion relation of the guided mode from a is shown by the solid green line.The guided mode inside a
conventional high-index contrast waveguide is shown by the solid blue line.The same shift in ω (shown by
the black lines:δω = 0.001) causes a much larger shift in k (the red lines) in the case of the CCW,owing to
its slow group velocity.Here Λ is the separation of point defects (narrower rods),a the lattice constant,c the
speed of light in vacuo and k the wavenumber.
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created from PhCs improve the performance of such
devices by a factor of∼(c/vg)2 (ref.18).

Imagine a waveguide in which the group velocity
vg = dω/dk is much smaller than c (here,k is the
wavenumber and ω is the angular frequency).
Now consider using two such waveguides to create an
interferometric switch.For clarity, the controlling
stimulus is applied in only one of the two waveguide-
branches.The influence of any ultra-fast stimulus is
necessarily small: say it changes the index of refraction 
n of one of the materials from which the waveguide is
made by a small amount δn.This problem can be
analysed perturbatively18, to conclude that, to a good
approximation, the resulting influence of δn is 
simply a parallel shift in the dispersion relation:
ω(k) →ω(k) – ωsδnσ/n,where ωs is the signal’s carrier
frequency,and σ is the portion of the signal’s energy
contained in the material being affected.In a real
physical setting, the incoming frequency is fixed,and the
quantity that changes is k.The change in k determines
the relative phase change between the two branches at
the output of the device:∆φ = ∆k(ωs)L,where L is the
waveguide length.The induced ∆k(ωs) can be calculated
from the shift of the dispersion relation:
∆k(ωs)≈–ωsδnσ/(nvg).That is, the smaller the vg of the
waveguide, the shorter the waveguide length needed to
induce a given phase shift.

As observed in the previous paragraph,using
waveguides with low vg saves a factor of∼c/vg in the
device length.Using such waveguides,however,also
leads to savings in operational power. In the electro-
optical case (when the index change δn ∝ |E| is induced
by an external electrical field E), this is easy to see: the
fact that one has to apply E in a volume that is c/vg

smaller means that one needs c/vg less power to operate
the device. In the all-optical Kerr case (δn ∝ |E |2,where
E is the electric field of the controlling optical signal),
the way to understand the power savings is as follows.
Once the optical signal enters a slow-light waveguide, its
length has to shrink (by a factor c/vg) because the front
end of the pulse ‘sees’the slow-vg region before the back
end.The only way for it to shrink,yet conserve its
energy, is for its |E |2 to increase.Therefore, to induce a
given δn,pulses that are a factor of c/vg less energetic are
needed.In fact, the savings in power and length can be
traded for each other: if one is willing to keep the length

of a device fixed,one can afford to operate the device
with (c/vg)2 less power,and vice versa.(Note that
material absorption per unit length also increases by a
factor (c/vg); but because the true savings in device
length (for a fixed power) are (c/vg)2,using slow-light
waveguides is beneficial for improving a device’s 
figure-of-merit with respect to material losses also.)

Unfortunately, in conventional waveguides (built
from common materials) c/vg is of the order of 1,so the
discussion of the previous paragraph seems to be wishful
thinking.PhCs change this picture: in PhCs,one can
design vg almost at will. In fact slow light occurs fairly
commonly in PhCs; for example,waveguides with 
vg/c ≈ 0.01 have been implemented experimentally by
Notomi et al.17 and by Inoue et al.24.We focus our attention
below on two examples of PhC slow-vg waveguides.

A PhC with a complete bandgap acts as a 
perfect mirror for frequencies within the bandgap.
Imagine making a hole (point defect) deep inside 
such a PhC.Under proper conditions, this defect
supports a resonant state: any light inside the defect will
be trapped because the defect is the only place where
light is allowed to exist. Imagine next creating a line
defect by making a periodic array of such point defects
(like in Fig. 1a),all mutually spaced some distance Λ
apart,and placing some light inside one such point
defect (here Λ is a few a,where a is the PhC lattice
constant).The light can tunnel from the starting point
defect to the neighbouring point defects,and from these
to their neighbours.This way, light can propagate down
this periodic line,and the line defect itself therefore acts
as a waveguide.Because the process of transport is
mediated through tunnelling,vg of such a waveguide is
slow: in fact, the further away the defects are, the slower
vg is.Such a waveguide is called a coupled-resonator
oscillator waveguide (CROW) by Yariv et al.16,or a
coupled-cavities waveguide (CCW) by Bayindir et al.25.
Enhancement of many nonlinear operations (including
switching18 and wavelength conversion26) has been
described in such waveguides.An example of a CCW,
together with the dispersion relation of its guided mode,
is shown in Fig. 1.

CCWs have many attractive properties,but
unfortunately (because Λ ≥ 2a), they can be strictly
implemented only in three-dimensional PhCs with
complete photonic bandgaps.At the current state of

nature materials | VOL 3 | APRIL 2004 | www.nature.com/naturematerials 213

Figure 2 Slow-light
waveguide made from a 2D-
periodic photonic crystal slab.
a,Sketch of the structure; the
distance between the holes
would typically be a.
b,A guided mode of this
waveguide.c,The dispersion
relation of the guided mode (red
line in the panel); the group
velocity of this mode is only
vg = 0.016c.Blue regions denote
the modes that are not guided.
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technology,such structures (for visible or near-infrared
light) are still difficult to produce and work with.
Until this problem is solved,one can resort to using line
defects in two-dimensional-periodic PhC slabs27

(like the one shown in Fig. 2a),which can be made in
almost any semiconductor (or glass) in a single
lithography step.These PhC slab line defects are
periodic structures in which PhC effects provide
waveguiding (along the line defect) in the plane of the
slab,whereas high-index contrast provides waveguiding
in the direction perpendicular to the plane.Such
waveguides can be designed to support arbitrarily slow
vg modes; one such mode is shown in Fig. 2b and c.

At this point,a few words are in order to discuss the
ultimate theoretical limits to enhancement of nonlinear
effects using slow-light waveguides.As can be seen from
Figs 1b and 2c,decreasing vg comes at a price: the
available bandwidth shrinks proportionally to vg.
Still, the performance characteristics offered by PhC
waveguides can be impressive.Consider trying to make
an all-optical switch for telecommunication
wavelengths (λ = 1.55 µm) from AlGaAs (using its 
Kerr nonlinearity28,29),with 100 GHz bandwidth 
(which would be very difficult to do with present-day
electronics),operating at 10 mW power levels. It needs
to be about 1.3 m long if produced from conventional
high-index contrast waveguides,but only about 0.5 mm
long when created with slow-vg PhC waveguides.
An added benefit of PhC waveguides (for example,
those in Figs 1 and 2) is that (in contrast to most other
slow-light waveguides) they can be nearly
dispersionless,which is of enormous importance
because it optimizes the available bandwidth18 and
prevents signal distortion.Finally,PhC waveguides
could potentially help with probably the most serious
problem plaguing all high-index contrast waveguides:
losses due to manufacturing imperfection (for example,
wall surface roughness).Surrounding a waveguide with
a PhC can eliminate scattering losses (as scattered waves
are prohibited from propagating inside the PhC),
whereas the reflections are unchanged (M. L.Povinelli,
S. G.Johnson,E.Lidorikis, J. D. Joannopoulos and 
M. Soljačić,manuscript in preparation) This way the

total transmission down the waveguide can be
significantly increased.

OPTICAL BISTABILITY IN PHOTONIC CRYSTAL MICROCAVITIES

Optical bistability is a fairly general phenomenon that
occurs in many nonlinear systems with feedback30.
In such systems, the ratio of outgoing to incoming
power (Pout versus Pin) can display a hysteresis loop (like
the one shown in Fig. 3a),even when these systems are
made from instantaneous-response materials: that is,
these nonlinear systems have a memory of their past
state despite the fact that none of the constituent
materials have memory.In integrated electronics,
flip-flops that show similar input–output relationships
are used for pretty much any application: logic gates,
memory,amplification,noise cleanup and so on.
Not surprisingly,optical bistability has been successfully
used in these same applications in the optical domain.
Because of the extraordinary importance of its
applications,enormous resources were devoted to the
study of optical bistability in the 1980s (see ref.31).
Unfortunately, the systems developed during that
period were not feasible for everyday use because of
their size and operating powers, so research in the field
slowed down.Here again,PhCs changed the picture,
opening a new window of exciting opportunities for
optical bistability.As discussed below for three different
exemplary systems,using PhC microcavities one can
observe bistability in systems that are of the order ofλ3

in size,made with commonly used materials,yet
operating at only a few milliwatt power levels.
Such systems were pioneered by Centeno and 
Felbacq19,Soljačić  et al.20,and Mingaleev and Kivshar21.
Recently,Cowan and Young22 have presented a 
detailed analysis of such systems, including two-
photon material absorption.

Consider a PhC system of nonlinear high-index
rods,explored by Soljačić et al.20,and shown in Fig. 3b,
under continuous-wave (CW) excitations. It consists of
a central optical cavity weakly and equally coupled
(through tunnelling) to two channels (single-mode
waveguides on the sides of the cavity). If we send light
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Figure 3 Optical bistability 
in a photonic crystal
microcavity. a,P CW

out versus P CW
in

for the photonic crystal bistable
device shown in panel b.The
blue dots are the results of
numerical simulations.The
green line is the analytical
prediction; the middle (dashed)
portion of the line is unstable
and hence physically
unobservable.b,A photonic
crystal bistable device,here
displaying electric field at 100%
resonant linear transmission.
The photonic crystal consists of
high-index rods (yellow) in a
low-index medium.
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down one of these waveguides (input), the transmission
to the other channel (output) in the linear regime has a
lorentzian shape (with width Γ) as a function of the
carrier frequency ωs,peaking at 100% for the resonant
frequency ωr of the cavity.The energy stored in the
cavity is directly proportional to the outgoing power
PCW

out   . Imagine next that the material inside the cavity is
nonlinear, so the position of the resonant frequency
depends on the energy stored in the cavity (which in
turn depends on the detuning of the resonant frequency
from the carrier frequency).Using perturbation theory
in the small self-induced index change δn (ref.20),one
concludes that in the case of Kerr nonlinearity, the
incoming power has a cubic-polynomial dependence
on the energy inside the cavity (and thus the outgoing
power), therefore explaining the shape shown in Fig. 3a

where δ = (ωr –ωs)/Γ,and Pb ∝ Γ 2/κ is the
‘characteristic power’of this cavity: it sets the power scale
at which bistable phenomena can be observed in a given
cavity.(Here,κ is the nonlinear feedback parameter of
the cavity20: roughly, it is the inverse of the cavity’s modal
volume,weighted by the local Kerr coefficient.)

The dependence of Pb on the cavity parameters Γ
and κ can be easily understood32,33.To obtain significant
change of transmission through a cavity, its resonant
frequency needs to be shifted by more than the cavity’s
width Γ.This is where the first Γ factor in the expression
Pb ∝ Γ 2/κ comes from.The second factor ofΓ comes
from the field-enhancement effects inside the cavity:
the smaller the Γ, the longer the light spends ‘bouncing
around’the cavity before escaping to the output,and as
a result of this, the electric field E (and hence the self-
induced δn) is much larger inside the cavity than in the
waveguide outside the cavity.The fact that Pb should
scale roughly as the modal volume can be understood as

follows: for a given energy stored inside the cavity (and
hence a given PCW

out  ), the induced δn ∝ |E|2 scales
inversely with the modal volume).The fact that PhCs
permit the creation of microcavities that have arbitrarily
narrow resonances,at the same time as tiny modal
volumes (less than (λ/3)3 for the cavity in 
Fig. 3b),makes these systems optimal for optical
bistability applications.

Their advantages lie not only in their
extraordinary efficiency but also in the design
flexibility they offer. Many different PhC cavity
systems can be envisaged. Depending on their
geometry, some of them are more suitable for certain
applications than the others: for illustrative purposes,
three such applications (optical isolation, optical
transistor and all-optical switch) are presented below,
in two different PhC microcavity systems.

Consider the PhC system shown in Fig. 4: it is
left–right and up–down symmetric34. It consists of two
coupled cavities,weakly coupled to two single-mode
waveguides.The two-cavity system supports one even
|e〉 and one odd |o〉 state (with respect to the left–right
symmetry).The system is designed so that |e〉 and |o〉
states are degenerate both in their resonant frequencies
and in their lifetimes.Any waveguide excitation coming
down ports 1 and/or 3 (for example,of the form eikx) can
(because of its symmetry) couple only to a very
particular superposition of the cavity states: |e〉 + i|o〉.
This state can in turn decay only into waveguide states of
the form eikx: it can decay only into ports 2 and/or 4.
This is manifested physically in the fact that if ports 1
and/or 3 are used as the inputs of the device, there are
never any reflections back into them; this applies both
for the linear and the nonlinear regime35. In fact, if port
1 is used as the input and port 4 as the output of the
device, the input–output (linear and also nonlinear)
relationship of this device is exactly the same as for the
device of Fig. 3.However, in the device in Fig. 3,

PCW
in = PCW 1+ ,

2

out
PCW

Pb

out( )
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Figure 4 Numerical
simulations of a two-defect
photonic crystal device
displaying optical bistability.
a,As an example of the use of the
device, the electric fields in the
case when it performs optical
isolation are shown.Top,a strong
forward-propagating pulse.
Bottom,a weak reflected
backward-propagating pulse.
We model the high index rods as
having an instantaneous Kerr
nonlinearity.b,Top, input–output
relation for gaussian signals of
energy Uin1 sent into port 1 (and
observed at port 4) of the device
from a; this transmission curve
has large slope close to the red
dot in the figure,which can be
used for amplification.Bottom,a
typical output signal observed at
port 4 of the device:despite the
extreme nonlinear effects, its
initial gaussian shape was not
significantly distorted,which is of
course important from the point
of view of applications.
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whatever does not leave the output is reflected back to
the input. In contrast, in the device in Fig. 4,whatever
does not exit into port 4 is channelled into port 2.

The device in Fig. 4 can (among other things) be
used for optical isolation.One of the biggest obstacles to
achieving large-scale optics integration today is the lack
of integrated optical isolators (active and nonlinear
devices typically do not tolerate small reflections
coming from other devices they are integrated with,so
one has to have a way of discarding such reflections).
The best approach involves breaking the time-reversal
symmetry using magneto-optic materials.
Unfortunately,even the optimal magneto-optic
materials have only very weak magneto-optic effects 
(so the device size must be large),and such materials are
notoriously difficult to integrate with other materials on
the same chip.Until this problem is solved,one can use
nonlinearities to implement optical isolation for many
important applications36,37.For example, the device of
Fig. 4 can perform integrated-optics isolation when the
strength of each logical (forward-propagating) signal in
a particular waveguide is above the bistability threshold,
and the reflected (backward-propagating) signals are
weak.An example of such operation is shown in Fig. 4a.
A strong forward-propagating signal (operating at a
high-transmission point of the bistability curve) is
nearly perfectly transferred from port 1 to port 4.
However,when a weak reflected signal (operating at a
low-transmission point of the bistability curve) enters
port 4 of the device at a later time (coming from the
neighbouring device down the line), it proceeds to port
3, from where it can be discarded.To make this scheme
function properly,one has to be careful to place the
neighbouring device at just the right distance so that
these reflections would not coincide in time with any
subsequent forward-propagating signals in the 
optical isolator.

The device from Fig. 4 can also be used as an 
all-optical transistor.Consider sending various energy
(otherwise equal) gaussian signals of central carrier
frequency ωs into port 1 of the device (in a typical
physical application,one is more likely to use gaussian

than continuous-wave signals). Imagine that
δ= (ωr –ωs)/Γ is comparable to the one used in Fig.3a,
and that the signal’s spectral width is comparable to the
cavity’s resonance width (albeit a bit smaller).As one
might expect, the input–output relationship (top plot in
Fig. 4b) looks like a ‘smoothed-out’version of the lower
hysteresis branch from Fig. 3a.Note that close to the red
dot in Fig. 4b, the transmission curve has a large slope,
which can be used for amplification.That is, imagine
sending a train of signals (all of them represented by the
red dot in Fig. 4b) into port 1 of the device,and in
parallel with them,also sending much smaller gaussian
signals into port 3,which would make the output slide
up (or down) this large slope.The increment in the
output observed at port 4 would then be a strongly
amplified version of signals sent into port 3 (factors of
10 or 100 are easily achievable), so the device acts as an
all-optical transistor.

As a final example,consider the device shown in
Fig.5: it has a single (central) cavity weakly coupled to
four single-mode waveguides38. It is up–down and
left–right symmetric.The symmetries of all relevant
modes of the device are illustrated in Fig. 5a.The cavity
supports two dipole-type states: one of these states is
odd with respect to the x axis and the other one is even.
The mode propagating in the left or right waveguide
(being even with respect to the x axis) can couple only to
the cavity state that is even with respect to the x axis,and
the mode propagating in the up or down waveguide can
couple only to the other,odd,cavity state.Thus,no
portion of the signal travelling along the x direction can
be transferred into the y direction.Similarly,no portion
of the signal travelling in the y direction can be
transferred into the x direction.By making the central
rod elliptical,one can break the degeneracy between the
two states, so they have different resonant frequencies,
ωrx and ωry.The nonlinear behaviour of this device was
studied by Yanik et al.39.When light in only a single
direction is present, the device behaves essentially the
same as the device from Fig. 3 (for instance, the
continuous-wave response for power present only in a
single direction is exactly the same as that shown in 
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Figure 5 Photonic crystal
optically bistable cross-
switch. a, Symmetries of the
involved modes prevent transfer
of energy between signals
propagating in x and y
directions. If signals in both
directions were tuned to be just
below the onset of high-
transmission regimes in their
bistability hystereses loops,
then only the presence of both
signals at the same time would
trigger high transmission
through the device.Thereby, the
device acts as an all-optical
logical AND gate, as shown in 
b and c. b, Signal present in a
single direction only. c, Signals
present in both directions.
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Fig. 3a).But when signals in both directions are present,
one can use the signal in one direction to control the
transmission in the other direction.Figure 5b and c
shows how the device can be made to operate as an 
all-optical logical AND gate.Alternatively, the
behaviour shown in Fig. 5b and c can be used for
wavelength conversion: if one of the signals is just a
periodic train of gaussian pulses at frequency ωsx

(propagating along the x direction), the information
from the signal train at frequency ωsy (propagating
along the y direction) would be exactly transcribed into
the signal train at frequency ωsx.

All the devices described in this section are of order
O(λ3) in size, so that, in principle,106 of them could be
placed on a surface of 1 mm2.In fact,devices of this type
have already been demonstrated experimentally in 
the linear regime by Foresi et al.40 and Yoshie et al.41.
Closely related PhC microcavity lasers have also been
produced by Painter et al.42. In the nonlinear regime,
the operational power to observe bistability in PhC
microcavities scales with the available bandwidth
squared,but at 100 GHz bandwidth,and
telecommunication wavelengths,one needs roughly
20–40 mW to operate such devices when made from
AlGaAs (refs 20,35,39). If one is willing to operate at
higher power levels, the bandwidth can be increased,
but not indefinitely.The ultimate theoretical bandwidth
is comparable to the maximum inducible change in the
resonant frequency,which is in turn limited by the small
size of the ultra-fast nonlinear effects.

TOWARDS SINGLE-PHOTON NONLINEARITIES

Imagine a two-level atomic system,with a ground state
|1〉 and an excited state |3〉 (which is initially
unpopulated).Probe light,whose frequency ωp is very
close to the resonance ω13 for the |1〉 → |3〉 transition,
experiences huge absorption when propagating
through such a material.But imagine at the same time
shining a continuous-wave light of frequency ω23 which
is exactly on resonance with the |2〉 → |3〉 transition
(where |2〉 is some other, initially unpopulated, level),

as shown in Fig. 6a.Through the quantum interference
phenomenon EIT23, the absorption ofωp is hugely
suppressed; suppression by over 30 orders of magnitude
has been observed by Hau et al.43 in such systems.
Because ofω23, the absorption peak Im{n} acquires a
narrow dip (thus suppressing absorption),and Re{n}
acquires an additional ‘wiggle’as seen in Fig. 6b.
Note that close to the resonant frequency ω13,n(ωp) 
has a very large slope,meaning that vg is very small;
vg/c < 10–7 have been measured43.Finally,consider also
coupling level |2〉 resonantly (through frequency ω24)
with some fourth level |4〉 (as in Fig. 6c),causing a
strong Stark shift of level |2〉.This nonlinear interaction
becomes greatly amplified by the tiny group velocity, so
the sensitivity of the induced δn(ωp) to small intensities
in ω24 is enormous.Kerr nonlinearities 12 orders of
magnitude larger than in AlGaAs have been observed
this way43, so EIT materials are the most nonlinear
materials in nature.

It is thus intriguing to consider combining the
unparalleled nonlinear properties of EIT materials
with the superb structural enhancement of nonlinear
effects offered by PhC microcavities to produce an all-
optical switch that can be operated at extraordinarily
low power levels. (Detailed analysis of this system will
be presented elsewhere; M. Soljačić,E.Lidorikis,
J. D. Joannopoulos and L.Hau,manuscript in
preparation.) For example,one could start with a PhC
microcavity similar to the one shown in Fig. 3b,and
dope it with a single EIT atom.Alternatively,one could
use solid-state EIT materials44,or else a single-gas-atom
PhC microcavity45.All of these systems would behave
basically in the same manner.A density of one atom per
modal volume (∼(λ/3)3) turns out to be roughly the
same as the atom density in the EIT experiment of ref.
43, so roughly the same Kerr nonlinearity would apply.
Next,an analysis similar to the one used earlier to
estimate the operational powers of optically bistable
devices (but this time with 1012 times stronger
nonlinearities) leads to the conclusion that the ωp

transmission can be switched on and off with a mere
10–14 W or so of power in the signal ω24.That is,having

nature materials | VOL 3 | APRIL 2004 | www.nature.com/naturematerials 217

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0
0 0.5 1.0 1.5 2.0

n

a b

23

13P =  

c

Re (    )  

nIm (   )

24

P / 13

23

13P =  

n

ωω

ω

ω ω

ω

ω

ω

ω

Figure 6 Basics of EIT. a,Level
schematic for a typical EIT
system which suppresses
absorption at ωp.b,A typical
example of n (ωp) for an EIT
system.c,Applying only a weak
field at frequency ω24 in an EIT
system with the schematic levels
shown here can cause a large
change in n(ωp).

nmat1097PRINT  3/12/04  12:13 PM  Page 217

©  2004 Nature  Publishing Group



REVIEW ARTICLE

O(10–9) ω24 photons in the cavity can switch the device
from being ON into being OFF.Of course,at these
minuscule powers,one would be totally swamped by
temperature and even quantum fluctuations, so this is
definitely not a desirable regime for operation.
Nevertheless, this simple result indicates that systems of
this kind are natural candidates for exploration of
nonlinearities at single-photon power levels as studied
by Werner and Imamoglu46.

One can clearly afford to be a bit wasteful regarding
the power specifications of the above device in order 
to improve some other characteristic of interest.
For example, the system has a very narrow available
bandwidth47,because of the narrow width of the useful
EIT window from Fig. 6b.The size of this window can
be widened by increasing the intensity of the field at
frequency ω23.As this window becomes wider,however,
vg also increases, thereby lowering the nonlinear effects.
Nevertheless,our preliminary calculations (M. Soljačić,
E.Lidorikis, J. D. Joannopoulos and L.Hau,manuscript
in preparation) indicate that using this approach one
should be able to obtain an operational bandwidth of
O(1 GHz),while still operating at single-photon power
levels.Such a device could therefore potentially have
important applications for all-optical quantum
information processing.

A PROMISING FUTURE

PhCs have opened many new windows of opportunity
in the field of nonlinear optics. The earliest work on
nonlinear PhCs dates from the 1970s, continuing 
into the 1990s, and focused naturally on one
dimension48–61. Since then, interest in nonlinear PhCs
has grown rapidly.We refer the reader to two excellent
overviews of this entire field by Slusher and Eggleton15,
and by Bowden and Zheltikov62. Of particular note are
the recent successes in two-dimensional nonlinear
PhCs by Broderick et al.63, who demonstrated second-
harmonic generation using multiple reciprocal lattice
vectors, and by Fleischer et al.64, who demonstrated for
the first time the existence of spatial solitons in 2D
photonic lattices.

Nonlinear PhCs are likely to have the most
significant technological impact in signal processing.
For a long time, there was a widespread belief in the
optics community that all-optical signal processing
was not feasible because ultra-fast nonlinear effects
were too small. Over the past few years, theoretical
breakthroughs in nonlinear PhCs have changed all
that. PhC designs seem to offer the feasibility of any
kind of signal processing, with bandwidths that are
very difficult to implement electronically, at power
levels of only a few milliwatts. One might think that
these power levels are not sufficiently low if one
considers arrays of many such devices together.
But in contrast to electronic signal processing, such
low-energy signals are not even consumed during
operations (apart for the small material losses), so 
they can be recycled without causing any heating of
the device. Combining EIT with PhCs, even single-
photon operational power levels might be achievable.
The devices described above are fully compatible with
large-scale integration: the material constraints are
minimal, their ports are single-mode waveguides,

and they are tiny in size. In fact, 3D PhCs offer a
promise of true 3D large-scale optical logic 
integration (rather than the planar integration 
used in electronics today).Around the world, the 
race is on to observe these and other promising
performance characteristics experimentally.
In the next few years, nonlinear PhCs are bound to 
be an exciting field.
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