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Abstract

In any canonical Gaussian dynamic term structure model (GDTSM), the conditional

forecasts of the pricing factors are invariant to the imposition of no-arbitrage restrictions.

This invariance is maintained even in the presence of a variety of restrictions on

the factor structure of bond yields. To establish these results, we develop a novel

canonical GDTSM in which the pricing factors are observable portfolios of yields. For

our normalization, standard maximum likelihood algorithms converge to the global

optimum almost instantaneously. We present empirical estimates and out-of-sample

forecasts for several GDTSMs using data on U.S. Treasury bond yields.
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Dynamic models of the term structure often posit a linear factor structure for a collection

of yields, with these yields related to underlying factors P through a no-arbitrage relationship.

Does the imposition of no-arbitrage in a Gaussian dynamic term structure model (GDTSM)

improve the out-of-sample forecasts of yields relative to those from the unconstrained factor

model, or sharpen model-implied estimates of expected excess returns? In practice, the

answers to these questions are obscured by the imposition of over-identifying restrictions

on the risk-neutral (Q) or historical (P) distributions of the risk factors, or on their market

prices of risk, in addition to the cross-maturity restrictions implied by no-arbitrage.1

We show that, within any canonical GDTSM and for any sample of bond yields, imposing

no-arbitrage does not affect the conditional P-expectation of P, EP[Pt|Pt−1]. GDTSM-implied

forecasts of P are thus identical to those from the unrestricted vector-autoregressive (V AR)

model for P. To establish these results, we develop an all-encompassing canonical model

in which the pricing factors P are linear combinations of the collection of yields y, (such

as the first N principal components (PCs))2 and in which these “yield factors” follow an

unrestricted V AR. Within our canonical GDTSM, as long as P is measured without error,

unconstrained ordinary least squares (OLS) gives the maximum likelihood (ML) estimates

of EP[Pt|Pt−1]. Therefore, enforcing no-arbitrage has no effect on out-of-sample forecasts of

P. This result holds for any other canonical GDTSM, owing to observational equivalence

(Dai and Singleton (2000)) and, as such, is a generic feature of GDTSMs.

Heuristically, under the assumption that the yield factors P are observed without error,

these propositions follow from the factorization of the conditional density of y into the

product of the conditional P-density of P times the conditional density of measurement

errors.3 The density of P is determined by parameters controlling its conditional mean and

its innovation covariance matrix. The measurement error density is determined by the “no

arbitrage” cross-sectional relationship amongst the yields. We show that GDTSMs can be

parameterized so that the parameters governing the P-forecasts of P do not appear in the

measurement-error density. Given this separation, the only link between the conditional

P-density and the measurement density is the covariance of the innovations. However, a

classic result of Zellner (1962) implies that the ML estimates of EP[Pt|Pt−1] are independent

1Recent studies that explore the forecasting performance of GDTSMs include Duffee (2002), Ang and
Piazzesi (2003), Christensen, Diebold, and Rudebusch (2007), Chernov and Mueller (2008), and Jardet,
Monfort, and Pegoraro (2009), among many others.

2Although standard formulations of affine term structure models use latent (unobservable) risk factors
(e.g., Dai and Singleton (2000), Duffee (2002)), by Duffie and Kan (1996) we are free to normalize a model so
that the factors are portfolios of yields on bonds and we choose PCs.

3See, for example, Chen and Scott (1993) and Pearson and Sun (1994).
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of this covariance. Consequently, OLS recovers the ML estimates of EP[Pt|Pt−1] and the

no-arbitrage restriction is irrelevant for the conditional P-forecast of P .

Key to seeing this irrelevance is our choice of canonical form.4 For any N -factor model

with portfolios of yields P as factors, bond prices depend on the N(N + 1) parameters

governing the risk-neutral conditional mean of P and the (N + 1) parameters linking the

short rate to P, for a total of (N + 1)2 parameters. Not all of these parameters are free,

however, because internal consistency requires that the model-implied yields reproduce the

yield-factors P . We show that, given the N yield factors, the entire time-t yield curve can be

constructed by specifying: (a) rQ
∞, the long-run mean of the short rate under Q; (b) λQ, the

speeds of mean reversion of the yield-factors under Q; and (c) ΣP , the conditional covariance

matrix of yields factors from the V AR. That is, given ΣP , the entire cross-section of bond

yields in an N -factor GDTSM is fully determined by only the N + 1 parameters rQ
∞ and λQ.

Moreover, (rQ
∞, λ

Q,ΣP) can be efficiently estimated independently of the P-conditional mean

of Pt, rendering no-arbitrage irrelevant for forecasting P .

With these results in place, we proceed to show that the conditional forecast EP[Pt|Pt−1]

from a no-arbitrage GDTSM remains identical to its counterpart from an unrestricted V AR

even in the presence of a large class of over-identifying restrictions on the factor structure of

y. In particular, regardless of the constraints imposed on the risk-neutral distribution of the

yield-factors P, the GDTSM- and V AR-implied forecasts of these factors are identical. Put

differently, OLS recovers the conditional forecasts of the yield factors even in the the presence

of further cross-sectional restrictions on the shape of the yield curve beyond no arbitrage.

When does the structure of a GDTSM improve out-of-sample forecasts of P? We show

that if constraints are imposed directly on the P distribution of P within a no-arbitrage

GDTSM, then the ML estimate of EP[Pt|Pt−1] is more efficient than its OLS counterpart

from a V AR. Thus our theoretical results, as well as subsequent empirical illustrations, show

that gains from forecasting using a GDTSM, if any, must come from auxiliary constraints on

the P distribution of P , and not from the no-arbitrage restriction per se.5

An important example of such auxiliary constraints is the number of risk factors that

determine risk premiums. Motivated by the descriptive analysis of Cochrane and Piazzesi

(2005, 2008) and Duffee (2008), we develop methods for restricting expected excess returns

4To emphasize, our canonical form is key to seeing the result; due to observational equivalence, the result
holds for any canonical form.

5Though one might conclude from reading the recent literature that enforcing no-arbitrage improves
out-of-sample forecasts of bond yields, our theorems show that this is not the case. What underlies any
documented forecast gains in these studies from using GDTSMs is the combined structure of no arbitrage
and the auxiliary restrictions they impose on the P distribution of y.
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to lie in a space of dimension L (< N), without restricting a priori which of the N factors Pt
represent priced risks. If L < N , then there are necessarily restrictions linking the historical

and risk-neutral drifts of Pt. In this case, the forecasts of future yields implied by a GDTSM

are in principle different than those from an unrestricted V AR, and we investigate the

empirical relevance of these constraints within three-factor (N = 3) GDTSMs.

Additionally, we show that our canonical form allows for computationally efficient esti-

mation of GDTSMs. The conditional density of observed yields is fully characterized by rQ
∞

and λQ, as well as the parameters controlling any measurement errors in yields. Importantly,

(rQ
∞, λ

Q) constitutes a low-dimensional, rotation-invariant (and thus economically meaningful)

parameter space. Using standard search algorithms, we obtain near-instantaneous conver-

gence to the global optimum of the likelihood function. Convergence is fast regardless of the

number or risk factors or bond yields used in estimation, or whether the pricing factors P
are measured with error.6

The rapid convergence to global optima using our canonical GDTSM makes it feasible

to explore rolling out-of-sample forecasts. For a variety of GDTSMs – with and without

measurement error in yield factors, and with and without constraints on the dimensionality

L of risk premia – we compare the out-of-sample forecasting performance relative to a

benchmark unconstrained V AR, and confirm our theoretical predictions in the data.

1 A Canonical GDTSM with Observable Risk Factors

In this section we develop our “JSZ” canonical representation of GDTSMs. Towards this end

we start with a generic representation of a GDTSM in which the discrete-time evolution of

the risk factors (state vector) Xt ∈ RN is governed by the following equations:7

6To put this computational advantage into perspective, one needs to read no further than Duffee and
Stanton (2007) and Duffee (2009) who highlight numerous computational challenges and multiple local
optima associated with their likelihood functions. For example, Duffee reports that each optimization for
his parametrization of a three-factor model takes about two days. In contrast, for the GDTSM(3) models
examined in this paper, convergence to the global optimum of the likelihood function was typically achieved
in about ten seconds, even though there are three times as many observations in our sample.

7All of our results apply equally to a continuous-time Gaussian model. Also, we assume that the risk
factors, and hence the yield curve yt, are first-order Markov. See the supplement to this paper (Joslin,
Singleton, and Zhu (2010)) and Joslin, Le, and Singleton (2010) for relaxations of this assumption.
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∆Xt = KP
0X +KP

1XXt−1 + ΣXε
P
t , (1)

∆Xt = KQ
0X +KQ

1XXt−1 + ΣXε
Q
t , (2)

rt = ρ0X + ρ1X ·Xt, (3)

where rt is the one-period spot interest rate, ΣXΣX ′ is the conditional covariance matrix

of Xt, and εPt , ε
Q
t ∼ N(0, IN). A canonical GDTSM is one that is maximally flexible in its

parameterization of both the Q and P distributions of Xt, subject only to normalizations

that ensure econometric identification. Before formally deriving our canonical GDTSM we

briefly outline the basic idea. Variations of our canonical form, as well as some of its key

implications for model specification and analysis, are discussed subsequently.

Suppose that N zero-coupon bond yields or N linear combinations of such yields, Pt, are

priced perfectly by the model (subsequently we relax this assumption). By a slight abuse

of nomenclature we will refer to these linear combinations of yields as portfolios of yields.

Applying invariant transformations8 we show (i) the pricing factors Xt in (3) can be replaced

by the observable Pt, and (ii) the Q distribution of Pt can be fully characterized by the

parameters ΘQ
P ≡ (kQ

∞, λ
Q,ΣP), where λQ is the vector of eigenvalues of KQ

1X and ΣPΣ′P is

the covariance of innovations to the portfolios of yields.9 When the model is stationary under

Q, kQ
∞ is proportional to the risk-neutral long-run mean of the short rate rQ

∞ and a GDTSM

can be equivalently parameterized in terms of either parameter (see below).

The prices of all coupon bonds (as well as interest rate derivatives) are determined as

functions of these observable pricing factors through no arbitrage. Importantly, though the

pricing factors are now observable, the underlying parameter space of the Q distribution of

P is still fully characterized by ΘQ
P . Moreover, the parameters of the P distribution of the

(newly rotated and observable) state vector Pt are (KP
0P , K

P
1P) along with ΣP . The remainder

of this section fleshes out these ideas.

The model-implied yield on a zero-coupon bond of maturity m is an affine function of the

8Invariant transforms (Dai and Singleton (2000)) involve rotating, scaling and translating the state and
parameter vectors to keep the short rate and bond prices unchanged (invariant), usually by a mapping
Yt = AXt + b, where A is an invertible matrix. The transformed parameters are outlined in Appendix B.

9 Duffie and Kan (1996) and Cochrane and Piazzesi (2005) also propose to use an identification scheme
where the yields themselves are factors. Adrian and Moench (2008) explore a setting where the pricing factors
are the portfolios themselves; however, they do not impose the internal consistency condition to make the
factors equal to their no arbitrage equivalents and instead focus on the measurement errors. Our formulation
offers an analytic parametrization and additionally makes transparent our subsequent results.

5



state Xt (Duffie and Kan (1996)):

yt,m = Am(ΘQ
X) +Bm(ΘQ

X) ·Xt, (4)

where (Am, Bm) satisfy well-known Riccati difference equations (see Appendix A for a

summary), and ΘQ
X = (KQ

0X , K
Q
1X ,ΣX , ρ0X , ρ1X) is the vector of parameters from (2–3)

relevant for pricing. We let (m1,m2, . . . ,mJ) be the set of maturities (in years) of the bonds

used in estimation of a GDTSM, J > N , and y′t = (yt,m1 , . . . , yt,mJ
) ∈ RJ be the corresponding

set of model-implied yields.

In general, (4) may be violated in the data due to market effects (e.g. bid-ask spreads or

repo specials), violations of no arbitrage or measurement errors. We will collectively refer

to all of these possibilities simply as measurement or pricing errors. To distinguish between

model-implied and observed yields in the presence of pricing errors we let yot,m denote the

yields that are observed with measurement error. To be consistent with the data, we must

impose auxiliary structure on a GDTSM, beyond no arbitrage, in the form of a parametric

distributional assumption for the measurement errors. We let {P θm}θm∈Θm denote the family

of measures which describe the conditional distribution of yt − yot .
For any full-rank, portfolio matrix W ∈ RN×J we let Pt ≡ Wyt denote the associated

N -dimensional set of portfolios of yields, where the ith portfolio puts weight Wi,j on the yield

for maturity mj. Applying (4) we obtain

Pt = AW (ΘQ
X) +BW (ΘQ

X)′Xt, (5)

where AW = W [Am1 , . . . , AmJ
]′ and BW = [Bm1 , . . . , BmJ

]W ′. Note that BW (KQ
1X , ρ1) de-

pends only on the subset (KQ
1X , ρ1) of ΘQ

X (see (A3) in Appendix A).

Initially, we assume that there exist portfolios for which the no arbitrage pricing relations

hold exactly:

Case P: There are N portfolios of bond yields Pt, constructed with weights W , that are

priced perfectly by the GDTSM: Pot = Pt.

We refer to the case where each portfolio consists of a single bond, so that N yields are priced

perfectly, as Case Y. We defer until Section 6 the case where all bonds are measured with

errors and estimation is accomplished by Kalman filtering.

We now state our main result for Case P:

Theorem 1. Suppose that Case P holds for given fixed portfolio weights W . Then any

canonical GDTSM is observationally equivalent to a unique GDTSM whose pricing factors
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Pt are the portfolios of yields Wyt = Wyot . Moreover, the Q-distribution of Pt is uniquely

determined by (λQ, kQ
∞,ΣP), where λQ is ordered.10 That is,

∆Pt = KP
0P +KP

1PPt−1 + ΣPε
P
t (6)

∆Pt = KQ
0P +KQ

1PPt−1 + ΣPε
Q
t (7)

rt = ρ0P + ρ1P · Pt, (8)

is a canonical GDTSM, where KQ
0P , K

Q
1P , ρ0P and ρ1P are explicit functions of (λQ, kQ

∞,ΣP).

Our canonical form is parametrized by ΘP = (λQ, kQ
∞, K

P
0P , K

P
1P ,ΣP).

We refer to the GDTSM in Theorem 1 as the JSZ canonical form parametrized by ΘP .

Before formally proving Theorem 1, we outline the main steps. First, we want to show that

any GDTSM is observationally equivalent to a model where the states are the observed bond

portfolios Pt (with corresponding weights W .) Thus, for G = {(KQ
0 , K

Q
1 , ρ0, ρ1, K

P
0 , K

P
1 ,Σ)},

the set of all possible GDTSMs,11 we want to show that every Θ ∈ G is observationally

equivalent to some ΘP ∈ GWP , where

GWP = {(KQ
0 , K

Q
1 , ρ0, ρ1, K

P
0 , K

P
1 ,Σ) : the factors are portfolios with weights W}.

This first step is easily established: for any GDTSM with latent state Xt, Pt satisfies (5).

Following Dai and Singleton (2000) (DS), we can, by applying the change of variables outlined

in Appendix B, compute the dynamics (under both P and Q) of Pt and express rt as an

affine function of Pt. The parameters after this change of variables give an observationally

equivalent model where the states are the portfolios of yields.

Second, we establish uniqueness by showing that no two GDTSMs in GWP are observationally

equivalent. Clearly, if two GDTSMs are observationally equivalent and have the same

observable factors, it must be that (KP
0 , K

P
1 ,Σ) are the same. Intuitively, if the parameters

(KQ
0 , K

Q
1 , ρ0, ρ1) are not the same, the price of some bonds would depend differently on the

factors, a contradiction. In the second step, we formalize this intuition. Moreover, we show

10We fix an arbitrary ordering on the complex numbers such that 0 is the smallest number.
11More formally, we think of the set of GDTSMs as a set of stochastic processes for the yield curve rather

than as a set of parameters governing the stochastic process of the yield curve. To see the correspondence, we
define on some probability space (Ω,F ,P) (with associated filtration {Ft}) the processes y : Ω×N→ RN+ .
Here ymt (ω) is the m-period yield at time t when the state is ω ∈ Ω. When our additional assumption that y is
a Gaussian Markov process and no arbitrage is maintained (with risk premia at time t depending only on Ft),
these processes take the form of (1–3) and (4) for some parameters. In this way, we define a surjective map from
the set of GDTSM parameters (KQ

0 ,K
Q
1 , ρ0, ρ1,K

P
0 ,K

P
1 ,Σ) to the set of GDTSM stochastic processes. With

this association, two GDTSMs are observationally equivalent when the corresponding stochastic processes
have the same finite-dimensional distributions.
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that for given λQ and kQ
∞, there exists a unique (KQ

0 , K
Q
1 , ρ0, ρ1) consistent with no arbitrage

and the states being the portfolios of yields Pt. In the third and final step, we reparamatrize

GWP in terms of the free parameters (kQ
∞, r

Q
∞,ΣP).

In the second step of our proof of Theorem 1, we will use the following analogue of the

canonical form in Joslin (2007), proved in Appendix C.

Proposition 1. Every canonical GDTSM is observationally equivalent to the canonical

GDTSM with rt = ι ·Xt,

∆Xt = KQ
0X +KQ

1XXt−1 + ΣXε
Q
t , (9)

∆Xt = KP
0X +KP

1XXt−1 + ΣXε
P
t , (10)

where ι is a vector of ones, ΣX is lower triangular (with positive diagonal), KQ
1X is in ordered

real Jordan form, KQ
0X,1 = kQ

∞ and KQ
0X,i = 0 for i 6= 1, and εQt , ε

P
t ∼ N(0, IN).

Here we specify the Jordan form with each eigenvalue associated with a single Jordan

block (that is, each eigenvalue has geometric multiplicity of one.) Thus, when the eigenvalues

are all real, KQ
1X takes the form

KQ
1X = J(λQ) ≡ diag(JQ

1 , J
Q
2 , . . . , J

Q
m), where each JQ

i =


λQ
i 1 · · · 0

0 λQ
i · · · 0

...
...

. . . 1

0 · · · 0 λQ
i

 ,

and where the blocks are in order of the eigenvalues. (See Appendix C for the real Jordan

form when the eigenvalues are complex.) We refer to the set of Jordan canonical GDTSMs as

GJ and it is parametrized by ΘJ = (λQ, kQ
∞, K

P
0X , K

P
1X ,ΣX). The eigenvalues of λQ may not

be distinct and may be complex. We explore these possibilities empirically in Section 5.

Proof of Theorem 1: Having already established that we can rotate any model to one with Pt
as the observed states, we proceed to prove the second step. Suppose that Θ1,Θ2 ∈ GWP index

two observationally equivalent canonical models. By the existence result in Proposition 1,

each Θi is observationally equivalent to a GDTSM, ΘJ
i , which is in real ordered Jordan

canonical form. Since

Pt = AW (ΘJ
i ) +BW (Θi)

′XJ
ti, (11)

8



where XJ
ti is the latent state for model ΘJ

i , it must be that

Θi = AW (ΘJ
i ) +BW (ΘJ

i )′ΘJ
i . (12)

Here, we use the notation that for a GDTSM with parameter vector Θ and state Xt, the

observationally equivalent GDTSM with latent state X̂t = C +DXt has parameter vector

Θ̂ = C + DΘ, as computed in Appendix B. Since observational equivalence is transitive,

ΘJ
1 is observationally equivalent to ΘJ

2 ; the uniqueness result in Proposition 1 implies that

ΘJ
1 = ΘJ

2 . The equality in (12) then gives Θ1 = Θ2, which establishes our second step.

To establish the reparametrization in the third step, we focus on (11) and (12). The

key is to show explicitly how given (λQ, kQ
∞) (from ΘJ

i ) we can (i) choose the parameters

(KP
0J , K

P
1J ,ΣJ) to get any desired (KP

0P , K
P
1P ,ΣP) and (ii) construct the (KQ

0 , K
Q
1 , ρ0, ρ1)

consistent with the factors being Pt. Details are provided in Appendix D.

For reference, we summarize the transformations computed in the last step as:

Proposition 2. Any canonical GDTSM with Q parameters (λQ, kQ
∞,ΣP) has the JSZ repre-

sentation in Theorem 1 with

KQ
1P = BJ(λQ)B−1 (13)

KQ
0P = kQ

∞Bem1 −K
Q
1PA (14)

ρ1P = (B−1)′ι (15)

ρ0P = −A · ρ1P (16)

where em1 is a vector with all zeros except in the mth
1 entry, which is 1 (m1 is the multiplicity of

λQ
1 ) and B = BW (J(λQ), ι)′, A = AW

(
0, J(λQ), B−1ΣP , k

Q
∞, ι
)
, where (AW , BW ) are defined

in (5) and (A2–A3).

Before proceeding, we discuss the interpretation of the parameter kQ
∞. If X is stationary

under Q, then kQ
∞ and rQ

∞ (the long-run Q-mean of the short rate) are related according

to rQ
∞ = kQ

∞
∑m1

i=1(−λ
Q
1 )−i, where m1 is the dimension of the first Jordon block JQ

1 of KQ
1X .

Thus, if λQ
1 is not a repeated root (m1 = 1), rQ

∞ is simply −kQ
∞/λ

Q
1 in stationary models. This

is the case in our subsequent empirical illustrations where we express our normalization in

terms of the parameter rQ
∞ owing to its natural economic interpretation.

That kQ
∞ and rQ

∞ are not always interchangeable in defining a proper canonical form for the

set of all GDTSMs of form (1–3) can be seen as follows. In proceeding to the normalization

of Proposition 1, a model with the factors normalized so that rt = ρ0 + ι · Xt is further

9



normalized by a level translation (Xt 7→ Xt − α). Such level translations can always be

used to enforce ρ0 = 0, but they can only be used to enforce KQ
0X = 0 in the case that KQ

1X

is invertible (i.e., there are no zero eigenvalues).12 When m1 = 1 and there are no zero

eigenvalues, the following two normalizations of (KQ
0P , ρ0) are equivalent:

KQ
0P =


0

0
...

0

 and ρ0 =
−kQ
∞

λQ
1

or KQ
0 =


kQ
∞

0
...

0

 and ρ0 = 0. (17)

Theorem 1 uses the form with kQ
∞, and always applies regardless of the eigenvalues of KQ

1X .

2 P-dynamics and Maximum Likelihood Estimation

Rather than defining latent states indirectly through a normalization on parameters governing

the dynamics (under P or Q) of latent states, the JSZ normalization has instead prescribed

observable yield portfolios P and parametrized their Q distribution in a maximally flexible way

consistent with no arbitrage. A distinctive feature of our normalization is that, in estimation,

there is an inherent separation between the parameters of the P and Q distributions of Pt.
In contrast, when the risk factors are latent, estimates of the parameters governing the P
distribution necessarily depends on those of the Q distribution of the state, since the pricing

model is required to either invert the model for the fitted states (when N bonds are priced

perfectly) or to filter for the unobserved states (when all bonds are measured with errors).

This section formalizes this “separation property” of the JSZ normalization.

By Theorem 1, we can, without loss of generality, use N portfolios of the yields, Pt =

Pot ∈ RN , as observed factors. Suppose that the individual bond yields, yt, are to be used

in estimation and that their associated measurement errors, yot − yt, have the conditional

distribution P θm , for some θm ∈ Θm. We require only that, for any P θm , these errors

are conditionally independent of lagged values of the measurement errors and satisfy the

consistency condition P(Wy0
t = Pt|Pt) = 1.13 Then the conditional likelihood function (under

12One implication of this observation is that setting both kQ
∞ and rQ

∞ to zero in the presence of a Q-
nonstationary risk factor, as was done by Christensen, Diebold, and Rudebusch (2007, 2009) in defining their
arbitrage-free Nelson-Siegel model, amounts to imposing an over-identifying restriction on the drift of X1t.

13Implicit in this formulation is the possibility that Cov(yot |Pt;λQ, kQ
∞,ΣP) is singular. This would be

true in Case Y, where some yields are measured without errors, or when certain portfolios of yot are priced
perfectly, as with the use of principal components as observable factors or as in Chen and Scott (1995) who
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P) of the observed data (yot ) is

f(yot |yot−1; Θ) = f(yot |Pt;λQ, kQ
∞,ΣP , P

θm)× f(Pt|Pt−1;KP
1P , K

P
0P ,ΣP). (18)

Notice the convenient separation of parameters in the likelihood function. The conditional

distribution of the yields measured with errors depends only on (λQ, kQ
∞,ΣP , P

θm) and not on

(KP
0P , K

P
1P). In contrast, the conditional P-density of the pricing factors Pt depends only on

(KP
1P , K

P
0P ,ΣP), and not on (λQ, kQ

∞). Using the assumption that Pt is conditionally Gaussian,

the second term in (18) can be expressed as

f(Pt|Pt−1;KP
1P , K

P
0P ,ΣP) = (2π)−N/2|ΣP |−1 exp

(
−1

2
‖Σ−1
P (Pt − Et−1[Pt]) ‖2

)
, (19)

where Et−1[Pt] = KP
0P + (I +KP

1P)Pt−1 and where for a vector x, ‖x‖2 denotes the euclidean

norm squared:
∑
x2
i . The parameters (KP

0P , K
P
1P) that maximize the likelihood function f

(conditional on t = 0 information), namely

(KP
0P , K

P
1P) = argmax

T∑
t=1

f(yot |yot−1;KP
1P , K

P
0P ,ΣP) = argmin

T∑
t=1

‖Σ−1
P (Pot − Et−1[Pot ]) ‖2,(20)

are the sample ordinary least squares (OLS) estimates, independent of ΣP (Zellner (1962)).

Summarizing these observations:

Proposition 3. Under Case P the ML estimates of the P parameters (KP
0P , K

P
1P) are given

by the OLS estimates of the conditional mean of Pt.

Absent constraints linking the P and Q dynamics, one can effectively separate the time-

series properties (P) of Pt from the cross-sectional constraints imposed by no arbitrage (Q).

The parameters governing P-forecasts distribution thus can be estimated from time series

alone, regardless of the cross-sectional restrictions. Furthermore, independent of (λQ, kQ
∞,ΣP),

the OLS estimates of (KP
0P , K

P
1P) are by construction globally optimal. With (KP

0P , K
P
1P)

at hand, we use the sample conditional variance of Pt, Σ̂PΣ̂′P , computed from the OLS

innovations as the starting value for the population variance ΣPΣ′P . Given (λQ, kQ
∞), this

starting value for ΣPΣ′P is again by construction close to the global optimum. Therefore we

use different portfolios of yields as their factors. This setup also accommodates the case where both P and
some of the individual components of yot are priced perfectly by the GDTSM. Furthermore, the errors may
be correlated, non-normal, or have time-varying conditional moments depending on Pt. In practice, it has
typically been assumed that the pricing errors are normally distributed.

11



have greatly reduced the number of parameters to be estimated. For instance, in a GDTSM(3)

model, the maximum number of parameters, excluding those governing P θm , is 22 (3 for λQ,

1 for kQ
∞, 6 for ΣP , 3 for KP

0P and 9 for KP
1P). With our normalization one can focus on only

the 4 parameters (λQ, kQ
∞). This underlies the substantial improvement in estimation speed

for the JSZ normalization over other canonical forms.

Key to our argument is the fact that we can parametrize of the conditional distribution of

the yields measured with error independently of the parameters governing the P-conditional

mean of P in the sense of the factorization (18). For any (KP
0P , K

P
1P ,ΣP , λ

Q, kQ
∞), we have

f(yot |Pt;λQ, kQ
∞,ΣP)× f(Pt|Pt−1;KP

1P , K
P
0P ,ΣP)

≤ f(yot |Pt;λQ, kQ
∞,ΣP)× f(Pt|Pt−1;KP

1P,OLS, K
P
0P,OLS,ΣP), (21)

where we suppress the dependence on P θm . This inequality follows from the observations

that (KP
0P , K

P
1P) has no effect on f(yot |Pt) and that, for any ΣP , replacing (KP

0P , K
P
1P) by its

OLS estimate increases f(Pt|Pt−1).14

It is instructive to compare (18) with the likelihood function that arises in models

with observable factors that parameterize the P distribution of P and the market prices

of these risks. In this case the parameters are (KP
0P , K

P
1P) and (ρ0, ρ1,Λ0,Λ1,ΣP), where

EP
t [Pt+1] = EQ

t [Pt+1] + ΣP(Λ0 + Λ1Pt), for state-dependent market prices of risk Λ0 + Λ1Pt.
These parameters are subject to the internal consistency constraints AW = 0 and BW = IN

that ensure that the model replicates the portfolios of yields P . Moreover, analogous to (18),

the factorization of the likelihood function takes the form

f(yot |yot−1; Θ) = f(yot |Pt;KP
0P , K

P
1P ,ΣP , ρ0, ρ1,Λ0,Λ1)× f(Pt|Pt−1;KP

1P , K
P
0P ,ΣP). (22)

Replacing (KP
0P , K

P
1P) with (KP

0P,OLS, K
P
1P,OLS) again increases the second term, but now the

first term is affected as well. Thus, within this parameterization, the fact that OLS recovers

the ML estimates is completely obscured.15

14The last step requires observable factors – another important element of our argument. See Section 3
and (23).

15In fact, within a macro-GDTSM with a similar parametrization of internally consistent market prices of
risk and observable factors, Ang, Piazzesi, and Wei (2003) report that OLS estimates of EP[Pt+1|Pt] are
(slightly) different from their ML estimates. Our analysis generalizes to macro-GDTSMs (see Joslin, Le, and
Singleton (2010)) and so, in fact, their OLS estimates are the ML estimates.
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3 On the Relevance of No Arbitrage for Forecasting

The decomposition of the conditional likelihood function of the data in (18) leads immediately

to several important insights about the potential roles of no-arbitrage restrictions for out-of-

sample forecasting. First, Proposition 3 gives a general striking property of GDTSMs under

Case P: the no-arbitrage feature of a GDTSM has no effect on the ML estimates of KP
0P

and KP
1P . This, in turn, implies that forecasts of future values of P are identical to those

from an unconstrained V AR(1) model for Pt.16 This result sharpens Duffee (2009)’s finding

that the restrictions on a V AR implied by an arbitrage-free GDTSM cannot be rejected

against the alternative of an unrestricted V AR.17 When forecasting the N portfolios of yields

Pt, Proposition 3 shows theoretically that a similar result must hold insofar as Case P is

(approximately) valid.

The JSZ normalization makes these observations particularly transparent. In contrast, in

the (observationally equivalent) specification in (1–3), portfolio yield forecasts are

Et[Pt+1]− Pt = BW (ΘQ) (Et[Xt+1]−Xt) = BW (ΘQ)
(
KP

0X +KP
1XXt

)
(23)

= BW (ΘQ)
(
KP

0X +KP
1X(BWP (ΘQ)−1

(
Pt − AW (ΘQ)

))
.

Thus, with latent states, the portfolio forecasts are expressed in terms of both the P and Q
parameters of the model. From (23) it is not obvious that OLS recovers the ML estimates

of (KP
0P , K

P
1P). The JSZ normalization makes the implicit cancellations in (23) explicit.

Second, the structure of the likelihood function reveals that, in contrast to the pricing

factors, no-arbitrage restrictions are potentially relevant for forecasting individual yields that

are measured with error. The conditional density of yot given Pt depends on the parameters

of the risk-neutral distribution, and these are revealed through the cross-maturity restrictions

implied by no arbitrage. In addition, diffusion invariance implies that ΣP enters both terms

of the likelihood function so efficient estimation of these parameters comes from imposing

the structure of a GDTSM.

Finally, the structure of the density f(yot |Pt) also reveals the natural alternative model for

16Note that, in principle, enforcing no-arbitrage restrictions may be relevant for the construction of forecast
confidence intervals through the dependence on ΣP . However, empirically this effect is likely to be small.

17 Duffee (2009) also shows theoretically that no arbitrage is cross-sectionally irrelevant in any affine model
under the stochastically singular condition of no measurement errors. That is, if the model exactly fits the
data without measurement errors, the cross-sectional loadings (A,B) of (4) are determined without reference
to solving the Ricatti difference equations (A2–A3). Duffee does not theoretically explore the time series
implications of the no measurement error assumption. In this case, not only would Proposition 3 apply (since
Case P is a weaker assumption) so that the OLS estimates are the ML estimates of (KP

0P ,K
P
1P), but also

ΣP could be inferred from a sufficiently large cross-section of bond prices.

13



assessing gains in forecast precision from imposing no-arbitrage restrictions. The state-space

representation of this unconstrained model reflects the presumption that bond yields have

a low-dimensional factor structure, but it does not impose the restrictions implied by a

no-arbitrage DTSM . Specifically, under Case P where Pt is priced perfectly by the GDTSM,

the state equation is

∆Xt+1 = K0X +K1XXt + εt, εt ∼ N(0,ΣX) i.i.d., (24)

and the observation equation(
Pt
yot

)
= C +DXt +

(
0

emt

)
, emt ∼ P θm i.i.d. (25)

The parameter set is ΘSS = {(K0X , K1X ,ΣX , C,D, P
θm)}, where P θm is an observation error

distribution that is consistent with Case P.

No arbitrage requires that the observation equation parameters (C,D) must be of the

form (4); that is, the dynamics are Gaussian under Q. Additionally, no arbitrage enforces a

link between the possible (C,D) and ΣX (diffusion invariance). Since the parameters are not

identified, one also imposes normalizations to achieve a just-identified model. Importantly,

the choice of normalizations will in general affect the ML estimates of the parameters, ΘSS,

but will not affect the distribution of bond yields implied from the state space model (either

in the cross section or time series.) For example, one could impose the identification scheme in

Dai and Singleton (2000) either under the P- or the Q-measure. The estimates of (K0X , K1X)

and (C,D) will be choice-specific, but these differences will be offset by changes in the latent

states so that the fits to bond yields will be identical.

Notably, the unconstrained state-space representation (24)-(25) with parameter set ΘSS

is not the unconstrained J-dimensional V AR representation of yt. The latter relaxes both

the no-arbitrage (and any over-identifying restrictions) enforced in the GDTSM and the

assumed factor structure of bond yields (the dimension of Xt is less than the dimension of yot ).

Consequently, gains in forecasting an individual yield using a GDTSM, relative to the forecasts

from an unconstrained V AR model of yt, may be due to the V AR being over-parametrized

relative to the unconstrained factor model, the imposition of no-arbitrage restrictions within

the GDTSM, or both. The role of no-arbitrage restrictions is an empirical issue that can be

addressed by comparing the constrained and unconstrained versions of (24)-(25).
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4 Irrelevance of Factor Structure for Forecasting

The DTSM literature considers a number of further constraints on the factor structure of a

GDTSM, beyond those implied by the absence of arbitrage. In addition to making different

identification assumptions, one can form a parsimonious model by restricting the distribution

of certain variables (under either P or Q) or by restricting the structure of risk premia. We

first extend the results of Section 3 to characterize when this irrelevancy result does (and

does not) hold in more general GDTSMs, and then we discuss the connection of our results

to specific over-identified GDTSMs in the literature.

Within the state space model (24–25), the parameters (C,D) control the cross-sectional

relationship among the yields, while P θm controls the distribution of the measurement errors.

The covariance matrix of the innovations of the latent states ΣX is linked to ΣP through

the factor loadings (C,D). The restriction of no-arbitrage, for example, says both that only

certain types of loadings (C,D) are feasible (those given by (4)) and that this feasible set

depends on the particular value of ΣX . Thus no arbitrage is a cross-parameter restriction on

the feasible set of (C,D,ΣX) in the general state space model. More generally, one might

be interested in restrictions on a particular subset of the parameters η ≡ (C,D, P θ
m,ΣX),

examples of which we discuss in subsequent subsections. The following theorem says that

even if restrictions are imposed on η, as long as (K0X , K1X) are unrestricted, OLS will recover

the ML estimates of (K0P , K1P). (K0X , K1X) will change in general with the restrictions

imposed on η, but only through an affine transformation of the latent states.

Theorem 2. Given the state space model (24– 25) and the portfolio matrix W determining

the factors Pt, let H be a subset of the admissible set of η where, for any (C,D,ΣX , P
θm) ∈ H,

the N ×N upper left block of D is full rank. Consider the ML problem with η constrained to

lie in the subspace H:

(KH0X , K
H
1X , η

H) ∈ arg max
K0X ,K1X ;η∈H

f(PT , yT , . . . ,P1, y1|P0, y0).

Then (KH0X , K
H
1X , η

H) are such that

K0P = DHPK
H
0X −DHPKH1X(DHP )−1CHP , (26)

K1P = DHPK
H
1X(DHP )−1, (27)

where CHP is the first N elements of CH, DHP is the upper left N × N block of DH and
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(K0P , K1P) are the OLS estimates of the regression

∆Pt = K0P +K1PPt + εPt .

The proof is similar, though notationally more abstract, to the proof of Proposition 3 and

is presented in Appendix E.

Using this result, we first illustrate the estimation of the general state space model of

(24–25) when the possibility of arbitrage is not precluded. We next explore the implications

of restrictions on the Q and P distributions, as well as on risk premia, for the conditional

distribution of Pt.

4.1 Factor Structure in Arbitrage Models

The factor model (24–25) is not necessarily consistent with the absence of arbitrage. This is

because the loadings in (25) may not come from the solution of (4) for a given choice of ΘQ
X .

Nevertheless, this model is still of interest as it provides a baseline “factor structure” for the

yield curve (cf. Duffee (2009)). Theorem 2 implies that, under Case P, the OLS estimates of

the parameters governing (24) are identical to their counterparts from system ML estimation

of (24–25) when the factors Pt are observed portfolios of bond yields.

Additionally when, in addition to Case P, the state space model has temporally i.i.d.

normal pricing errors in (25), and these errors are orthogonal to the portfolio matrix W ,

the OLS regression of the observed yields onto the factors P give the ML estimates of the

unconstrained (“with arbitrage”) cross-sectional loadings (C,D) in (25). In this case the

OLS regression estimates of ΣP must also correspond (through the invariant transformation

given in Theorem 2) to the ML estimates of ΣX for the factor model. Taken together, these

procedures provide a simple prescription for constructing alternative reference models (to

arbitrage-free GDTSMs) that maintain the factor structure but do not impose no-arbitrage.

In the empirical analysis in Section 5 we focus on comparisons of OLS forecasts of PCs with

their forecasts from a variety of arbitrage-free models. These “with arbitrage” factor models

provide a natural reference model when one is interested in forecasting yields.

4.2 Irrelevance of Constraints on the Q-distribution of Yields

The JSZ normalization characterizes the state in terms of an observable portfolio of zero

coupon yields. The conditional Q distribution of Pt+τ (as a function of Pt) is expressed in

(7), which we have shown can be parametrized by (λQ, kQ
∞,ΣP). Within the model (that is,

16



without measurement errors), P is informative about the entire yield curve. Thus one type of

restriction a researcher may be interested in imposing is on the conditional Q-distribution of

Pt+τ (or yt+τ ) as a function of Pt (or yt).
18 Such constraints further restrict (beyond the no

arbitrage restrictions) the cross-sectional loadings (C,D) in the general state space model as

well as which innovation covariances are possible. Theorem 2 shows that restrictions on the Q
distribution of yt+τ , as a function of yt, are irrelevant for forecasting Pt. Put differently, in the

JSZ-normalized GDTSM, restrictions that only affect the parameters of the Q-distribution of

Pt (λQ, kQ
∞, as well as ΣP) are irrelevant for forecasting the portfolios of yields Pt. Though

latent-factor representations like (23) suggest that the Q parameters enter into EP
t [Pt+1], in

fact absent restrictions across the P and Q parameters of the model, any Q-restrictions must

affect (KP
0X , K

P
1X) in a manner that “cancels” their impact on EP

t [Pt+1].

One example of such a constraint in the literature is the arbitrage-free Nelson-Siegel

(AFNS) model of Christensen, Diebold, and Rudebusch (2007). The AFNS model allows

for a dynamically consistent GDTSM where, except for a convexity-induced intercept, the

factor loadings correspond to those of Nelson and Siegel (1987). Since the AFNS model

is the constrained special case of the JSZ normalization with λQ = (0, λ, λ) and kQ
∞ = 0,19

an immediate implication of this observation is that forecasts of P using an arbitrage-free

Nelson-Siegel (AFNS) model are equivalent to forecasts based on an unconstrained VAR(1)

representation of P. Proposition 3 implies that these restrictions do not affect the ML

estimates of KP
0P and KP

1P and, hence, they cannot improve the forecasts of P relative to an

unconstrained VAR(1). Thus, the forecast gains that Christensen, Diebold, and Rudebusch

(2007) attribute to the structure of their AFNS pricing model are, instead, a consequence of

the joint imposition of no-arbitrage and their constraints on the P-distribution of bond yields.

4.3 Conditions for Irrelevance of Constraints on Latent Factors

A conclusion of Section 4.2 is that restrictions on the parameters governing Q-distribution

of yield factors are irrelevant for forecasts. In this section we address the question if, more

generally, a parameter constraint on “Q parameters” within an identified GDTSM with latent

factors affects forecasts. For example, a researcher may consider the following procedure.

They begin with a GDTSM model with the normalizations of Dai and Singleton (2000) (DS)

applied under Q: (KP
0X , K

P
1X) are free while ΣX = I, KQ

0X = 0 and KQ
1X is (ordered) lower

18More precisely, under Q, yt+τ |Ft ∼ N(µτt ,Σ
τ ). If we express µτt = µτ (yt), restrictions on Στ or the

functional form µτ are irrelevant. More generally, since EP
t [yt+s] ∈ Ft = σ(yt), restrictions of the form

EQ
t [yt+τ ] = g(EP

t [yt+τ ]) may affect forecasts.
19We show this formally in Joslin, Singleton, and Zhu (2010).

17



triangular (or real Schur to accommodate complex eigenvalues). After estimation, a more

parsimonious model is obtained by taking any coefficients in KQ
1X which are insignificantly

different from zero and setting them to zero (or using an iterative AIC or BIC type procedure).

A similar procedure is followed in, for example, Dai and Singleton (2002).

When KP
0X and KP

1X are unconstrained, constraints such as these on Q-identified pa-

rameters are joint constraints on the cross-sectional properties of the yield curve and the

covariance of innovations. To see this, one can invert the latent factors into the observable

factors and observe that non-linear constraints within the JSZ normalization on (λQ, kQ
∞,ΣP)

will hold. However, Theorem 2 directly shows that the resulting forecasts for Pt will be

identical whether the constraints are imposed or not. The constraints in general will change

the estimated KP
0X and KP

1X , but they will also change the loadings and the latent states so

that the forecasts of Pt will not change.

Alternatively, one could first apply a normalization under P and then restrict the parame-

ters governing the Q-conditional distribution of the implied latent states. For example, as

above one could apply the DS normalization under P where (KP
0X , K

P
1X) will be restricted

while (KQ
0X , K

Q
1X) are restricted. Duffee and Stanton (2007), for example, apply such a

normalization. With this type of P-identification, Theorem 2 no longer applies and it is easy

to see that in general restrictions on the Q-parameters (i.e. the Q-conditional distribution of

the latent factors as a function of the latent factors) will affect the forecasts of Pt.

4.4 Relevance of Constraints on the Structure of Excess Returns

Central to the preceding irrelevance results is the absence of restrictions across the parameters

of the P and Q distributions of Pt. Such constraints would arise in practice if, for instance,

the GDTSM-implied expected excess returns on bonds of different maturities lie in a space of

dimension L less than dim(Pt) = N . Put another way, some risks in the economy may have

either zero or constant risk premia. When L < N , it also follows that time-variation in risk

premia depends only on an L-dimensional state variable. Cochrane and Piazzesi (2005, 2008)

conclude that L = 1 when conditioning risk premiums only on yield curve information. Joslin,

Priebsch, and Singleton (2010) find that L is at least two when expected excess returns are

conditioned on Pt, inflation, and output growth. We explore the relevance for forecasting

bond yields of imposing the constraint L within GDTSMs that condition risk premiums on

the pricing factors P . When this constraint is (approximately) valid, improved forecasts of yt

may arise from the associated reduction in the dimensionality of the parameter space.

To interpret this constraint, note from Cox and Huang (1989) and Joslin, Priebsch, and
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Singleton (2010) that one-period, expected excess returns on portfolios of bonds with payoffs

that track the pricing factors Pt, say xrPt, are given by the components of

xrPt = KP
0P −K

Q
0P + (KP

1P −K
Q
1P)Pt. (28)

That is, the ith component of (KP
1P − K

Q
1P)Pt is the source of the risk premium for pure

exposures to the ith component of Pt. Therefore, the constraint that the one-period expected

excess returns on bond portfolios are driven by L linear combinations of the pricing factors

P amounts to the constraint that the rank of ARRP = KP
1P −K

Q
1P is L.20

The reduced rank risk premium GDTSMs can be estimated through a concentration

of the likelihood in the same spirit as (18). Given (λQ, kQ
∞,ΣP , P

θm), the ML estimates of

(KP
0P , K

P
1P) can be computed as follows. First, compute (α, β) from the regression

Pt+1 − (KQ
0P +KQ

1PPt) = α + βPt + εPt , (29)

where we fix the volatility matrix ΣP of errors εPt and impose the constraint that β has rank

L. We show in Appendix F how one can compute the ML estimates of this constrained

regression in closed form. For given (λQ, kQ
∞,ΣP , P

θm), the ML estimates of the P parameters

are then given by

KP
0P = KQ

0P + α̂, KP
1P = KQ

1P + β̂. (30)

In comparison to the setting underlying Proposition 3 and Theorem 2, reduced rank risk

premia enforce constraints across the parameters of the P and Q distributions. Consequently,

the ML estimates of the P parameters are no longer given by their OLS counterparts.

This, in turn, means that the implications of Proposition 3 discussed in Section 4.2 will, in

general, no longer apply. Under the reduced-rank restrictions any further assumptions on the

Q-parameters (such as the constraints of the AFNS model) will directly affect the estimated

P parameters as there is a link between the cross-section and time-series properties of yields.

We explore the empirical implications of these observations in Section 5.

4.5 Relevance of Constraints on the P-distribution of Yields

So far, we demonstrated that neither the imposition of no arbitrage nor restrictions on the

Q-dynamics have any effect on the ML estimates of KP
0P and KP

1P . However, restrictions

20Alternatively, we could restrict the rank of [KP
0P − K

Q
0P ,K

P
1P − K

Q
1P ] to L. This would enforce the

stronger restriction that only L linear combination of the factors has non-zero expected excess return.
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on risk premia, such as the reduced-rank assumption, link P and Q and interact with no

arbitrage to affect estimates of KP
0P and KP

1P . We now complete this discussion by examining

whether no arbitrage affects the distribution of bond yields when one also imposes stand-alone

restrictions on the P-distribution of yields that do not impinge on the Q distribution, either

directly or indirectly through risk premiums. Examples of such restrictions are that the

yield portfolios are cointegrated or that the conditional mean of each portfolio yield does not

depend on the other portfolio yields.21 One can impose such restrictions without reference to

a no-arbitrage model.

In these examples OLS no longer recovers the ML estimates of the parameters; rather,

to obtain efficient estimates given ΣP , one must implement generalized least squares (GLS).

Let (Kc∗
0 (ΣP), Kc∗

1 (ΣP)) denote the GLS estimates of (KP
0P , K

P
1P) given ΣP :

(Kc∗
0 (ΣP), Kc∗

1 (ΣP)) = arg max
KP

0P ,K
P
1P

T∑
t=1

f(Pot |Pot−1;KP
1P , K

P
0P ,ΣP), (31)

where the arg max is taken over (KP
0P , K

P
1P) satisfying the appropriate restriction on the

P-dynamics. In the presence of such restrictions, there is a non-degenerate dependence of

(Kc∗
0 , K

c∗
1 ) on ΣP . This dependence means that no arbitrage (which links ΣP across P and

Q) affects the ML estimates of (KP
0P , K

P
1P).

We explore the empirical implications of two types of restrictions on the P-distribution

of yields in Section 5: (1) a model with KP
1P constrained to be diagonal and (2) a model in

which the Pt are cointegrated (with one unit root and no trend).

4.6 Comparing the JSZ Normalization to Other Canonical Models

The normalizations adopted by DS and Joslin (2007) preserve the latent factor structure in (9

– 10), in contrast to the rotation to observable pricing factors in the JSZ normalization. To

our knowledge the only other normalization that has an “observable” state vector is the one

explored by Collin-Dufresne, Goldstein, and Jones (2008) (CGJ). All three of these canonical

models– DS, Joslin, and CGJ– are observationally equivalent.22

In the constant volatility subcase of the CGJ setup the state vector Xt is completely

21 See Campbell and Shiller (1991) (among others) for empirical evidence on cointegration among bond
yields. Diebold and Li (2006) adopt an assumption very similar to the second example.

22Different choices of normalizations, associated with different, unique matrix factorizations of the feedback
matrix KQ

1X , give rise to observationally equivalent models, though models with different structure to their
parameter sets. The JSZ normalization is based on the real Jordan factorization used in Proposition 1. CJG
adopt the companion factorization. For any monic polynomial p(x) = xn − µn−1x

n−1 − · · · − µ1x− µ0, the
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defined by rt and its first N − 1 moments under Q:

Xt = (rt, µ1t, µ2t, . . . , µN−1,t)
′, (32)

where

µ1t =
1

dt
EQ(drt), µk+1,t =

1

dt
EQ(dµkt), k = 1, . . . , N − 2. (33)

Under Q, Xt follows

dXt = (KQ
0,CGJ +KQ

1,CGJXt)dt+ ΣXdZt, (34)

where ΣX is lower triangular, KQ
0,CGJ = (0, 0, . . . , 0, γ)′, and Zt is the standard Brownian

motion. By construction, the matrix KQ
1,CGJ is the companion matrix factorization of the

feedback matrix KQ
1X in (9).

The sense in which Xt is observable in the CGJ normalization is quite different than

in the JSZ normalization, and these differences may have practical relevance. First, it will

not always be convenient to assume that the one-period short-rate rt is observable. Duffee

(1996) highlights various liquidity and “money-market” effects that might distort yields on

short-term bond relative what is implied by a GDTSM. The true short rate– the one that

implicitly underlies the pricing of long-term bonds– will not literally be observable absent

an explicit model of these money-market effects. Second, actions by monetary authorities

might necessitate the inclusion of additional risk factors or jumps in these factors when

explicitly including short rates in the analysis of a DTSM (Piazzesi (2005)). Within the JSZ

normalization one is free to define the portfolio matrix W so as to focus on segments of the

yield curve away from the very short end, while preserving fully observable P .

More subtly, the construction of the state vector in the CGJ normalization requires the

parameters of the Q distribution. Therefore, any change in the implementation of a GDTSM

that changes the implied Q parameters will necessarily change the observed pricing factors

under the CGJ normalization. Fitting the same model to two overlapping sample periods

could, for example, give rise to different values of the observed state variables during the

overlapping period. In contrast, under the JSZ normalization we are led to identical values of

companion matrix is

C(p) =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
µ0 µ1 µ2 · · · µn−1

 .

Given any matrix K, its monic characteristic polynomial is unique, and the matrix K is similar to its
companion matrix C(p(K)).
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P for all overlapping sample periods.

Full separation of the P and Q sides of the unrestricted model appears to be a unique

feature of the JSZ normalization. It is this separation that clarifies the role of no-arbitrage

restrictions in GDTSMs, and gives rise to the enormous computational advantages of our

normalization relative to the DS, Joslin, and CGJ canonical models.

5 Empirical Results

We estimate the three-factor GDTSMs summarized in Table 1 by ML using the JSZ canonical

form and the methods outlined in Section 3.23 As all of our estimated models are stationary

under Q, we report our results in terms of rQ
∞ instead of kQ

∞. The data are end-of-month,

Constant Maturity Treasury (CMT) yields from release Fed H.15 over the period from January

1990 to December 2007 (216 observations). The maturities considered are 6 months, and

1-, 2-, 3-, 5-, 7- and 10-years. From these coupon yields we bootstrap a zero-coupon curve

assuming constant forward rates between maturities. Within Case P, we consider several

subcases. With distinct real eigenvalues, we assume the first three principal components

(PCs) are measured without error (RPC); or the 0.5-, 2-, and 10-year zero coupon yields are

measured without error (RY). Additionally, we estimate models that price the first three

PCs of the zero curve exactly under the constraints of repeated eigenvalues (JPC) and

complex eigenvalues (CPC). Model JPC imposes the eigenvalue constraint of the AFNS

model examined by Christensen, Diebold, and Rudebusch (2009). Finally, a subscript of “1”

indicates the case of reduced-rank risk premiums (L = 1) with the one-period expected excess

returns being perfectly correlated across bonds. In all cases, except as noted, the component

of measurement errors orthogonal to W are assumed to be normally distributed.24 Although

we derive portfolios from the principal components, one could also use portfolio loadings from

23λ̄Q
i denotes the complex conjugate of the ith element of λQ. Also, we defer discussion of case RKF, in

which all yields are measured with error and Kalman filtering is applied, until Section 6.
24In Case Y, this assumption amounts to yield measurement errors being distributed i.i.d. N(0, σ2

p). When
W comes from the principal components, the assumption is equivalent to the higher order PCs (n > N)
being distributed N(0, σ2

p). In both of these cases, we can concentrate σp from the likelihood (conditional
on t = 1 information) through σ̂2

p =
∑T
t=2,m(yot,m − yt,m)2/ ((T − 1)× (J −N)) where yt,m are the model

yields which depend on all the other parameters. To be more precise about the error assumption: let
W⊥ ∈ R(J−N)×J be a basis for the orthogonal complement of the row span of W . Then, since W has
orthonormal rows, we can express yot in terms of its projection onto W and the orthogonal complement to W
as yot = W ′Wyot + (W⊥)′W⊥yot = W ′Pt + (W⊥)′W⊥yot . We assume yot − yt|Pt has the degenerate distribution
N(W ′Pt, σ2

p(W⊥)′W⊥) (which is rotation invariant in the sense that the likelihood is the same for alternative
choices of base for the orthogonal complement to W .) Equivalently, the projection of yot onto W⊥ expressed in
the coordinates W⊥ is i.id. normal: W⊥yot ∼ N(0, σ2

pIJ−N ). This distribution satisfies P(Wyot = Pt|Pt) = 1.
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various parametric splines for yields such as Nelson-Siegel loadings or polynomial loadings.

[Table 1 about here.]

An alternative measurement error structure arises when one supposes that coupon bonds

are measured without error. In this case, portfolios of zero bond yields will necessarily

incorporate measurement error. To that end, we consider

Case C: N coupon bonds are priced exactly and J −N coupon bonds are measured with

normally distributed errors in the GDTSM.

In implementing Case C with coupon-bond data, one can still select N portfolios of zero

coupon yields and construct the rotation where these portfolios comprise the state vector.

Even though such yields may not be observed, this rotation is still valuable because the

portfolios of model-implied zero yields Pt can be approximated from the observed data. For

example, one could bootstrap or spline an approximate zero coupon yield curve from the

observed coupon bond prices and form an approximation of Pt, call it Pat . Importantly,

the projection of Pat onto its own lag will recover reliable starting values for KP
0P and KP

1P .

However, because coupon bond yields are nonlinear functions of P , the irrelevance propositions

discussed in Section 3 do not apply to Case C. In our empirical implementation we consider

the case of the 0.5-, 2-, and 10-year CMT yields measured without error, and the 1-, 3-, 5-,

7-year par coupon yields measured with errors (RCMT). Throughout, we report asymptotic

standard errors for the maximum likelihood estimates that are computed using the outer

product of the first derivative of the likelihood function to estimate the information matrix

(see Berndt, Hall, Hall, and Hausman (1974))

In order to facilitate comparison of the estimates across models with different pricing

factors, all of our results are presented in terms of the implied P distribution of the first

three PCs of the zero yields.25 Table 2 shows that these parameters are largely invariant

to: (i) assumptions about the distribution of measurement errors, (ii) restrictions on the

Q-dynamics through restrictions on λQ, and (iii) restrictions on the relation between the Q-

and P-dynamics through the reduced rank assumption. The only mild exception is that model

RCMT has a higher rQ
∞, which is compensated for by slightly lower λQ

1 and λQ
2 . The close

alignment of results shows that the cross-section of bond yields provides a rich information

set from which to extract the four relevant Q-parameters, rQ
∞ and λQ.

[Table 2 about here]

25That is, under Case Y or when the CMT yields are priced perfectly by the GDTSM, after estimation, we
impose the JSZ normalization based on the PCs of zero yields as the state variables.
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Another notable feature of these estimates is that the results for model CPC are the same

as those for model JPC. This is because, in the limit, as the complex part of the eigenvalues

approach zero, the complex model approaches the Jordan model (see Appendix C). Thus we

see that, for our data set, complex eigenvalues are not preferred over real eigenvalues.

Tables 3 and 4 present the parameters of the P distribution of P . The final row presents

parameters from a V AR (with no pricing involved) of the PCs. Table 4 reveals that initializing

ΣP using OLS residuals leads to very accurate starting values. By way of contrast, if we had

instead used the Dai and Singleton (2000) (DS) canonical form, an accurate initialization

of ΣX would require a reliable initial value for KQ
1 . The JSZ canonical form allows us to

avoid this interplay between the values of ΣX and KQ
1 by applying no-arbitrage constraints

to determine KQ
1P independently of ΣP .

[Table 3 about here]

[Table 4 about here]

Across all specifications, the parameters are very comparable. Partly this is a consequence

of Proposition 3: whether λQ is comprised of distinct real eigenvalues (RPC), complex

eigenvalues (CPC), or repeated eigenvalues (JPC), the estimates of KP
1P and KP

0P are equal to

each other and to the OLS estimates. However, stepping beyond this proposition, when we

change whether it is PCs or individual yields (e.g., RPC versus RY) that are priced perfectly

by the GDTSM under Case P, the parameters of the corresponding P distributions remain

very similar. Imposing the reduced-rank risk premium constraint L = 1 leads to generally

similar, although in for some parameters there are measurable differences in estimates across

corresponding models, particularly for some of the elements of KP
1P .

Regarding the computational efficiency obtained using the the JSZ normalization, we

stress that the only parameters that need to be estimated are (rQ
∞, λ

Q,ΣP) since, as discussed

in Section 3, (KP
0,P , K

P
1P) are determined by concentrating the likelihood and (KQ

0,P , K
Q
1,P)

are determined by no-arbitrage.26 The models were estimated using sequential quadratic

programming as implemented in Matlab’s fmincon. Estimation under Case P using an

informed guess of the Q-eigenvalues took approximately 1.2 seconds.27 Furthermore, 99%+

of the searches converged to the same likelihood value (to within the tolerance) with very

26The standard deviation of the pricing errors, σpricing, can be concentrated out as well, both when L
equals 1 and 3.

27The computations were performed using a single-threaded application on a 2.4GHZ Intel Q6600 processor.
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similar parameter estimates.28 These computational advantages become even more important

in the case where all yields are measured with error, which we consider in Section 6.

5.1 Statistical Inference Within the JSZ Canonical Form

There are two null hypotheses that are of particular interest given our observations in Section 3.

The first test addresses the algebraic multiplicity of eigenvalues in the GDTSM(3) model.

As previously stated, the AFNS model of Christensen, Diebold, and Rudebusch (2007) is

equivalent to the JSZ canonical form with three extra constraints, including a repeated

eigenvalue of KQ
1 . To assess the validity of the null hypothesis λQ

2 = λQ
3 , under the JSZ

normalization, we perform a Likelihood Ratio (LR) test against the alternative that λQ is

unconstrained. With this one linear constraint, the LR test statistic has an asymptotic χ2

distribution with 1 degree of freedom, χ2(1).

The second test of interest is the dimensionality of the one-period risk premium which,

as discussed in Section 4.4, is captured by the rank of ARRP = KP
1P −K

Q
1P . To impose the

constraint that L = 1 we start with the singular value decomposition of ARRP , UDV ′, where

U and V are unitary matrices and D is diagonal with the diagonal sorted in decreasing order.

The null hypothesis of interest– that ARRP has rank 1– is therefore imposed by setting D22

and D33 to zero. To translate this representation into constraints on the parameter space,

note that, for an N -factor GDTSM with L = 1,

DV ′Pt = D11

N∑
j=1

Vj1Pjt. (35)

Therefore, the expected excess returns xrPt (see Section 4.4) are given by

xrPt =
(
KP

0P −K
Q
0P
)

+ U•1 ·

(
D11

N∑
j=1

Vj1Pjt

)
, (36)

where U•1 is the first column of U . The second term on the right-hand side of (36) expresses

the time-varying components of xrPt in terms of a common linear combination V ′•1Pt of

the pricing factors. All of the parameters in (36) are econometrically identified by virtue

28An exception here is the Jordan form where typically there were two local extrema with either the smaller
or the larger eigenvalue repeated. Another general consideration is that one must either optimizes over kQ

∞
or alternatively imposes Q-stationarity on the model if one desires to use rQ

∞ in estimation. In fact, for
estimation purposes, the issue of using kQ

∞ versus rQ
∞ is largely obviated by results in Joslin, Le, and Singleton

(2010) who show how one can concentrate out kQ
∞ under Case P.
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of the facts that V ′•1V•1 = 1 (which identifies D11) and U ′•1U•1 (which identifies the weights

on D11V
′
•1Pt). Furthermore, given N , (36) implies (N − 1)2 cross-equation restrictions on

the parameters of the conditional expectation xrPt. In our case, N = 3, so there are 4

cross-equation restrictions.

[Table 5 about here]

Tests for the equality of two eigenvalues are reported on top panel of Table 5, where a

leading J means that model was estimated under the constraint that λQ
2 = λQ

3 (consistent

with the specifications of AFNS models). In the PC-based models this null hypothesis is not

rejected, while for the yield-based models it is rejected at conventional significant levels. To

interpret this difference across choices of risk factors, we note from Table 2 that the estimated

|λQ
2 − λQ

3 | is larger in model RY than in model RPC, with most of this difference being

attributable to the larger value of |λQ
3 | in model RY. The eigenvalue λQ

3 governs the relatively

high-frequency Q-variation in yields and, thus, is particularly relevant for the behavior of the

short end of the yield curve. Introducing the six-month yield directly as a pricing factor over

weights the short end of the yield curve relative to having the PCs as pricing factors, as the

latter are portfolios of yields along the entire maturity spectrum.

In the bottom panel we report tests of the reduced-rank, risk premium hypothesis that

L = 1. Under all model specifications this hypothesis cannot be rejected. This finding

is consistent with the conclusions reached by Cochrane and Piazzesi (2005), though they

effectively considered models with N = 5 as they examined PC1 through PC5.

5.2 Empirical Relevance of Constraints on P-distribution of Yields

In Section 4.5, we demonstrated that imposing no arbitrage in addition to constraints on P-

distribution of yields affects the forecasts of yields. We now empirically explore the magnitude

of the effect of the interaction of no arbitrage with (i) imposing KP
1P to be diagonal and

(ii) imposing that Pt are cointegrated (with one unit root and no trend). In both cases, we

assume risk premia have full rank and the Q-distribution of yields is unconstrained.

[Table 6 about here]

[Table 7 about here]

Table 6 presents the estimation results when the constraint that KP
1P is diagonal in both

the reference V AR as well as asymptotic standard errors. When the constraint of diagonal
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KP
1P is imposed, no arbitrage has almost no effect on the parameters.29 Additionally, the

differences are small not only in magnitude, but also very small with respect to the standard

errors.

Table 7 presents the estimation results for the V AR and no-arbitrage models when

cointegration (without a trend) is imposed. Here we present standard errors computed by

a parametric bootstrap due to the well-known non-standard asymptotics and small-sample

bias associated with unit roots. The method which we used to bootstrap the standard errors

is as follows: we randomly choose a data t ∈ {1, 2, . . . 216} and initialize the state as the

value of P on this date. Then, using the maximum likelihood estimate of the parameters, we

simulate a path of the term structure for the sample size of 216 months and estimate the

model based on this simulated data. These steps are repeated 1000 times. Although the

no-arbitrage assumption has a somewhat larger effect than the diagonal case, the differences

are again generally small. Taken together, these results suggest that although theoretically

the no-arbitrage model may offer improved inference over the simple V AR model when

stand-alone P-constraints are imposed, such differences may, evidently, be small in practice.

5.3 Small-sample standard errors

Another feature of our normalization is that it facilitates the computation of smal-sample

standard errors that can be compared to the asymptotic standard errors using the outer

product of the first derivative of the likelihood function. We compare these results to

bootstrapped standard errors computed with the procedure given in Section 5.2.

Table 8 presents the results for the model RPC. The asymptotic standard errors tend to

overstate the precision with which we measure the effect of the level PC on the conditional

means of the PCs (KP
1,11, K

P
1,21, K

P
1,31) by a factor of about two. These effects on standard

errors for KP
1 and θP are necessarily due to the small sample properties of OLS estimates in

the V AR for P since, by Proposition 3, the full information ML estimates in the GDTSM

agree with the OLS estimates. Additionally, the precision with which we estimate the Q
parameters is overstated by the asymptotic method by a factor of about 50%. Overall though,

the asymptotic standard errors line up rather well with the bootsrapped standard errors.

[Table 8 about here]

29The average log-likelihood (across t) for the unconstrained no arbitrage model was 38.392, while for
the diagonal-constrained model it was 38.291. The corresponding likelihood ratio test statistic is 44.0, far
exceeding the 99% rejection region of 16.8 indicating a very strong rejection of this constraint.
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5.4 Out-of-Sample Forecasting Results

An interesting question at this juncture is whether differences in parameter estimates translate

into differences in the out-of-sample forecasting performance of these GDTSMs. We compute

rolling re-estimation of each model using data from months t = 1, . . . , T (T = 61, . . . , 215)

and use the model to predict, out of sample, the changes in the principal components over the

next 1-, 3-, 6-, and 12-month periods. As a benchmark, we use the corresponding forecasts

from an unconstrained VAR. As we noted in Section 3, theoretically the forecasts of Pt are the

same across all models that assume these PCs are measured without error and that differ only

in the constraints they impose on the Q distribution of Pt. In particular, with L = 3, whether

we assume distinct real eigenvalues, complex eigenvalues or repeated eigenvalues (as in the

AFNS model), the forecasts of Pt are all exactly the same as those from an unconstrained

VAR. This explains the rows of zeros in Table 9.

[Table 9 about here]

Under the constraint L = 1 (constrained risk premiums), there is an implicit constraint on

KP
1P and, hence, enforcing the no-arbitrage constraints may improve forecasts. From Table 9

we see that there is a moderate improvement in forecasts for PC1 and PC2, particularly at

longer horizons. Models RPC1 and JPC1 have different predictions (though only slightly).

This is because the differences under Q implied by the repeated root assumption now propagate

to the P-dynamics through the restriction relating the P- and Q-drifts.

As further evidence on the empirical relevance of constraints on the P distribution of

P for forecasting we pursue the examples of Section 5.2: constraining KP
1P to be diagonal

(Table 6) or constraining Pt to have a common unit root (the cointegration example of

Table 7).30 The last four rows of Table 9 present the relative forecasting accuracy of V AR

models with these constraints imposed, as well as their no-arbitrage counterparts with RPC

being the unconstrained GDTSM. The constrained model V AR+ diag(KP
1P) shows notable

improvements in out-of-sample forecast accuracy for the first and third PCs, particularly

over longer horizons, but interestingly there is a deterioration in the forecast quality for PC2.

This suggests that feedback from (PC1, PC3) to PC2 is consequential for forecasting the

slope of the yield curve. Imposing the cointegration constraint improves the forecasts of PC1

and, unlike in the prior example, also the forecasts of PC2.

Of most interest for our analysis is the finding that starting from either of the constrained

V ARs and then imposing the no-arbitrage restrictions has virtually no incremental effect

30For the cointegration example, we enforce the constraint that [KP
0P ,K

P
1P ] has a zero eigenvalue or,

equivalently, there is a common unit root and no trend.
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on forecast performance. Even though no-arbitrage restrictions can improve out-of-sample

forecasts in these cases, in practice they have virtually no effect on the results in our data. The

improvements in forecasting with either model RPC + diag(KP
1P) or RPC + 1UR [KP

0P , K
P
1P ]

are entirely a consequence of imposing restrictions on the V AR model for P .

It is instructive to place the findings of Christensen, Diebold, and Rudebusch (2007) for

the AFNS model in the context of these results. They compare the forecast performance of

an AFNS model with both KP
1X and ΣX in (1) constrained to be diagonal to Duffee (2002)’s

canonical GDTSM based on the DS normalization (which is equivalent to our RPC model).31

As with our examples, forcing KP
1X to be diagonal is a direct constraint on the P distribution

of P and, as such, may lead to more reliable forecasts than those from an unconstrained

V AR model for P . In fact, they report that their constrained AFNS model does outperform

Duffee’s model in forecasting bond yields, also with larger improvements over longer horizons.

However, the results in Table 9 suggest that this improvement comes from the restrictions

they imposed on the V AR model for P and not to the use of an AFNS pricing model.

6 Observable Factors with Measurement Errors

Up to this point we have assumed that N portfolios of yields are priced perfectly by the

GDTSM. We turn next to the case where all of the zero-coupon yields used in estimation

equal their GDTSM-implied values plus measurement errors. Under the assumption that the

measurement errors are jointly normal, this is a Kalman filtering problem.

Case F: The yields on J(> N) zero-coupon bonds equal their GDTSM-implied values plus

mean zero, normally distributed errors, yot − yt.

A number of researchers (see, e.g., Duffee and Stanton (2007) and Duffee (2009)) have

emphasized the computational challenges of estimation under Case F. Under the normalization

of Dai and Singleton (2000) (DS), a researcher must estimate (KQ
1X , K

P
0X , K

Q
1X , ρ0, ρ1), where

KQ
1X is lower triangular. In this parametrization, a researcher would likely have a diffuse

prior on all of the parameters. Moreover, the states of the model depend on the parameters,

so they too are unknown. We now show that our JSZ canonical representation extends to

the setting of Case F and demonstrate its benefits both for interpretation and estimation of

GDTSMs.

31Christensen, Diebold, and Rudebusch (2007) assume that all yields are measured with additive measure-
ment errors, the case we turn to in Section 6. However, three-factor models price bonds quite accurately over
the maturity range that they and we consider, so Theorem 2 should be informative about their findings.
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Theorem 1 shows that any GDTSM is observationally equivalent to a model where the

latent states are a given set of portfolios of yields, purged of measurement errors. In Case P,

when the portfolios are assumed to be observed without measurement errors, this means the

states are simply these portfolios of yields. In Case F we can maintain the interpretation

that the latent states are portfolios of yields with known portfolio matrix W , though now

constructed with the model-implied (measurement-error free) yields yt. Equivalently, under

Case F, one can view Pt = Wyt as the “true” values of the pricing factors and view Pot = Wyot

as its observed counterpart.32

To set up the Kalman filtering problem for Case F we start with a given set of portfolio

weights W ∈ RJ×N . From W and (λQ, rQ
∞,ΣP), we construct (KQ

0 , K
Q
1 , ρ0, ρ1) as prescribed

in Proposition 2. From the no arbitrage relation (A2-A3) we then construct A ∈ RJ and

B ∈ RJ×N with yt = A+BPt and thus the relations

∆Pt = KP
0P +KP

1PPt + ΣPε
P
t , (37)

yot = A+BPt + ΣY ε
m
t , (38)

where εPt ∼ N(0, IN) and εmt ∼ N(0, IM) are the measurement errors. Researchers have

considered several parameterizations of the volatility matrix ΣY for εmt . In our subsequent

empirical examples we examine the cases of independent (diagonal ΣY ) errors with distinct

or common volatilities. These relations give the usual observation and state equations of the

Kalman filter and they fully characterize the conditional distribution of the yield curve in

terms of rotation-invariant parameters.

The computational benefits from using the JSZ normalization in this Case F arise, in part,

from the observation that the least-squares projection of Pot onto Pot−1 will nearly recover the

ML estimates of KP
0P and KP

1P to the extent that Pot ≈ Pt (and we can choose portfolios, such

as the principal components, to make these errors small).33 Additionally, although not exact,

we have nearly concentrated the likelihood in that the optimal P parameters will typically

have weak dependence on the Q parameters owing to the fact that, as the Q parameters vary,

the filtered states largely do not change.34

With the JSZ normalization, the parameter estimates are directly comparable across

distributional assumptions on the measurement errors. That is, in analogy to Section 3,

32In fact, an equivalent characterization of the JSZ normalization is that, for a given portfolio matrix W ,
AW (ΘQ) = 0 and BW (ΘQ) = IN .

33This approximation can be verified empirically by comparing Pot to EP
t [Pt] or EP

T [Pt].
34This is in contrast to, for example, the rotation of DS where, as the lower triangular KQ

1 is changed, the
latent states vary as well. Thus, necessarily, so do the optimal P parameters given the specified Q parameters.
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by fixing the yield portfolios, both measured with and without error, the P parameters are

now directly comparable regardless of the Q structure. The parameters are also directly

comparable across sample periods. When the P-parameters are defined indirectly through a

Q-normalization, such comparisons will in general not be possible.

6.1 Empirical Implication

To illustrate Case F we estimate model RKF in which all J zero-coupon bonds used in

estimation are measured with errors, and the eigenvalues of KQ
1 are all real. From Table 2

it is seen that the estimates of the Q parameters for model RKF are similar to those for

models RPC and RY that are fit with N portfolios of yields priced exactly by the GDTSM(3).

Similarly, from Table 3 and Table 4 we see that the P parameters also generally match up

across the models with and without filtering. An exception is the P distribution of PC3:

when filtering, the volatility of PC3 is reduced by about 10%, and PC3 has a larger effect on

the conditional mean of PC1 and PC2 (higher KP
1,13, K

P
1,23). That is, PC3 both becomes a bit

smoother and the model attributes a slightly greater affect of PC3 on forecasts of changes in

the level and slope of the yield curve. For out-of-sample forecasts using model RKF, Table 9

shows that PC1 is better predicted by a simple VAR, while PC2 is predicted better than a

VAR (though the differences are modest).

Also of interest in the presence of filtering are comparisons of the model-implied PCs with

their corresponding sample estimates that, by assumption, are contaminated by measurement

errors. Figure 1 plots the time series of the PCs computed from data against those from models

RCMT, RY and RKF. For model RKF we plot the model-implied filtered PCift = Et[PCit].

For all three models, the PCio are nearly identical to their model-implied counterparts. This

is not surprising: if the model is accurately pricing the cross section of bonds, then it is

almost a necessity that it will accurately match level, slope, and curvature. PC3f deviates

slightly from PC3o, and this is the source of the small differences seen in Figure 1.

[Figure 1 about here]

A quite different picture emerges when we increase the number of pricing factors to four or

five using the JSZ normalization under Case F. For i = 1, 2, 3, PCif lines up well with PCio,

as before. However from Figure 2 it is seen that (PC4f , PC5f) appears to be a smoothed

version of (PC4o, PC5o), with the differences being substantial during some periods. To

interpret these patterns we note that the likelihood function, through the Kalman filter,

attempts to match both the cross-sectional pricing relationships and the time series variation

31



in excess returns. The higher order PC4 and PC5 only have small impacts on pricing since

a three factor model already prices the cross-section of bonds well, but they do contain

information about time-variation in expected returns.35

[Figure 2 about here]

Further insight into how ML addresses this dual objective is revealed by the estimated

half-lives of the pricing factors under Q (computed from the estimated λQ). In the five-

factor GDTSM the Q half-lives of Pt are (in years) (15, 8.4, 2.4, 0.13, 0.08), whereas they

are (24, 1.2, 0.78) in the three-factor model. The presence of a factor with a very low half-

life induces large movements in the short rate (the one-month rate in our discrete time

formulation). Moreover, the sample average short rate is 23% which also results in large,

wildly oscillating Sharpe ratios.

It is not the need to filter per se that gives rise to these fitting problems with a 5-factor

model. When the first five PCs are priced perfectly by the GDTSM (Model RPC), the

properties of the short rate are now more plausible (see Table 10). However, the model-

implied yields on bonds with maturities beyond those included in estimation are now wildly

implausible. Furthermore, imposing the reduced rank restriction (Model RPC1) does not

materially improve the fit with five factors. For all of these error specifications with five

factors, the Sharpe ratios for the higher-order PCs show substantial variation.36 In contrast,

the 3-factor specifications produce plausible values for these moments. We interpret this

evidence as being symptomatic of over-fitting, of having too many pricing factors.

[Table 10 about here]

Does the accommodation of filtering substantially increase the computational complexity

of estimation using the JSZ normalization? The parameters (KP
0,P , K

P
1P) and σpricing are now

included as part of the parameter search. As we argued for ΣP in the Case RP case, we obtain

very accurate starting points for (KP
0,P , K

P
1P) irrespective of any inaccuracies in (rQ

∞, λ
Q). The

additional cost of computing the Kalman filter as well as the lack of concentration of the

likelihood function results in estimation times of approximately 10.4 seconds and, as without

35 Cochrane and Piazzesi (2005, 2008) find that a portfolio of smoothed forward rates, that is correlated
with PC4, predicts bond returns. Joslin, Priebsch, and Singleton (2010) find that smoothed growth in
industrial production, which is also correlated with PC4, is an important determinant of excess returns for
level and slope portfolios.

36See Duffee (2010) for a more extensive empirical evaluation of the properties of Sharpe ratios in GDTSMs.
Joslin, Priebsch, and Singleton (2010) also investigate maximal Sharpe ratio variation within the context of
macro-GDTSMs.
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filtering, virtually all local optima are identical to within set tolerances. Using the results of

the RP estimation as a starting point for the RF estimation decreased the estimation time to

approximately 8.7 seconds. Thus, under the JSZ normalization, the estimation remains very

fast even when all yields are measured with errors.

7 Conclusion

We derive a new canonical form for Gaussian dynamic term structure models. This canonical

form allows for (essentially) arbitrary observable portfolios of zero-coupon yields to serve

as the state variable. This allows us to characterize the properties of a GDTSM in terms

of salient observables rather than latent states. Additionally, the risk-neutral distribution

is parsimoniously characterized by the eigenvalues, λQ, of the drift matrix and a constant

that, under Q-stationarity, is proportional to the long run mean of the short rate, rQ
∞. Our

canonical form reveals that simple OLS regression gives the maximum likelihood estimates

of the parameters governing the physical distribution of bond yields. This results remains

true even if additional restrictions of several types, such as restrictions on the risk-neutral

condtional distribution of yields, are imposed. An immediate implication of this result is that

constraints such as imposing the arbitrage-free Nelson Siegel model or imposing complex

Q-eigenvalues are irrelevant for forecasting bond yields. However, when one imposes structure

on risk premia, such as the reduced-rank risk premium, a wedge from the unconstrained OLS

estimates arises. Our canonical form allows us to easily overcome the challenge of empirical

estimation of GDTSMs in the case of filtering. The empirical results suggest that either

some caution should be exercised in interpreting higher-dimensional model or alternatively

(perhaps preferably) care should be taken to avoid highly overparametrized models with

implausible implications for either pricing or bond risk premia. Taken together, our results

shed new light on estimation and interpretation of GDTSMs, and the effects of different

specifications of the risk premiums and the risk-neutral distribution of bond yields on the

observed dynamics of the yield curve.

33



Appendices

A Bond Pricing in GDTSMs

Under (1–3), the price of an m-year zero-coupon bond is given by

Dt,m = EQ
t [e−

Pm−1
i=0 rt+i ] = eAm+Bm·Xt , (A1)

where (Am,Bm) solve the first-order difference equations

Am+1 −Am = KQ′
0 Bm +

1

2
B′mH0Bm − ρ0 (A2)

Bm+1 − Bm = KQ′
1 Bm − ρ1 (A3)

subject to the initial conditions A0 = 0,B0 = 0. See, for example, Dai and Singleton (2003).

The loadings for the corresponding bond yield are Am = −Am/m and Bm = −Bm/m.

B Invariant Transformations of GDTSMs

As in DS, given the GDTSM with parameters as in (1–3) and latent state Xt, if we may

apply the invariant transformation X̂t = C +DXt we then have an observationally equivalent

GDTSM with latent state X̂t and parameters given by

KQ
0X̂

= DKQ
0X −DK

Q
1XD

−1C, (A4)

KQ
1X̂

= DKQ
1XD

−1, (A5)

ρ0X̂ = ρ0X − ρ′1XD−1C (A6)

ρ1X̂ = (D−1)′ρ1X , (A7)

KP
0X̂

= DKP
0X −DKP

1XD
−1C, (A8)

KP
1X̂

= DKP
1XD

−1, (A9)

H0X̂ = DH0XD
′ (A10)

Given a parameter vector Θ, we denote the parameter vector of X̂t as C +DΘ.
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C Proof of Proposition 1

We require a slight variation of the standard Jordan canonical form of a square matrix which

maintains all real entries and bears a similar relation to the real Schur decomposition and

the Schur decomposition.

Definition 1. We refer to the real ordered Jordan form of a square matrix A ∈ Rn×n

with eigenvalues (λ1, λ2, . . . , λm) with corresponding algebriac multiplicities (m1,m2, . . . ,mm)

as

A = J(λ) ≡ diag(J1, J2, . . . , Jm),

where if λi is real, Ji is the (mi ×mi) matrix

Ji =


λi 1 · · · 0

0 λi · · · 0
...

...
. . . 1

0 · · · 0 λi

 ,

and if |imag(λi)| > 0, Ji is the (2mi × 2mi) matrix

Ji =


R I2 · · · 0

0 R · · · 0
...

...
. . . I2

0 · · · 0 R

 with R =

(
real(λi) −|imag(λi)|
|imagl(λi)| real(λi)

)

and otherwise the block is empty. Additionally, we apply an arbitrary ordering on C to order

the blocks by their eigenvalues. In case there exist eigenvalues with geometric multiplicity

greater than one, we also order the blocks by size.

Proof of Proposition 1: We first prove the existence by showing that a latent factor Xt

with arbitrary Q-dynamics

∆Xt = KQ
0X +KQ

1XXt−1 + ΣXε
Q
t ,

can be transformed to our desired from. By standard linear algebra, there exists matrix U

so that UKQ
1XU

−1 is in the standard Jordan normal form. By Lemma 1 of the supplement

to this paper (see Joslin, Singleton, and Zhu (2010)), we can further transform to have the

real ordered form of Definition 1. Note that by Joslin (2007), each eigenvalue has geometric
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multiplicity one and thus is associated with only one block due to the Markovian assumption.

Now we separately consider the cases of real and imaginary Jordan blocks and show that we

may transform the latent state to have ρ1 = ι.

1. A Jordan block Ji corresponds to real eigenvalues with algebraic multiplicity mi (mi

could be 1). Then Ji is mi ×mi matrix

Ji =


λi 1 · · · 0

0 λi · · · 0
...

...
. . . 1

0 · · · 0 λi

 .

Let ρ1i = (ρ
(1)
1i , . . . , ρ

(k)
1i ) be the components of ρ1 that correspond to the Jordan block

Ji. We observe that ρ
(1)
1i 6= 0, for otherwise we can do without state variable X

(1)
ti ,

contradicting our assumption of an N -factor model. One can check that BiJiB
−1
i = Ji

if and only if Bi has the form

Bi =


b

(1)
i b

(2)
i · · · b

(mi)
i

0 b
(1)
i · · · b

(mi−1)
i

...
...

. . .
...

0 0 · · · b
(1)
i

 . (A11)

In particular, we can verify that the matrix

Bi =


ρ

(1)
1i ρ

(2)
1i − ρ

(1)
1i · · · ρ

(mi)
1i − ρ

(mi−1)
1i

0 ρ
(1)
1i · · · ρ

(mi−1)
1i − ρ(mi−2)

1i
...

...
. . .

...

0 0 · · · ρ
(1)
1i


satisfies BiJiB

−1
i = Ji and (B−1

i )′ρ1i = ι.

2. A Jordan block Ji corresponds to complex eigenvalues with multiplicity mi. Then Ji is
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the 2mi × 2mi matrix defined by

Ji =


R I2 · · · 0

0 R · · · 0
...

...
. . . I2

0 · · · 0 R

 with R =

(
real(λi) −|imag(λi)|
|imagl(λi)| real(λi)

)
.

The proof is analogous to the real case, as the individual steps are the same but require

lemmas to verify the intuitive steps hold with (2× 2) block matrices replacing scalars.

The details of the proof and subsequent steps for this case are available in Joslin,

Singleton, and Zhu (2010).

We obtain the correct form of KQ
0X as follows. We can demean the components of X

corresponding to non-singular Jordan blocks by transforming X̂b
t = Xb

t +
(
KQ,b

1X

)−1

KQ,b
0X .

There can be at most one block corresponding to a zero eigenvector (which by our ordering

would be the first), and the first m1 − 1 entries of KQ
0X can then be set to zero by translating

to X̂b
t = Xb

t − (KQ,b
0X,2, K

Q,b
0X,3, , . . . , K

Q,b
0X,m1−1, , 0)′. Finally, ρ0 can then be set to zero by the

translation X̂m1,t = Xm1,t − ρ0.

The uniqueness of the canonical GDTSM stated in Proposition 1 follows from the unique-

ness of an ordered Jordan decomposition and the fact that (i) the Jordan decomposition is

maintained only by a block matrix where B has form (A11) and (ii) the only such B that

satisifies B′ι = ι is B = I. Furthermore, for θ ∈ ΘJSZ and any vector of parameters a 6= 0,

either the translating by a violates the form of KQ
0X (which happens if any state besides

the last zero eigenvalue state (if one exists) is translated) or the translating violates ρ0 = 0

(which happens if there is a zero eigenvalue and only the last such state is translated). This

establishes the uniqueness and completes the proof of Proposition 1.

D Details of Step 3 in the Proof of Theorem 1

We have established that every GDTSM is observationally equivalent to a Jordan normalized

model and the transformation relating the two models is found by computing the associated

portfolio loadings:

GPP = {AW (ΘJ) +BW (ΘJ)′ΘJ : ΘJ ∈ GJ}. (A12)
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Observe that since ρJ1 = ι, BW (ΘJ) depends only on λQ; let us denote BλQ ≡ BW (ΘJ)′.

Similarly, let us denote AλQ,ρ0,Σ ≡ AW (ΘJ). Since, for any λQ, the map sλQ(Σ) = B−1
λQ Σ is a

bijection37, we can reparametrize the conditional volatility by

GPP = {AΘJ +BΘJ ΘJ : ΘJ = (kQ
∞em1 , J(λQ), 0, ι,KP

0J , K
P
1J , sλQ(ΣP))}. (A13)

Here we use ΣP to denote the parameterization since, for ΘJ = (kQ
∞em1 , J(λQ), 0, ι,KP

0J , K
P
1J , B

−1
λQ ΣP),

the transformed model AΘJ + BΘJ ΘJ (which has Pt as the factors since it is in GP) has

innovation volatility of BλQB−1
λQ ΣP = ΣP .

Define the bijective map k on RN × RN×N by:

kλQ,kQ
∞,ΣP

(K0, K1) =
(
BλQK0 −BλQK1B

−1
λQAλQ,kQ

∞,ΣP
, BλQK1B

−1
λQ

)
. (A14)

The function k maps (K0, K1) under the change of variables Xt 7→ AλQ,kQ
∞,ΣP

+BλQXt. Using

k, we further reparametrize GPP by

GPP = {AΘJ +BΘJ ΘJ : ΘJ = (kQ
∞em1 , J(λQ), 0, ι, k−1

λQ,kQ
∞,ΣP

(KP
0P , K

P
1P), sλQ(ΣP))}. (A15)

This gives our desired reparameterization of GPP by ΘJSZ = (λQ, kQ
∞,ΣP , K

P
0P , K

P
1P). This is

because, for ΘJ =
(
kQ
∞em1 , J(λQ), 0, ι, k−1

λQ,kQ
∞,ΣP

(KP
0P , K

P
1P), sλQ(ΣP)

)
,

ΘP = AΘJ +BΘJ ΘJ

=
(
kλQ,kQ

∞,ΣP
(0, J(λQ)), rλQ,kQ

∞,ΣP
(kQ
∞, ι), K

P
0P , K

P
1P ,ΣP

)
,

(A16)

where rλQ,kQ
∞,ΣP

maps (ρ0, ρ1) under the change of variables Xt 7→ AλQ,kQ
∞,ΣP

+BλQXt:

rλQ,kQ
∞,ΣP

(ρ0, ρ1) =
(
ρ0 − ρ′1B−1

λQAλQ,kQ
∞,ΣP

,
(
B−1
λQ

)′
ρ1

)
. (A17)

E Proof of Theorem 2

We first prove that (26–27) holds when H0 = {η0 = (C0, D0,Σ0
X , P

θ0m)}. Let

(Kη0
0X , K

η0
1X) = arg max

K0X ,K1X

f(PT , yT , . . . ,P1, y1|P0, y0; η0),

37For simplicity, we denote the Cholesky factorization, Σ, but we have in mind the covariance ΣΣ′.
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which we subsequently show is uniquely maximized.

Let (C0
P , D

0
P) denote the first N -element of C0 and upper left N × N block of D0,

respectively. By our assumption of invertibility of D0
P , we have that Xt = (D0

P)−1(Pt − C0
P).

Thus, by our assumptions on the measurement errors,

f(PT , yT , . . . ,P1, y1|P0, y0; η0, K0X , K1X) = f(PT , . . . ,P1|P0; η0, K0X , K1X)×
T∏
t=1

f(emt|Pt; η0),

and so

(Kη0
0X , K

η0
1X) = arg max

K0X ,K1X

f(PT , . . . ,P1|P0; η0). (A18)

Furthermore, substituting into (24) we have

∆Pt = D0,PK1XD
−1
0,PPt +

(
D0,PK0X −D0

PK1X(D0,P)−1C0,P
)

+Dεt , εt ∼ ΣX

It follows that the maximum value in (A18) is at most equal to the value of the likelihood

corresponding to the OLS estimate. Note that although the value of the maximum likelihood

depends on D, the argument that maximizes the value does not depend on D by the classic

Zellner (1962) result. The OLS likelihood value is achieved by choosing (K0X , K1X) to satisfy

(26–27) , which is feasible by the assumption that (K0X , K1X) is unconstrained and D0
P is

full rank.

This proves our result since (KH0X , K
H
1X) = (Kη0

0X , K
η0
1X) for some η0 and we have shown

that (26–27) hold for any η0. Note that in the case that the parameters are under-identified,

there will not be a unique maximum likelihood estimate in the sense that several η0 may give

the same likelihood, but (26–27) will hold for all possible choices. For some H, there may not

exist a maximizer, in which case the result holds vacuously. However, standard conditions

and arguments, such as compactness, provide for the existence of a maximizer.

F ML Estimation of Reduced-Rank Regressions

Consider the regression as in (29) of the general form Yt = α + βXt + εt subject to the

constraint that β has rank r and where εt ∼ N(0,Σ) i.i.d. with Σ known. That is, we wish

to solve the program

(α, β) = arg min
rank(β)=r

∑
t

(Yt − (α + βXt)
′Σ−1(Yt − (α + βXt)).
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It is easy to verify that by first de-meaing the variables we may assume without loss of

generality that α ≡ 0. Furthermore, by transforming the variables we may assume again

without loss of generality that Σ = I and
∑

tXtX
′
t = I. Under these assumptions, we wish

to solve

β = arg min
rank(β)=r

trace ((Y −Xβ′)(Y −Xβ′)′)

= arg min
rank(β)=r

trace ((Y −Xβ′OLS)(Y −Xβ′OLS)′)− 2 trace (X ′(Y −Xβ′OLS)(β − βOLS))

+ trace(((X ′X(β′ − β′OLS))(β − βOLS))

= arg min
rank(β)=r

‖β − βOLS‖F

where Y and X are (T ×N) and (T ×M) matrices with the time series stacked vertically,

βOLS = (X ′X)−1X ′Y , and F denotes the Frobenius norm: ‖A‖2
F =

∑
i,j |Ai,j|2. The above

equalities repeatedly use the identity trace(AB) = trace(BA). As in Keller (1962), this

minimization problem has solution β∗ = UD∗rV
′ where UDV ′ gives the singular value

decomposition of βOLS and D∗r is the same as D except setting all of the singular values for

n > r to 0. This same proof applies again in the case where β is not square which would be

the case where one assumes that only a single risk is priced (i.e. [KP
0 , K

P
1 ]− [KQ

0 , K
Q
1 ] has

reduced rank) rather than only a single risk has time-varying price of risk, as we do here.
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Tables

Table 1: Summary of Model Specifications

Model Name Specification

RPC Real λQ′ = (λQ
1 , λ

Q
2 , λ

Q
3 ), PC1, PC2, PC3 priced exactly

RY Real λQ′ = (λQ
1 , λ

Q
2 , λ

Q
3 ), 0.5-, 2-, and 10-year zeros priced exactly

CPC Complex λQ′ = (λQ
1 , λ

Q
2 , λ̄

Q
2 ), PC1, PC2, PC3 priced exactly

JPC Real repeated λQ′ = (λQ
1 , λ

Q
2 , λ

Q
2 ), PC1, PC2, PC3 priced exactly

RPC1 RPC and rank 1 risk premia
RY1 RY and rank 1 risk premia
RCMT1 RCMT and rank 1 risk premia
JPC1 JPC and rank 1 risk premia
RKF Real distinct λQ, and all yields are measured with error

RCMT Real λQ′ = (λQ
1 , λ

Q
2 , λ

Q
3 ), 0.5-, 2-, and 10-year CMTs priced exactly
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Table 2: ML estimates of the risk-neutral parameters of the model-implied principal
components.

Model Parameter Estimate

λQ
1 λQ

2 λQ
3 /im(λQ2 ) rQ

∞

RPC -0.0024 -0.0481 -0.0713 8.61
(0.000566) (0.0083) (0.0133) (0.73)

RY -0.00196 -0.0404 -0.0897 9.37
(0.000378) (0.00274) (0.0073) (0.789)

RKF -0.00245 -0.0472 -0.0739 8.45
(0.000567) (0.00724) (0.0125) (0.678)

RCMT -0.00178 -0.0372 -0.103 11.2
(7e-005) (0.000819) (0.0029) (0.346)

JPC -0.00225 -0.0582 -0.0582 8.87
(0.000409) (0.00123) (0.00123) (0.536)

CPC -0.00225 -0.0582 -0.0582 8.87
(0.000409) (0.00123) (0.00123) (0.536)

RPC1 -0.00241 -0.0477 -0.0721 8.61
(0.000559) (0.00766) (0.0126) (0.715)

RY1 -0.00197 -0.0403 -0.0902 9.37
(0.000373) (0.00269) (0.00723) (0.775)

RCMT1 -0.00178 -0.0371 -0.103 11.2
(6.92e-005) (0.000828) (0.003) (0.345)

JPC1 -0.00224 -0.0583 -0.0583 8.9
(0.000405) (0.00122) (0.00122) (0.54)

rQ
∞ is normalized to percent per annum (by multiplying by 12× 100). Asymptotic standard

errors are given in parentheses.
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Table 5: Likelihood ratio tests.

H0 : λQ
2 = λQ

3

H0 logL0 Ha logLa LR stats χ2(1) p-value

JPC 38.3912 RPC 38.3921 0.375 0.540
JPC1 38.3865 RPC1 38.3876 0.463 0.496
JY 38.1679 RY 38.1863 7.906 0.005
JY1 38.1638 RY1 38.183 8.266 0.004
JRCMT 39.0123 RCMT 39.0414 12.513 0.000

H0 : rank
(
KP

1P −K
Q
1P
)

= 1

H0 logL0 Ha logLa LR stats χ2(4) p-value

RPC1 38.3876 RPC 38.3921 1.9475 0.745
JPC1 38.3865 JPC 38.3912 2.0358 0.729
RY 38.1863 RY1 38.1830 1.4217 0.840
JY 38.1679 JY1 38.1638 1.7819 0.776
RCMT1 39.0387 RCMT 39.0414 1.161 0.884

The top panel reports tests equality of two eigenvalues, and bottom panel reports tests
for rank-1 risk premium. The likelihood-ratio statistics are computed as LR = −2(T −
1)(logL0− logLa), where T = 216 is sample size and logL0 and logLa are the log-likelihoods
under the null and alternative, respectively. All log-likelihoods are conditional on t = 1 and
are time series averages across the T − 1 observations.
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Table 6: The conditional mean parameters for the model with KP
1P constrained to be

diagonal.

With No Arbitrage Without No Arbitrage

KP
0P KP

1P KP
0P KP

1P
-0.0129 -0.151 -0.0129 -0.151

(0.0193) (0.135) (0.0188) (0.131)
0.00754 -0.286 0.00761 -0.289

(0.00636) (0.202) (0.00635) (0.201)
0.013 -1.97 0.0129 -1.95

(0.00292) (0.423) (0.00292) (0.421)

KP
1P is annualized by multiplying by 12. The left panel imposed no arbitrage and uses yield

data for all maturities. The right panel does not use no arbitrage and simply computes the
estimates of a V AR of Pt with KP

1P constrained to be diagonal through GLS.
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Table 7: The conditional mean parameters for the model with cointegration with no trend
and one unit root imposed.

With No Arbitrage Without No Arbitrage

KP
0P KP

1P KP
0P KP

1P
-0.0644 -0.258 0.113 5.22 -0.0668 -0.24 0.266 5.29

(0.0602) (0.336) (0.733) (3.17) (0.218) (0.225) (0.792) (2.67)
-0.0189 0.0495 -0.112 4.32 -0.0172 0.0519 -0.168 4.32

(0.0236) (0.124) (0.288) (1.28) (0.0827) (0.0824) (0.31) (1.03)
0.007 -0.0241 0.0482 -1.73 0.00713 -0.0184 0.0632 -1.71

(0.0105) (0.0562) (0.117) (0.565) (0.0326) (0.0362) (0.126) (0.471)

The left panel imposed no arbitrage and uses yield data for all maturities. The right panel does
not use no arbitrage and simply computes the estimates of a V AR of Pt with cointegration
imposed so that [KP

0P , K
P
1P ] has rank 2.
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Table 8: The standard errors of the parameter estimates computed both by the asymptotic
method and using a bootstrap method.

Parameter Estimate Asymptotic S.E. Bootstrap S.E.

KP
1,11 -0.2543 (0.1551) (0.2733 )

KP
1,12 0.1595 (0.5428) (0.8277 )

KP
1,13 5.235 (2.761) ( 3.1 )

KP
1,21 0.03235 (0.05425) (0.1057 )

KP
1,22 -0.3153 (0.2359) (0.3187 )

KP
1,23 4.239 (1.212) (1.233 )

KP
1,31 -0.03047 (0.02263) (0.04143 )

KP
1,32 -0.02772 (0.08759) (0.1314 )

KP
1,33 -1.755 (0.4638) (0.5337 )

θP
1 -0.1109 (0.02762) (0.02496)
θP

2 0.02539 (0.007469) (0.00731)
θP

3 0.00631 (0.0003512) (0.0003162)

λQ
1 -0.002403 (0.0005662) (0.0006167)
λQ

2 -0.04813 (0.008296) (0.007395)
λQ

3 -0.07127 (0.0133) (0.01162)
rQ
∞ 0.08606 (0.007302) (0.01067)

σ1 0.02205 (0.00126) (0.001337)
σ2 0.008838 (0.0004084) (0.001508)
σ3 0.003735 (0.0001643) (0.0002803)
ρ21 -0.5694 (0.04155) (0.2268)
ρ31 0.5842 (0.0485) (0.1161)
ρ32 -0.4218 (0.06114) (0.156)

Here θP = −(KP
1 )−1KP

0 and ρij is the conditional correlation between the ith and jth compo-
nents of Pt.

51



T
ab

le
9:

T
h
e

im
p
ro

ve
m

en
t

in
ou

t-
of

-s
am

p
le

fo
re

ca
st

ac
cu

ra
cy

re
la

ti
ve

to
th

e
fo

re
ca

st
s

fr
om

a
V
A
R

(1
).

F
or

ec
as

t
E

rr
or

R
el

at
iv

e
to

P
C

1
P
C

2
P
C

3

U
n
co

n
st

ra
in

ed
V
A
R

(1
)

(%
)

1m
3m

6m
12

m
1m

3m
6m

12
m

1m
3m

6m
12

m

R
P

C
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
R

Y
-0

.3
-0

.5
-0

.8
-0

.7
0.

2
0.

4
0.

4
0.

0
0.

1
0.

8
1.

3
0.

8
R

K
F

0.
9

3.
0

5.
9

12
.9

-1
.7

-4
.7

-7
.7

-1
0.

0
1.

2
3.

3
7.

7
10

.6
J
P

C
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
-0

.0
-0

.0
-0

.0
C

P
C

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

-0
.0

-0
.0

-0
.0

R
P

C
1

-2
.1

-4
.3

-6
.2

-7
.1

-2
.0

-3
.8

-3
.8

-1
.6

-1
.5

-2
.7

-2
.5

0.
2

R
Y

1
-2

.2
-4

.8
-7

.3
-8

.8
-1

.9
-3

.9
-3

.9
-1

.8
-1

.6
-2

.7
-2

.5
-1

.0
J
P

C
1

-2
.3

-4
.7

-6
.7

-8
.2

-1
.9

-3
.7

-4
.2

-2
.7

-1
.5

-2
.6

-1
.9

0.
6

V
A
R

+
d
ia
g
(K

P 1
P

)
-5

.3
-1

2.
1

-1
8.

6
-2

1.
6

0.
7

6.
3

11
.6

5.
7

-2
.4

-5
.4

-9
.1

-1
3.

0
R

P
C

+
d
ia
g
(K

P 1
P

)
-5

.3
-1

2.
1

-1
8.

6
-2

1.
6

0.
7

6.
3

11
.6

5.
6

-2
.4

-5
.4

-9
.1

-1
3.

0
V
A
R

+
1U

R
[K

P 0
P
,K

P 1
P

]
-5

.3
-1

0.
0

-1
2.

9
-1

3.
5

-2
.3

-6
.4

-8
.9

-6
.2

-1
.0

-1
.6

-1
.7

-0
.7

R
P

C
+

1U
R

[K
P 0
P
,K

P 1
P

]
-5

.3
-1

0.
0

-1
3.

0
-1

3.
6

-2
.3

-6
.3

-8
.8

-6
.0

-1
.0

-1
.6

-1
.8

-0
.9

F
or

ec
as

t
er

ro
rs

fr
om

a
V
A
R

(1
)

is
gi

ve
n

b
y √ √ √ √

1

T
−

59

T ∑ t=
6
0

(∆
P
C
i t

+
1
−
E
t[

∆
P
C
i t

+
1
])

2
,

w
h
er

e
th

e
ex

p
ec

ta
ti

on
,
E
t,

is
co

m
p
u
te

d
u
si

n
g

th
e

m
o
d
el

es
ti

m
at

ed
w

it
h

d
at

a
fr

om
ti

m
e
τ

=
1,
..
.,
t.

F
or

ex
am

p
le

,
a

n
u
m

b
er

of
-5

im
p
li
es

th
at

th
e

m
o
d
el

h
as

5%
sm

al
le

r
ou

t-
of

-s
am

p
le

R
M

S
E

th
an

th
e

u
n
re

st
ri

ct
ed

V
A
R

(1
).

52



Table 10: This sample moments for three-factor and five-factor GDTSMs.

3 Factor Models 5 Factor Models

RPC RPC1 RKF RPC RPC1 RKF

mean 1-month rate 4.2% 4.2% 4.2% 4.3% 4.3% 23%
mean 30-year rate 5.8% 5.8% 5.9% -31% -39% 0.63%
PC4 Sharpe ratio mean 0.096 0.095 0.032 0.031 0.076 30
PC4 Sharpe ratio volatility 0.086 0.018 0.088 0.31 0.2 25
PC5 Sharpe ratio mean 0.096 0.095 0.032 0.031 0.076 30
PC5 Sharpe ratio volatility 0.086 0.018 0.088 0.31 0.2 25
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Figure 1: This figure plots the PCs implied by models RCMT, RY, and RKF against
the estimated PCs from the data. All three models imply PC1 and PC2 that are almost
indistinguishable from the data and from each other. The models imply slightly different
PC3 but the difference is very small.
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Figure 2: This figure plots the model implied and sample principal components for the
fourth and fifth PCs when all PCs are assumed to be measured with normally distributed
errors. High order PCs implied by the models are visibly different from the data.

55


	A Canonical GDTSM with Observable Risk Factors
	P-dynamics and Maximum Likelihood Estimation
	On the Relevance of No Arbitrage for Forecasting
	Irrelevance of Factor Structure for Forecasting
	Factor Structure in Arbitrage Models
	Irrelevance of Constraints on the Q-distribution of Yields
	Conditions for Irrelevance of Constraints on Latent Factors
	Relevance of Constraints on the Structure of Excess Returns
	Relevance of Constraints on the P-distribution of Yields
	Comparing the JSZ Normalization to Other Canonical Models

	Empirical Results
	Statistical Inference Within the JSZ Canonical Form
	Empirical Relevance of Constraints on ¶-distribution of Yields
	Small-sample standard errors
	Out-of-Sample Forecasting Results

	Observable Factors with Measurement Errors
	Empirical Implication

	Conclusion
	Bond Pricing in GDTSMs
	Invariant Transformations of GDTSMs
	Proof of Proposition 1
	Details of Step 3 in the Proof of Theorem 1 
	Proof of Theorem 2
	ML Estimation of Reduced-Rank Regressions 

