A New Perspective on Gaussian

Dynamic Term Structure Models

Scott Joslin® Kenneth J. Singleton! and Haoxiang Zhu'

First version: November 9, 2008

This version: October 17, 2010
Forthcoming Review of Financial Studies

Abstract

In any canonical Gaussian dynamic term structure model (GDTSM), the conditional
forecasts of the pricing factors are invariant to the imposition of no-arbitrage restrictions.
This invariance is maintained even in the presence of a variety of restrictions on
the factor structure of bond yields. To establish these results, we develop a novel
canonical GDTSM in which the pricing factors are observable portfolios of yields. For
our normalization, standard maximum likelihood algorithms converge to the global
optimum almost instantaneously. We present empirical estimates and out-of-sample

forecasts for several GDTSMs using data on U.S. Treasury bond yields.
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Dynamic models of the term structure often posit a linear factor structure for a collection
of yields, with these yields related to underlying factors P through a no-arbitrage relationship.
Does the imposition of no-arbitrage in a Gaussian dynamic term structure model (GDTSM)
improve the out-of-sample forecasts of yields relative to those from the unconstrained factor
model, or sharpen model-implied estimates of expected excess returns? In practice, the
answers to these questions are obscured by the imposition of over-identifying restrictions
on the risk-neutral (Q) or historical (P) distributions of the risk factors, or on their market
prices of risk, in addition to the cross-maturity restrictions implied by no-arbitrage.!

We show that, within any canonical GDTSM and for any sample of bond yields, imposing
no-arbitrage does not affect the conditional P-expectation of P, E¥[Py|P;_1]. GDTSM-implied
forecasts of P are thus identical to those from the unrestricted vector-autoregressive (VAR)
model for P. To establish these results, we develop an all-encompassing canonical model
in which the pricing factors P are linear combinations of the collection of yields y, (such
as the first N principal components (PCs))? and in which these “yield factors” follow an
unrestricted VAR. Within our canonical GDTSM, as long as P is measured without error,
unconstrained ordinary least squares (OLS) gives the maximum likelihood (ML) estimates
of E¥[P|P;_1]. Therefore, enforcing no-arbitrage has no effect on out-of-sample forecasts of
P. This result holds for any other canonical GDTSM, owing to observational equivalence
(Dai and Singleton (2000)) and, as such, is a generic feature of GDTSMs.

Heuristically, under the assumption that the yield factors P are observed without error,
these propositions follow from the factorization of the conditional density of y into the
product of the conditional P-density of P times the conditional density of measurement
errors.” The density of P is determined by parameters controlling its conditional mean and
its innovation covariance matrix. The measurement error density is determined by the “no
arbitrage” cross-sectional relationship amongst the yields. We show that GDTSMs can be
parameterized so that the parameters governing the P-forecasts of P do not appear in the
measurement-error density. Given this separation, the only link between the conditional
P-density and the measurement density is the covariance of the innovations. However, a
classic result of Zellner (1962) implies that the ML estimates of E*[P;|P,_] are independent

'Recent studies that explore the forecasting performance of GDTSMs include Duffee (2002), Ang and
Piazzesi (2003), Christensen, Diebold, and Rudebusch (2007), Chernov and Mueller (2008), and Jardet,
Monfort, and Pegoraro (2009), among many others.

2 Although standard formulations of affine term structure models use latent (unobservable) risk factors
(e.g., Dai and Singleton (2000), Duffee (2002)), by Duffie and Kan (1996) we are free to normalize a model so
that the factors are portfolios of yields on bonds and we choose PCs.

3See, for example, Chen and Scott (1993) and Pearson and Sun (1994).



of this covariance. Consequently, OLS recovers the M L estimates of E¥[P;|P;_1] and the
no-arbitrage restriction is irrelevant for the conditional P-forecast of P.

Key to seeing this irrelevance is our choice of canonical form.? For any N-factor model
with portfolios of yields P as factors, bond prices depend on the N(N + 1) parameters
governing the risk-neutral conditional mean of P and the (N + 1) parameters linking the
short rate to P, for a total of (N + 1)? parameters. Not all of these parameters are free,
however, because internal consistency requires that the model-implied yields reproduce the
yield-factors P. We show that, given the NN yield factors, the entire time-t yield curve can be
constructed by specifying: (a) 7%, the long-run mean of the short rate under Q; (b) A2, the
speeds of mean reversion of the yield-factors under Q; and (c) ¥p, the conditional covariance
matrix of yields factors from the VAR. That is, given Xp, the entire cross-section of bond
yields in an N-factor GDTSM is fully determined by only the N + 1 parameters % and \%.
Moreover, (r%, A2 ¥p) can be efficiently estimated independently of the P-conditional mean
of P;, rendering no-arbitrage irrelevant for forecasting P.

With these results in place, we proceed to show that the conditional forecast EF[P;|P;_]
from a no-arbitrage GDTSM remains identical to its counterpart from an unrestricted VAR
even in the presence of a large class of over-identifying restrictions on the factor structure of
y. In particular, regardless of the constraints imposed on the risk-neutral distribution of the
yield-factors P, the GDTSM- and V AR-implied forecasts of these factors are identical. Put
differently, OLS recovers the conditional forecasts of the yield factors even in the the presence
of further cross-sectional restrictions on the shape of the yield curve beyond no arbitrage.

When does the structure of a GDTSM improve out-of-sample forecasts of P? We show
that if constraints are imposed directly on the P distribution of P within a no-arbitrage
GDTSM, then the ML estimate of E¥[P;|P;_] is more efficient than its OLS counterpart
from a VAR. Thus our theoretical results, as well as subsequent empirical illustrations, show
that gains from forecasting using a GDTSM, if any, must come from auxiliary constraints on
the P distribution of P, and not from the no-arbitrage restriction per se.”

An important example of such auxiliary constraints is the number of risk factors that
determine risk premiums. Motivated by the descriptive analysis of Cochrane and Piazzesi

(2005, 2008) and Duffee (2008), we develop methods for restricting expected excess returns

4To emphasize, our canonical form is key to seeing the result; due to observational equivalence, the result
holds for any canonical form.

5Though one might conclude from reading the recent literature that enforcing no-arbitrage improves
out-of-sample forecasts of bond yields, our theorems show that this is not the case. What underlies any
documented forecast gains in these studies from using GDTSMs is the combined structure of no arbitrage
and the auxiliary restrictions they impose on the P distribution of y.



to lie in a space of dimension L (< N), without restricting a priori which of the N factors Py
represent priced risks. If £ < N, then there are necessarily restrictions linking the historical
and risk-neutral drifts of P;. In this case, the forecasts of future yields implied by a GDTSM
are in principle different than those from an unrestricted VAR, and we investigate the
empirical relevance of these constraints within three-factor (N = 3) GDTSM:s.

Additionally, we show that our canonical form allows for computationally efficient esti-
mation of GDTSMs. The conditional density of observed yields is fully characterized by 2
and A9, as well as the parameters controlling any measurement errors in yields. Importantly,
(r2, \Q) constitutes a low-dimensional, rotation-invariant (and thus economically meaningful)
parameter space. Using standard search algorithms, we obtain near-instantaneous conver-
gence to the global optimum of the likelihood function. Convergence is fast regardless of the
number or risk factors or bond yields used in estimation, or whether the pricing factors P
are measured with error.’

The rapid convergence to global optima using our canonical GDTSM makes it feasible
to explore rolling out-of-sample forecasts. For a variety of GDTSMs — with and without
measurement error in yield factors, and with and without constraints on the dimensionality
L of risk premia — we compare the out-of-sample forecasting performance relative to a

benchmark unconstrained VAR, and confirm our theoretical predictions in the data.

1 A Canonical GDTSM with Observable Risk Factors

In this section we develop our “JSZ” canonical representation of GDTSMs. Towards this end

we start with a generic representation of a GDTSM in which the discrete-time evolution of

the risk factors (state vector) X; € RY is governed by the following equations:”

6To put this computational advantage into perspective, one needs to read no further than Duffee and
Stanton (2007) and Duffee (2009) who highlight numerous computational challenges and multiple local
optima associated with their likelihood functions. For example, Duffee reports that each optimization for
his parametrization of a three-factor model takes about two days. In contrast, for the GDTSM(3) models
examined in this paper, convergence to the global optimum of the likelihood function was typically achieved
in about ten seconds, even though there are three times as many observations in our sample.

7All of our results apply equally to a continuous-time Gaussian model. Also, we assume that the risk
factors, and hence the yield curve y;, are first-order Markov. See the supplement to this paper (Joslin,
Singleton, and Zhu (2010)) and Joslin, Le, and Singleton (2010) for relaxations of this assumption.



AX; = Koy + Kix X1 + Xxe; (1)
AX; = K& + K5 X, 1 + Sxe, (2)
Tt = pox + pix + Xy, (3)

where r; is the one-period spot interest rate, X x> x/ is the conditional covariance matrix
of X;, and €f, 2 ~ N(0,Iy). A canonical GDTSM is one that is maximally flexible in its
parameterization of both the Q and P distributions of X;, subject only to normalizations
that ensure econometric identification. Before formally deriving our canonical GDTSM we
briefly outline the basic idea. Variations of our canonical form, as well as some of its key
implications for model specification and analysis, are discussed subsequently.

Suppose that N zero-coupon bond yields or N linear combinations of such yields, Py, are
priced perfectly by the model (subsequently we relax this assumption). By a slight abuse
of nomenclature we will refer to these linear combinations of yields as portfolios of yields.
Applying invariant transformations® we show (i) the pricing factors X; in (3) can be replaced
by the observable P;, and (ii) the Q distribution of P; can be fully characterized by the
parameters @% = (k2,9 32p), where \? is the vector of eigenvalues of K PX and XpX, is
the covariance of innovations to the portfolios of yields.” When the model is stationary under
Q, k2 is proportional to the risk-neutral long-run mean of the short rate r$ and a GDTSM
can be equivalently parameterized in terms of either parameter (see below).

The prices of all coupon bonds (as well as interest rate derivatives) are determined as
functions of these observable pricing factors through no arbitrage. Importantly, though the
pricing factors are now observable, the underlying parameter space of the QQ distribution of
P is still fully characterized by @%. Moreover, the parameters of the P distribution of the
(newly rotated and observable) state vector P, are (Kjp, Kip) along with Xp. The remainder
of this section fleshes out these ideas.

The model-implied yield on a zero-coupon bond of maturity m is an affine function of the

8Invariant transforms (Dai and Singleton (2000)) involve rotating, scaling and translating the state and
parameter vectors to keep the short rate and bond prices unchanged (invariant), usually by a mapping
Y; = AX; + b, where A is an invertible matrix. The transformed parameters are outlined in Appendix B.

9 Duffie and Kan (1996) and Cochrane and Piazzesi (2005) also propose to use an identification scheme
where the yields themselves are factors. Adrian and Moench (2008) explore a setting where the pricing factors
are the portfolios themselves; however, they do not impose the internal consistency condition to make the
factors equal to their no arbitrage equivalents and instead focus on the measurement errors. Our formulation
offers an analytic parametrization and additionally makes transparent our subsequent results.



state X; (Duffie and Kan (1996)):
Ytm = Am(g(_%) + Bm<@%) ' Xta (4)

where (A,,, B,,) satisfy well-known Riccati difference equations (see Appendix A for a
summary), and @% = (K[?X,K;@X,Zx,pox,plx) is the vector of parameters from (2-3)
relevant for pricing. We let (my, ma,...,my) be the set of maturities (in years) of the bonds
used in estimation of a GDTSM, J > N, and ¥} = (Yt.my, - - - > Ye.m,) € R be the corresponding
set of model-implied yields.

In general, (1) may be violated in the data due to market effects (e.g. bid-ask spreads or
repo specials), violations of no arbitrage or measurement errors. We will collectively refer
to all of these possibilities simply as measurement or pricing errors. To distinguish between
model-implied and observed yields in the presence of pricing errors we let y7,, denote the
yields that are observed with measurement error. To be consistent with the data, we must
impose auxiliary structure on a GDTSM, beyond no arbitrage, in the form of a parametric
distributional assumption for the measurement errors. We let {P"}, o denote the family
of measures which describe the conditional distribution of y; — 7.

For any full-rank, portfolio matrix W € R¥*’ we let P, = Wy, denote the associated
N-dimensional set of portfolios of yields, where the " portfolio puts weight W; ; on the yield
for maturity m;. Applying (4) we obtain

P, = Aw(09) + By (09)X,, (5)

where Ay = W[Ap,,...,An,] and By = [Bm,,..., Bn,]W/. Note that By (K%, p1) de-
pends only on the subset (K%, p1) of ©F (see (A3) in Appendix A).
Initially, we assume that there exist portfolios for which the no arbitrage pricing relations

hold exactly:

Case P: There are N portfolios of bond yields P;, constructed with weights W, that are
priced perfectly by the GDTSM: P = P;.

We refer to the case where each portfolio consists of a single bond, so that N yields are priced
perfectly, as Case Y. We defer until Section 6 the case where all bonds are measured with
errors and estimation is accomplished by Kalman filtering.

We now state our main result for Case P:

Theorem 1. Suppose that Case P holds for given fixed portfolio weights W. Then any

canonical GDTSM is observationally equivalent to a unique GDTSM whose pricing factors



Py are the portfolios of yields Wy, = Wyy. Moreover, the Q-distribution of P; is uniquely
determined by (A9, k2 Yp), where A2 is ordered.'’ That is,

AP, = Kgp + KipPi1 + Spe; (6)
AP, = K + K Py + Spef (7)
re = pop + p1p - P, (8)

15 a canonical GDTSM, where K((]@P, K?P,pop and p1p are explicit functions of (A2, kL, ¥p).

Our canonical form is parametrized by ©F = (A kL, K&y, Kip, Xp).

We refer to the GDTSM in Theorem 1 as the JSZ canonical form parametrized by ©%.
Before formally proving Theorem 1, we outline the main steps. First, we want to show that
any GDTSM is observationally equivalent to a model where the states are the observed bond
portfolios P, (with corresponding weights W.) Thus, for G = {(KZ, K2, po, p1, KE, KF %)},
the set of all possible GDTSMs,'! we want to show that every © € G is observationally

equivalent to some Op € GJ'| where
G = {(KX K2, po, p1, K&, K¥, %) : the factors are portfolios with weights 17}

This first step is easily established: for any GDTSM with latent state X;, P; satisfies (5).
Following Dai and Singleton (2000) (DS), we can, by applying the change of variables outlined
in Appendix B, compute the dynamics (under both P and Q) of P, and express r; as an
affine function of P;. The parameters after this change of variables give an observationally
equivalent model where the states are the portfolios of yields.

Second, we establish uniqueness by showing that no two GDTSMs in G} are observationally
equivalent. Clearly, if two GDTSMs are observationally equivalent and have the same
observable factors, it must be that (K, K],Y) are the same. Intuitively, if the parameters
(KL K2, po, p1) are not the same, the price of some bonds would depend differently on the

factors, a contradiction. In the second step, we formalize this intuition. Moreover, we show

10We fix an arbitrary ordering on the complex numbers such that 0 is the smallest number.

" More formally, we think of the set of GDTSMs as a set of stochastic processes for the yield curve rather
than as a set of parameters governing the stochastic process of the yield curve. To see the correspondence, we
define on some probability space (€2, F,P) (with associated filtration {F;}) the processes y :  x N — RN+,
Here y7"(w) is the m-period yield at time ¢ when the state is w € Q. When our additional assumption that y is
a Gaussian Markov process and no arbitrage is maintained (with risk premia at time ¢ depending only on F;),
these processes take the form of (1-3) and (4) for some parameters. In this way, we define a surjective map from
the set of GDTSM parameters (Kg;)g, KP, po, p1, K5, KT, %) to the set of GDTSM stochastic processes. With
this association, two GDTSMs are observationally equivalent when the corresponding stochastic processes
have the same finite-dimensional distributions.



that for given A% and k%, there exists a unique (K(?, K (1@, po, p1) consistent with no arbitrage
and the states being the portfolios of yields P,. In the third and final step, we reparamatrize
Gy in terms of the free parameters (k2,72 %p).

In the second step of our proof of Theorem 1, we will use the following analogue of the

canonical form in Joslin (2007), proved in Appendix C.

Proposition 1. FEvery canonical GDTSM 1is observationally equivalent to the canonical
GDTSM with ry = 1 - X4,

AX, = K&+ KX X, )+ Yxer, (9)
AX, = K& +KP X, +Sxe, (10)

where ¢ is a vector of ones, Xx is lower triangular (with positive diagonal), K?X 15 1n ordered
real Jordan form, Ké%m = k2 and Ké%m- =0 fori#1, and €2, e ~ N(0,Iy).

Here we specify the Jordan form with each eigenvalue associated with a single Jordan
block (that is, each eigenvalue has geometric multiplicity of one.) Thus, when the eigenvalues

are all real, K takes the form

AP 1 0

Q Q) — Jino(7Q 7Q Q o A0
Ky = J(\°) =diag(Jy, Jy, ..., Jy,),  where each J;° = : —_— e

0 0 A

and where the blocks are in order of the eigenvalues. (See Appendix C for the real Jordan
form when the eigenvalues are complex.) We refer to the set of Jordan canonical GDTSMs as
Gy and it is parametrized by ©7 = (A2 kL, KFy, KTy, Yx). The eigenvalues of A¥ may not

be distinct and may be complex. We explore these possibilities empirically in Section 5.

Proof of Theorem 1: Having already established that we can rotate any model to one with P,
as the observed states, we proceed to prove the second step. Suppose that ©1, 0, € G index
two observationally equivalent canonical models. By the existence result in Proposition 1,
each ©; is observationally equivalent to a GDTSM, ©/, which is in real ordered Jordan

canonical form. Since

P, = AW(@;‘]) + Bw(@i)’X,;ﬁ, (11)



where X/ is the latent state for model ©, it must be that
0, = Aw(0)) + By (0]) 6. (12)

Here, we use the notation that for a GDTSM with parameter vector © and state X;, the
observationally equivalent GDTSM with latent state X; = C' + DX, has parameter vector
0=0C+ DO, as computed in Appendix B. Since observational equivalence is transitive,
©f is observationally equivalent to ©3; the uniqueness result in Proposition 1 implies that
Of = ©J. The equality in (12) then gives ©; = ©,, which establishes our second step.

To establish the reparametrization in the third step, we focus on (11) and (12). The
key is to show explicitly how given (A2, kL) (from ©/) we can (i) choose the parameters
(KE,, K¥;,%,) to get any desired (K&», Kp, ¥p) and (i) construct the (K, K2, po, p1)
consistent with the factors being P;. Details are provided in Appendix D.

For reference, we summarize the transformations computed in the last step as:

Proposition 2. Any canonical GDTSM with Q parameters (A, kL, Yp) has the JSZ repre-

7 o0

sentation in Theorem 1 with

K% =BJ\YB! (13)
K& = k% Be,,, — K5A (14)
prp = (Bt (15)
pop = —A- pip (16)

where e, is a vector with all zeros except in the mt" entry, which is 1 (my is the multiplicity of
AY) and B = By (J(AQ),1), A= Ay (0, J(X®), B'Sp, kL, 1), where (Aw, Bw) are defined
in (5) and (A2-A3).

Before proceeding, we discuss the interpretation of the parameter k2. If X is stationary
under Q, then ¥2 and 7% (the long-run Q-mean of the short rate) are related according
to rQ = kL S (=A®)~i where m; is the dimension of the first Jordon block J2 of K.
Thus, if AY is not a repeated root (my = 1), 72 is simply —k2 /A¥ in stationary models. This
is the case in our subsequent empirical illustrations where we express our normalization in
terms of the parameter r2 owing to its natural economic interpretation.

That k% and 7€ are not always interchangeable in defining a proper canonical form for the
set of all GDTSMs of form (1-3) can be seen as follows. In proceeding to the normalization

of Proposition 1, a model with the factors normalized so that r, = pg + ¢ - X; is further



normalized by a level translation (X; — X; — «). Such level translations can always be

used to enforce py = 0, but they can only be used to enforce K(()@X = 0 in the case that K ;@X

is invertible (i.e., there are no zero eigenvalues).'> When m; = 1 and there are no zero

eigenvalues, the following two normalizations of (K(()@P, po) are equivalent:

0 kQ
—_kQ 0
K& =1 | and py = )\Qoo oo K= | and py=0. (17)
. 1 :
0 0

Theorem 1 uses the form with &2, and always applies regardless of the eigenvalues of K ;@X.

2 P-dynamics and Maximum Likelihood Estimation

Rather than defining latent states indirectly through a normalization on parameters governing
the dynamics (under P or Q) of latent states, the JSZ normalization has instead prescribed
observable yield portfolios P and parametrized their QQ distribution in a maximally flexible way
consistent with no arbitrage. A distinctive feature of our normalization is that, in estimation,
there is an inherent separation between the parameters of the P and Q distributions of P;.
In contrast, when the risk factors are latent, estimates of the parameters governing the P
distribution necessarily depends on those of the Q distribution of the state, since the pricing
model is required to either invert the model for the fitted states (when N bonds are priced
perfectly) or to filter for the unobserved states (when all bonds are measured with errors).
This section formalizes this “separation property” of the JSZ normalization.

By Theorem 1, we can, without loss of generality, use N portfolios of the yields, P, =
P? € RV, as observed factors. Suppose that the individual bond yields, y;, are to be used
in estimation and that their associated measurement errors, y; — v;, have the conditional
distribution P?, for some 6,, € O,,. We require only that, for any P%" these errors
are conditionally independent of lagged values of the measurement errors and satisfy the

consistency condition P(Wy? = P;|P;) = 1."* Then the conditional likelihood function (under

120ne implication of this observation is that setting both k% and 7% to zero in the presence of a Q-
nonstationary risk factor, as was done by Christensen, Diebold, and Rudebusch (2007, 2009) in defining their
arbitrage-free Nelson-Siegel model, amounts to imposing an over-identifying restriction on the drift of Xjy;.

L3Implicit in this formulation is the possibility that Cov(y?|P; A2, kL, ¥p) is singular. This would be
true in Case Y, where some yields are measured without errors, or when certain portfolios of y; are priced
perfectly, as with the use of principal components as observable factors or as in Chen and Scott (1995) who

10



IP) of the observed data (v?) is
f(y;:)’y?—l; @) = f(yi?lpta /\Q7 kga E797 Pem) X f(Pt’Pt—l; Klppa Kg)?')a 273) (18)

Notice the convenient separation of parameters in the likelihood function. The conditional
distribution of the yields measured with errors depends only on (A2, kL, ¥p, P%) and not on
(Kip, Kip). In contrast, the conditional P-density of the pricing factors P; depends only on
(Ktp, KEp, Xp), and not on (A%, k2). Using the assumption that P; is conditionally Gaussian,

the second term in (18) can be expressed as
1
FOPUPLss Kipy K5, ) = (20180l exp (= 31557! (P~ EPDIF) . (19

where F,_1[P] = Kip + (I + K{p)Pi—1 and where for a vector z, ||z|* denotes the euclidean
norm squared: Y. z?. The parameters (K}p, Kip) that maximize the likelihood function f

(conditional on ¢ = 0 information), namely

T T
(Kop, K1p) = argmaxz Felyiy; Kip, Kop, Xp) = argminz HZ7_31 (P? = Eca[P7]) |I7,(20)
t=1 t=1

are the sample ordinary least squares (OLS) estimates, independent of ¥p (Zellner (1962)).

Summarizing these observations:

Proposition 3. Under Case P the ML estimates of the P parameters (Kjp, Kip) are given
by the OLS estimates of the conditional mean of P;.

Absent constraints linking the P and Q dynamics, one can effectively separate the time-
series properties (P) of P, from the cross-sectional constraints imposed by no arbitrage (Q).
The parameters governing P-forecasts distribution thus can be estimated from time series
alone, regardless of the cross-sectional restrictions. Furthermore, independent of (A2, kL, ¥p),
the OLS estimates of (K{p, K]p) are by construction globally optimal. With (Kfp, Kip)
at hand, we use the sample conditional variance of P, i)pi'p, computed from the OLS
innovations as the starting value for the population variance Xp¥p. Given (A k2), this

starting value for X3’ is again by construction close to the global optimum. Therefore we

use different portfolios of yields as their factors. This setup also accommodates the case where both P and
some of the individual components of y¢ are priced perfectly by the GDTSM. Furthermore, the errors may
be correlated, non-normal, or have time-varying conditional moments depending on P;. In practice, it has
typically been assumed that the pricing errors are normally distributed.

11



have greatly reduced the number of parameters to be estimated. For instance, in a GDTSM(3)
model, the maximum number of parameters, excluding those governing P/, is 22 (3 for \©,
1 for kL, 6 for Xp, 3 for K& and 9 for KFp,). With our normalization one can focus on only
the 4 parameters (A2, £2). This underlies the substantial improvement in estimation speed
for the JSZ normalization over other canonical forms.

Key to our argument is the fact that we can parametrize of the conditional distribution of
the yields measured with error independently of the parameters governing the P-conditional

mean of P in the sense of the factorization (18). For any (Kip, Kip, Yp, A2, kL), we have

F@W 1P A% RS, Tp) X f (PPt Kip, Kop, Tp)
< fW Py )\Q, kga Yp) X f(PePii; K?P,OLSaKEP,OLSa Yp), (21)

where we suppress the dependence on PP, This inequality follows from the observations
that (K{p, K}p) has no effect on f(y¢|P;) and that, for any Xp, replacing (Kgp, Kip) by its
OLS estimate increases f(P;|P;_;).""

It is instructive to compare (18) with the likelihood function that arises in models
with observable factors that parameterize the P distribution of P and the market prices
of these risks. In this case the parameters are (Kip, Kip) and (pg, p1, Ao, A1, Xp), where
E¥[P1] = E2[Pr1] + Zp(Ag + APy, for state-dependent market prices of risk Ag + Ay P;.
These parameters are subject to the internal consistency constraints Ay = 0 and By = Iy
that ensure that the model replicates the portfolios of yields P. Moreover, analogous to (18),

the factorization of the likelihood function takes the form
f(yto|y§71; @) = f(yﬂpt; Kg)?% K?Pv 27’? P05 P15 A07 Al) X f(,Pt’,Ptfl; KFP? Kng EP)' (22>

Replacing (Kgp, Kp) with (Kgp 619, Kip org) again increases the second term, but now the
first term is affected as well. Thus, within this parameterization, the fact that OLS recovers

the ML estimates is completely obscured.!”

14The last step requires observable factors — another important element of our argument. See Section 3
and (23).

15Tn fact, within a macro- GDTSM with a similar parametrization of internally consistent market prices of
risk and observable factors, Ang, Piazzesi, and Wei (2003) report that OLS estimates of E¥[P;.1|P;] are
(slightly) different from their M L estimates. Our analysis generalizes to macro-GDTSMs (see Joslin, Le, and
Singleton (2010)) and so, in fact, their OLS estimates are the ML estimates.

12



3 On the Relevance of No Arbitrage for Forecasting

The decomposition of the conditional likelihood function of the data in (18) leads immediately
to several important insights about the potential roles of no-arbitrage restrictions for out-of-
sample forecasting. First, Proposition 3 gives a general striking property of GDTSMs under
Case P: the no-arbitrage feature of a GDTSM has no effect on the ML estimates of Ky
and K7p. This, in turn, implies that forecasts of future values of P are identical to those
from an unconstrained VAR(1) model for P;.'% This result sharpens Duffee (2009)’s finding
that the restrictions on a VAR implied by an arbitrage-free GDTSM cannot be rejected
against the alternative of an unrestricted VAR.'” When forecasting the N portfolios of yields
P;, Proposition 3 shows theoretically that a similar result must hold insofar as Case P is
(approximately) valid.

The JSZ normalization makes these observations particularly transparent. In contrast, in

the (observationally equivalent) specification in (1-3), portfolio yield forecasts are

Ey[Piy1] — Pr = Bw(0%) (Ey[Xi41] — Xi) = By (09) (Kix + KixX¢) (23)
= Bw(09) (Kox + Kix(Bw P(0%) ™! (P — Aw(69))) .

Thus, with latent states, the portfolio forecasts are expressed in terms of both the P and Q
parameters of the model. From (23) it is not obvious that OLS recovers the M L estimates
of (Kip, Kip). The JSZ normalization makes the implicit cancellations in (23) explicit.

Second, the structure of the likelihood function reveals that, in contrast to the pricing
factors, no-arbitrage restrictions are potentially relevant for forecasting individual yields that
are measured with error. The conditional density of yy given P, depends on the parameters
of the risk-neutral distribution, and these are revealed through the cross-maturity restrictions
implied by no arbitrage. In addition, diffusion invariance implies that ¥p enters both terms
of the likelihood function so efficient estimation of these parameters comes from imposing
the structure of a GDTSM.

Finally, the structure of the density f(y?|P;) also reveals the natural alternative model for

16Note that, in principle, enforcing no-arbitrage restrictions may be relevant for the construction of forecast
confidence intervals through the dependence on ¥p. However, empirically this effect is likely to be small.

17 Duffee (2009) also shows theoretically that no arbitrage is cross-sectionally irrelevant in any affine model
under the stochastically singular condition of no measurement errors. That is, if the model exactly fits the
data without measurement errors, the cross-sectional loadings (A,B) of (4) are determined without reference
to solving the Ricatti difference equations (A2—-A3). Duffee does not theoretically explore the time series
implications of the no measurement error assumption. In this case, not only would Proposition 3 apply (since
Case P is a weaker assumption) so that the OLS estimates are the ML estimates of (Kip, Kip), but also
Yp could be inferred from a sufficiently large cross-section of bond prices.
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assessing gains in forecast precision from imposing no-arbitrage restrictions. The state-space
representation of this unconstrained model reflects the presumption that bond yields have
a low-dimensional factor structure, but it does not impose the restrictions implied by a
no-arbitrage DT'SM. Specifically, under Case P where P; is priced perfectly by the GDTSM,

the state equation is
AXi = Kox + KixXe + €, €~ N(0,Xx) i.i.d., (24)

and the observation equation

0
P e + DX, + ey ~ PP i, (25)
y? Emt

The parameter set is Og5 = {(Kox, K1x, Xx, C, D, P’")}, where P%" is an observation error
distribution that is consistent with Case P.

No arbitrage requires that the observation equation parameters (C, D) must be of the
form (4); that is, the dynamics are Gaussian under Q. Additionally, no arbitrage enforces a
link between the possible (C, D) and X x (diffusion invariance). Since the parameters are not
identified, one also imposes normalizations to achieve a just-identified model. Importantly,
the choice of normalizations will in general affect the M L estimates of the parameters, Ogg,
but will not affect the distribution of bond yields implied from the state space model (either
in the cross section or time series.) For example, one could impose the identification scheme in
Dai and Singleton (2000) either under the P- or the Q-measure. The estimates of (Kox, K1x)
and (C, D) will be choice-specific, but these differences will be offset by changes in the latent
states so that the fits to bond yields will be identical.

Notably, the unconstrained state-space representation (24)-(25) with parameter set Ogg
is not the unconstrained J-dimensional V AR representation of y;. The latter relaxes both
the no-arbitrage (and any over-identifying restrictions) enforced in the GDTSM and the
assumed factor structure of bond yields (the dimension of X; is less than the dimension of yy).
Consequently, gains in forecasting an individual yield using a GDTSM, relative to the forecasts
from an unconstrained VAR model of y;, may be due to the VAR being over-parametrized
relative to the unconstrained factor model, the imposition of no-arbitrage restrictions within
the GDTSM, or both. The role of no-arbitrage restrictions is an empirical issue that can be

addressed by comparing the constrained and unconstrained versions of (24)-(25).
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4 Irrelevance of Factor Structure for Forecasting

The DT'SM literature considers a number of further constraints on the factor structure of a
GDTSM, beyond those implied by the absence of arbitrage. In addition to making different
identification assumptions, one can form a parsimonious model by restricting the distribution
of certain variables (under either P or Q) or by restricting the structure of risk premia. We
first extend the results of Section 3 to characterize when this irrelevancy result does (and
does not) hold in more general GDTSMs, and then we discuss the connection of our results
to specific over-identified GDTSMs in the literature.

Within the state space model (24-25), the parameters (C, D) control the cross-sectional
relationship among the yields, while P? controls the distribution of the measurement errors.
The covariance matrix of the innovations of the latent states X x is linked to Xp through
the factor loadings (C, D). The restriction of no-arbitrage, for example, says both that only
certain types of loadings (C, D) are feasible (those given by (4)) and that this feasible set
depends on the particular value of X x. Thus no arbitrage is a cross-parameter restriction on
the feasible set of (C, D,Xx) in the general state space model. More generally, one might
be interested in restrictions on a particular subset of the parameters n = (C, D, P? Y),
examples of which we discuss in subsequent subsections. The following theorem says that
even if restrictions are imposed on 7, as long as (Kyx, K1x) are unrestricted, OLS will recover
the ML estimates of (Kop, K1p). (Kox, K1x) will change in general with the restrictions

imposed on 7, but only through an affine transformation of the latent states.

Theorem 2. Given the state space model (24— 25) and the portfolio matriz W determining
the factors Py, let H be a subset of the admissible set of n where, for any (C, D, Yx, P'™) € H,
the N x N wupper left block of D 1is full rank. Consider the M L problem with n constrained to

lie in the subspace H:

(KS{Xv Kll}—g(777H) € argmax f(PTv Yyr, ... 7P17y1|730a yO)
Kox,K1xmeH

Then (K%, K%, n™) are such that

Kop = DgKZ){X - D;}K&(D;})AC’;}, (26)
Fyp = DpK{% (D7), (27)

where CX is the first N elements of C™, DX is the upper left N x N block of D™ and
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(Kop, K1p) are the OLS estimates of the regression
AP, = Kop + K1pP; + ¢!

The proof is similar, though notationally more abstract, to the proof of Proposition 3 and
is presented in Appendix E.

Using this result, we first illustrate the estimation of the general state space model of
(24-25) when the possibility of arbitrage is not precluded. We next explore the implications
of restrictions on the QQ and P distributions, as well as on risk premia, for the conditional
distribution of P;.

4.1 Factor Structure in Arbitrage Models

The factor model (24-25) is not necessarily consistent with the absence of arbitrage. This is
because the loadings in (25) may not come from the solution of (4) for a given choice of ©%.
Nevertheless, this model is still of interest as it provides a baseline “factor structure” for the
yield curve (cf. Duffee (2009)). Theorem 2 implies that, under Case P, the OLS estimates of
the parameters governing (24) are identical to their counterparts from system M L estimation
of (24-25) when the factors P, are observed portfolios of bond yields.

Additionally when, in addition to Case P, the state space model has temporally i.i.d.
normal pricing errors in (25), and these errors are orthogonal to the portfolio matrix W,
the OLS regression of the observed yields onto the factors P give the M L estimates of the
unconstrained (“with arbitrage”) cross-sectional loadings (C, D) in (25). In this case the
OLS regression estimates of ¥p must also correspond (through the invariant transformation
given in Theorem 2) to the M L estimates of ¥ x for the factor model. Taken together, these
procedures provide a simple prescription for constructing alternative reference models (to
arbitrage-free GDTSMs) that maintain the factor structure but do not impose no-arbitrage.
In the empirical analysis in Section 5 we focus on comparisons of OLS forecasts of PC's with
their forecasts from a variety of arbitrage-free models. These “with arbitrage” factor models

provide a natural reference model when one is interested in forecasting yields.

4.2 Irrelevance of Constraints on the (Q-distribution of Yields

The JSZ normalization characterizes the state in terms of an observable portfolio of zero
coupon yields. The conditional Q distribution of Py, (as a function of P;) is expressed in
(7), which we have shown can be parametrized by (A2, kL, 3p). Within the model (that is,

? Vo0
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without measurement errors), P is informative about the entire yield curve. Thus one type of
restriction a researcher may be interested in imposing is on the conditional Q-distribution of
Piyr (or ys1,) as a function of P; (or y;).'® Such constraints further restrict (beyond the no
arbitrage restrictions) the cross-sectional loadings (C, D) in the general state space model as
well as which innovation covariances are possible. Theorem 2 shows that restrictions on the Q
distribution of y;. ., as a function of y;, are irrelevant for forecasting P;. Put differently, in the
JSZ-normalized GDTSM, restrictions that only affect the parameters of the Q-distribution of
P; (AL kL, as well as ¥p) are irrelevant for forecasting the portfolios of yields ;. Though
latent-factor representations like (23) suggest that the Q parameters enter into EY[P,4], in
fact absent restrictions across the P and Q parameters of the model, any Q-restrictions must
affect (Kjy, K]y) in a manner that “cancels” their impact on E} [Py 1].

One example of such a constraint in the literature is the arbitrage-free Nelson-Siegel
(AFNS) model of Christensen, Diebold, and Rudebusch (2007). The AFNS model allows
for a dynamically consistent GDTSM where, except for a convexity-induced intercept, the
factor loadings correspond to those of Nelson and Siegel (1987). Since the AFNS model
is the constrained special case of the JSZ normalization with A2 = (0, A\, \) and k% = 0,
an immediate implication of this observation is that forecasts of P using an arbitrage-free
Nelson-Siegel (AFNS) model are equivalent to forecasts based on an unconstrained VAR(1)
representation of P. Proposition 3 implies that these restrictions do not affect the ML
estimates of K and K]p and, hence, they cannot improve the forecasts of P relative to an
unconstrained VAR(1). Thus, the forecast gains that Christensen, Diebold, and Rudebusch
(2007) attribute to the structure of their AFNS pricing model are, instead, a consequence of

the joint imposition of no-arbitrage and their constraints on the P-distribution of bond yields.

4.3 Conditions for Irrelevance of Constraints on Latent Factors

A conclusion of Section 4.2 is that restrictions on the parameters governing Q-distribution
of yield factors are irrelevant for forecasts. In this section we address the question if, more
generally, a parameter constraint on “Q parameters” within an identified GDTSM with latent
factors affects forecasts. For example, a researcher may consider the following procedure.
They begin with a GDTSM model with the normalizations of Dai and Singleton (2000) (DS)
applied under Q: (K&y, KTy) are free while ¥x = I, Ky = 0 and K% is (ordered) lower

¥More precisely, under Q, ysir|F; ~ N(u,X7). If we express u] = p”(y;), restrictions on ¥7 or the
functional form u7 are irrelevant. More generally, since Ef [ysys] € F; = o(y;), restrictions of the form
E2yisr] = g(EF[yirr]) may affect forecasts.

19We show this formally in Joslin, Singleton, and Zhu (2010).
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triangular (or real Schur to accommodate complex eigenvalues). After estimation, a more
parsimonious model is obtained by taking any coefficients in K %{ which are insignificantly
different from zero and setting them to zero (or using an iterative AIC or BIC type procedure).
A similar procedure is followed in, for example, Dai and Singleton (2002).

When K}y and K}y are unconstrained, constraints such as these on Q-identified pa-
rameters are joint constraints on the cross-sectional properties of the yield curve and the
covariance of innovations. To see this, one can invert the latent factors into the observable
factors and observe that non-linear constraints within the JSZ normalization on (A2, kL, ¥p)
will hold. However, Theorem 2 directly shows that the resulting forecasts for P, will be
identical whether the constraints are imposed or not. The constraints in general will change
the estimated Ky and Ky, but they will also change the loadings and the latent states so
that the forecasts of P, will not change.

Alternatively, one could first apply a normalization under P and then restrict the parame-
ters governing the Q-conditional distribution of the implied latent states. For example, as
above one could apply the DS normalization under P where (K{y, K1) will be restricted
while (K, K) are restricted. Duffee and Stanton (2007), for example, apply such a
normalization. With this type of P-identification, Theorem 2 no longer applies and it is easy
to see that in general restrictions on the Q-parameters (i.e. the Q-conditional distribution of

the latent factors as a function of the latent factors) will affect the forecasts of P;.

4.4 Relevance of Constraints on the Structure of Excess Returns

Central to the preceding irrelevance results is the absence of restrictions across the parameters
of the P and Q distributions of P;. Such constraints would arise in practice if, for instance,
the GDTSM-implied expected excess returns on bonds of different maturities lie in a space of
dimension £ less than dim(P;) = N. Put another way, some risks in the economy may have
either zero or constant risk premia. When £ < N it also follows that time-variation in risk
premia depends only on an £-dimensional state variable. Cochrane and Piazzesi (2005, 2008)
conclude that £ = 1 when conditioning risk premiums only on yield curve information. Joslin,
Priebsch, and Singleton (2010) find that £ is at least two when expected excess returns are
conditioned on Py, inflation, and output growth. We explore the relevance for forecasting
bond yields of imposing the constraint £ within GDTSMs that condition risk premiums on
the pricing factors P. When this constraint is (approximately) valid, improved forecasts of ¥,
may arise from the associated reduction in the dimensionality of the parameter space.

To interpret this constraint, note from Cox and Huang (1989) and Joslin, Priebsch, and
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Singleton (2010) that one-period, expected excess returns on portfolios of bonds with payoffs

that track the pricing factors Py, say xrP;, are given by the components of
rrPy = KEP - KSD + (K%? - K;@ﬂpt- (28)

That is, the ™ component of (Kjp — K iQp)Pt is the source of the risk premium for pure
exposures to the i component of P,. Therefore, the constraint that the one-period expected
excess returns on bond portfolios are driven by L linear combinations of the pricing factors
P amounts to the constraint that the rank of Appp = Kip — K%) is £.%°

The reduced rank risk premium GDTSMs can be estimated through a concentration
of the likelihood in the same spirit as (18). Given (A2, kL, ¥p, P), the ML estimates of

(Kjp, K1p) can be computed as follows. First, compute («, 3) from the regression
Pri1 — (Kop + KipPe) = a+ Py + €], (29)

where we fix the volatility matrix ¥p of errors €/ and impose the constraint that 3 has rank
L. We show in Appendix F how one can compute the ML estimates of this constrained
regression in closed form. For given (A\?, kL, Yp, P), the M L estimates of the P parameters

are then given by
Kip = Kip + &, Kip = Kb+ . (30)

In comparison to the setting underlying Proposition 3 and Theorem 2, reduced rank risk
premia enforce constraints across the parameters of the P and Q distributions. Consequently,
the ML estimates of the P parameters are no longer given by their OLS counterparts.
This, in turn, means that the implications of Proposition 3 discussed in Section 4.2 will, in
general, no longer apply. Under the reduced-rank restrictions any further assumptions on the
Q-parameters (such as the constraints of the AFNS model) will directly affect the estimated
P parameters as there is a link between the cross-section and time-series properties of yields.

We explore the empirical implications of these observations in Section 5.

4.5 Relevance of Constraints on the P-distribution of Yields

So far, we demonstrated that neither the imposition of no arbitrage nor restrictions on the

Q-dynamics have any effect on the ML estimates of K, and K{p. However, restrictions

20 Alternatively, we could restrict the rank of [K{p — KE)QP, Ki, — K %3] to £. This would enforce the
stronger restriction that only £ linear combination of the factors has non-zero expected excess return.
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on risk premia, such as the reduced-rank assumption, link P and Q and interact with no
arbitrage to affect estimates of K¢ and K}p. We now complete this discussion by examining
whether no arbitrage affects the distribution of bond yields when one also imposes stand-alone
restrictions on the P-distribution of yields that do not impinge on the Q distribution, either
directly or indirectly through risk premiums. Examples of such restrictions are that the
yield portfolios are cointegrated or that the conditional mean of each portfolio yield does not
depend on the other portfolio yields.?! One can impose such restrictions without reference to
a no-arbitrage model.

In these examples OLS no longer recovers the M L estimates of the parameters; rather,

to obtain efficient estimates given Xp, one must implement generalized least squares (GLS).

Let (K§*(Xp), Ki*(Xp)) denote the GLS estimates of (Kjp, Kip) given Xp:

T
(K5 (Zp), KT*(5p)) = argmax Y~ f(PY|PYy; Kip, Kop, Tp), (31)

P P
KOP’KM? t=1

where the arg max is taken over (K(p, Kip) satisfying the appropriate restriction on the
P-dynamics. In the presence of such restrictions, there is a non-degenerate dependence of
(K§*, K{*) on ¥p. This dependence means that no arbitrage (which links ¥p across P and
Q) affects the ML estimates of (Kip, Kip).

We explore the empirical implications of two types of restrictions on the P-distribution
of yields in Section 5: (1) a model with K7, constrained to be diagonal and (2) a model in

which the P, are cointegrated (with one unit root and no trend).

4.6 Comparing the JSZ Normalization to Other Canonical Models

The normalizations adopted by DS and Joslin (2007) preserve the latent factor structure in (9
— 10), in contrast to the rotation to observable pricing factors in the JSZ normalization. To
our knowledge the only other normalization that has an “observable” state vector is the one
explored by Collin-Dufresne, Goldstein, and Jones (2008) (CGJ). All three of these canonical
models— DS, Joslin, and CGJ- are observationally equivalent.??

In the constant volatility subcase of the CGJ setup the state vector X; is completely

21 See Campbell and Shiller (1991) (among others) for empirical evidence on cointegration among bond
yields. Diebold and Li (2006) adopt an assumption very similar to the second example.

22Different choices of normalizations, associated with different, unique matrix factorizations of the feedback
matrix K ?X, give rise to observationally equivalent models, though models with different structure to their
parameter sets. The JSZ normalization is based on the real Jordan factorization used in Proposition 1. CJG
adopt the companion factorization. For any monic polynomial p(z) = 2™ — pt, 12"~ — -+ — uyx — po, the
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defined by r; and its first N — 1 moments under Q:

Xt = (Tta Hie, H2gy - - - 7,uN—l,t)/7 (32)
where
1 o 1 o
,U/lt = —E (d’f’t)’ /'[’k‘+1,t = _E (dﬂkt)’ k - 1, e 7]\/' - 2 (33)
dt dt
Under Q, X; follows
dX, = (Kgoay + Kioq, Xe)dt + SxdZ, (34)
where Yy is lower triangular, KSCGJ = (0,0,...,0,7)", and Z; is the standard Brownian

motion. By construction, the matrix K SCG ; is the companion matrix factorization of the
feedback matrix K% in (9).

The sense in which X, is observable in the CGJ normalization is quite different than
in the JSZ normalization, and these differences may have practical relevance. First, it will
not always be convenient to assume that the one-period short-rate r; is observable. Duffee
(1996) highlights various liquidity and “money-market” effects that might distort yields on
short-term bond relative what is implied by a GDTSM. The true short rate— the one that
implicitly underlies the pricing of long-term bonds— will not literally be observable absent
an explicit model of these money-market effects. Second, actions by monetary authorities
might necessitate the inclusion of additional risk factors or jumps in these factors when
explicitly including short rates in the analysis of a DT'SM (Piazzesi (2005)). Within the JSZ
normalization one is free to define the portfolio matrix W so as to focus on segments of the
yield curve away from the very short end, while preserving fully observable P.

More subtly, the construction of the state vector in the CGJ normalization requires the
parameters of the Q distribution. Therefore, any change in the implementation of a GDTSM
that changes the implied Q parameters will necessarily change the observed pricing factors
under the CGJ normalization. Fitting the same model to two overlapping sample periods
could, for example, give rise to different values of the observed state variables during the

overlapping period. In contrast, under the JSZ normalization we are led to identical values of

companion matrix is

0 1 0 0

0 O 1 0
Cp) = :

0O 0 O 1

Mo M1 H2 o Hn-l

Given any matrix K, its monic characteristic polynomial is unique, and the matrix K is similar to its
companion matrix C(p(K)).
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P for all overlapping sample periods.

Full separation of the P and Q sides of the unrestricted model appears to be a unique
feature of the JSZ normalization. It is this separation that clarifies the role of no-arbitrage
restrictions in GDTSMs, and gives rise to the enormous computational advantages of our

normalization relative to the DS, Joslin, and CGJ canonical models.

5 Empirical Results

We estimate the three-factor GDT'SMs summarized in Table 1 by M L using the JSZ canonical
form and the methods outlined in Section 3.?% As all of our estimated models are stationary
under Q, we report our results in terms of Y instead of k2. The data are end-of-month,
Constant Maturity Treasury (CMT) yields from release Fed H.15 over the period from January
1990 to December 2007 (216 observations). The maturities considered are 6 months, and
1-, 2-, 3-, 5-, 7- and 10-years. From these coupon yields we bootstrap a zero-coupon curve
assuming constant forward rates between maturities. Within Case P, we consider several
subcases. With distinct real eigenvalues, we assume the first three principal components
(PCs) are measured without error (RPC); or the 0.5-, 2-) and 10-year zero coupon yields are
measured without error (RY). Additionally, we estimate models that price the first three
PC's of the zero curve exactly under the constraints of repeated eigenvalues (JPC) and
complex eigenvalues (CPC). Model JPC imposes the eigenvalue constraint of the AFNS
model examined by Christensen, Diebold, and Rudebusch (2009). Finally, a subscript of “1”
indicates the case of reduced-rank risk premiums (£ = 1) with the one-period expected excess
returns being perfectly correlated across bonds. In all cases, except as noted, the component
of measurement errors orthogonal to W are assumed to be normally distributed.”* Although

we derive portfolios from the principal components, one could also use portfolio loadings from

235\9 denotes the complex conjugate of the i*® element of A2, Also, we defer discussion of case RKF, in
which all yields are measured with error and Kalman filtering is applied, until Section 6.

24In Case Y, this assumption amounts to yield measurement errors being distributed i.i.d. N (0, 012)). When
W comes from the principal components, the assumption is equivalent to the higher order PCs (n > N)
being distributed N (0,02). In both of these cases, we can concentrate o, from the likelihood (conditional
on ¢t = 1 information) through 62 = Zthz,m(yf,m —yem)?/ (T — 1) x (J — N)) where y; ., are the model
yields which depend on all the other parameters. To be more precise about the error assumption: let
W, € RU=NMXJ he a basis for the orthogonal complement of the row span of W. Then, since W has
orthonormal rows, we can express yy in terms of its projection onto W and the orthogonal complement to W
as yy = W'Wyg + (W) Woyp = WP+ (W) Woyp. We assume yf — y¢|P; has the degenerate distribution
N(W'Py,02(WL)'W_) (which is rotation invariant in the sense that the likelihood is the same for alternative
choices of base for the orthogonal complement to W.) Equivalently, the projection of y¢ onto W, expressed in
the coordinates W is i.id. normal: W,y ~ N(0,021;_x). This distribution satisfies P(Wy = P|P;) = 1.
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various parametric splines for yields such as Nelson-Siegel loadings or polynomial loadings.
[Table 1 about here.]

An alternative measurement error structure arises when one supposes that coupon bonds
are measured without error. In this case, portfolios of zero bond yields will necessarily

incorporate measurement error. To that end, we consider

Case C: N coupon bonds are priced exactly and J — N coupon bonds are measured with
normally distributed errors in the GDTSM.

In implementing Case C with coupon-bond data, one can still select N portfolios of zero
coupon yields and construct the rotation where these portfolios comprise the state vector.
Even though such yields may not be observed, this rotation is still valuable because the
portfolios of model-implied zero yields P; can be approximated from the observed data. For
example, one could bootstrap or spline an approximate zero coupon yield curve from the
observed coupon bond prices and form an approximation of P, call it Pf. Importantly,
the projection of P¢ onto its own lag will recover reliable starting values for K, and K.
However, because coupon bond yields are nonlinear functions of P, the irrelevance propositions
discussed in Section 3 do not apply to Case C. In our empirical implementation we consider
the case of the 0.5-, 2-, and 10-year CMT yields measured without error, and the 1-, 3-, 5-,
7-year par coupon yields measured with errors (RCMT). Throughout, we report asymptotic
standard errors for the maximum likelihood estimates that are computed using the outer
product of the first derivative of the likelihood function to estimate the information matrix
(see Berndt, Hall, Hall, and Hausman (1974))

In order to facilitate comparison of the estimates across models with different pricing
factors, all of our results are presented in terms of the implied P distribution of the first
three PCs of the zero yields.?”” Table 2 shows that these parameters are largely invariant
to: (i) assumptions about the distribution of measurement errors, (ii) restrictions on the
Q-dynamics through restrictions on A2, and (iii) restrictions on the relation between the Q-
and P-dynamics through the reduced rank assumption. The only mild exception is that model
RCMT has a higher r2, which is compensated for by slightly lower )x? and X?. The close
alignment of results shows that the cross-section of bond yields provides a rich information

set from which to extract the four relevant Q-parameters, r2 and A\©.

[Table 2 about here]

25That is, under Case Y or when the CMT yields are priced perfectly by the GDTSM, after estimation, we
impose the JSZ normalization based on the PC's of zero yields as the state variables.
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Another notable feature of these estimates is that the results for model CPC are the same
as those for model JPC. This is because, in the limit, as the complex part of the eigenvalues
approach zero, the complex model approaches the Jordan model (see Appendix C). Thus we
see that, for our data set, complex eigenvalues are not preferred over real eigenvalues.

Tables 3 and 4 present the parameters of the P distribution of P. The final row presents
parameters from a VAR (with no pricing involved) of the PCs. Table 4 reveals that initializing
Yp using OLS residuals leads to very accurate starting values. By way of contrast, if we had
instead used the Dai and Singleton (2000) (DS) canonical form, an accurate initialization
of ¥x would require a reliable initial value for K2. The JSZ canonical form allows us to
avoid this interplay between the values of ¥ x and K (1@ by applying no-arbitrage constraints

to determine K 9@ independently of ¥p.
[Table 3 about here]

[Table 4 about here]

Across all specifications, the parameters are very comparable. Partly this is a consequence
of Proposition 3: whether A\? is comprised of distinct real eigenvalues (RPC), complex
eigenvalues (CPC), or repeated eigenvalues (JPC), the estimates of K| and K are equal to
each other and to the OLS estimates. However, stepping beyond this proposition, when we
change whether it is PC's or individual yields (e.g., RPC versus RY) that are priced perfectly
by the GDTSM under Case P, the parameters of the corresponding P distributions remain
very similar. Imposing the reduced-rank risk premium constraint £ = 1 leads to generally
similar, although in for some parameters there are measurable differences in estimates across
corresponding models, particularly for some of the elements of Kfp.

Regarding the computational efficiency obtained using the the JSZ normalization, we
stress that the only parameters that need to be estimated are (r%, A2, ¥p) since, as discussed
in Section 3, (K{p, Kip) are determined by concentrating the likelihood and (K((%;, K (1@7,)

26 The models were estimated using sequential quadratic

are determined by no-arbitrage.
programming as implemented in Matlab’s fmincon. Estimation under Case P using an
informed guess of the Q-eigenvalues took approximately 1.2 seconds.?” Furthermore, 9%+

of the searches converged to the same likelihood value (to within the tolerance) with very

26The standard deviation of the pricing errors, Opricing, can be concentrated out as well, both when £
equals 1 and 3.
2"The computations were performed using a single-threaded application on a 2.4GHZ Intel Q6600 processor.
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similar parameter estimates.”® These computational advantages become even more important

in the case where all yields are measured with error, which we consider in Section 6.

5.1 Statistical Inference Within the JSZ Canonical Form

There are two null hypotheses that are of particular interest given our observations in Section 3.
The first test addresses the algebraic multiplicity of eigenvalues in the GDTSM(3) model.
As previously stated, the AFNS model of Christensen, Diebold, and Rudebusch (2007) is
equivalent to the JSZ canonical form with three extra constraints, including a repeated
eigenvalue of K2. To assess the validity of the null hypothesis A = A2, under the JSZ
normalization, we perform a Likelihood Ratio (LR) test against the alternative that A\ is
unconstrained. With this one linear constraint, the LR test statistic has an asymptotic x>
distribution with 1 degree of freedom, x?(1).

The second test of interest is the dimensionality of the one-period risk premium which,
as discussed in Section 4.4, is captured by the rank of Appp = Kip — K?p. To impose the
constraint that £ = 1 we start with the singular value decomposition of Agzrp, UDV’, where
U and V' are unitary matrices and D is diagonal with the diagonal sorted in decreasing order.
The null hypothesis of interest— that Aggrp has rank 1— is therefore imposed by setting Do
and Ds3 to zero. To translate this representation into constraints on the parameter space,
note that, for an N-factor GDTSM with £ =1,

N
DV'P, =D » Vi P (35)
j=1
Therefore, the expected excess returns zrP; (see Section 4.4) are given by
N
2rPy = (Kip — Kip) + Ui - (Dll Z lePjt) ; (36)
j=1

where U, is the first column of U. The second term on the right-hand side of (36) expresses
the time-varying components of xrP; in terms of a common linear combination VJ,P; of

the pricing factors. All of the parameters in (36) are econometrically identified by virtue

28 An exception here is the Jordan form where typically there were two local extrema with either the smaller
or the larger eigenvalue repeated. Another general consideration is that one must either optimizes over k2
or alternatively imposes Q-stationarity on the model if one desires to use 7% in estimation. In fact, for
estimation purposes, the issue of using k2 versus rQ is largely obviated by results in Joslin, Le, and Singleton
(2010) who show how one can concentrate out k2 under Case P.
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of the facts that V], V4, = 1 (which identifies Dy;) and U},Us; (which identifies the weights
on DV}, P;). Furthermore, given N, (36) implies (N — 1)? cross-equation restrictions on
the parameters of the conditional expectation xrP;. In our case, N = 3, so there are 4

cross-equation restrictions.
[Table 5 about here]

Tests for the equality of two eigenvalues are reported on top panel of Table 5, where a
leading J means that model was estimated under the constraint that /\S*) = )\g (consistent
with the specifications of AFNS models). In the PC-based models this null hypothesis is not
rejected, while for the yield-based models it is rejected at conventional significant levels. To
interpret this difference across choices of risk factors, we note from Table 2 that the estimated
IAY — A9 is larger in model RY than in model RPC, with most of this difference being
attributable to the larger value of |)\(3@| in model RY. The eigenvalue )\;)Q governs the relatively
high-frequency Q-variation in yields and, thus, is particularly relevant for the behavior of the
short end of the yield curve. Introducing the six-month yield directly as a pricing factor over
weights the short end of the yield curve relative to having the PC's as pricing factors, as the
latter are portfolios of yields along the entire maturity spectrum.

In the bottom panel we report tests of the reduced-rank, risk premium hypothesis that
L = 1. Under all model specifications this hypothesis cannot be rejected. This finding
is consistent with the conclusions reached by Cochrane and Piazzesi (2005), though they
effectively considered models with N = 5 as they examined PC'1 through PC5.

5.2 Empirical Relevance of Constraints on P-distribution of Yields

In Section 4.5, we demonstrated that imposing no arbitrage in addition to constraints on IP-
distribution of yields affects the forecasts of yields. We now empirically explore the magnitude
of the effect of the interaction of no arbitrage with (i) imposing K} to be diagonal and
(ii) imposing that P, are cointegrated (with one unit root and no trend). In both cases, we

assume risk premia have full rank and the Q-distribution of yields is unconstrained.
[Table 6 about here]
[Table 7 about here]

Table 6 presents the estimation results when the constraint that K}, is diagonal in both

the reference VAR as well as asymptotic standard errors. When the constraint of diagonal
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K1y is imposed, no arbitrage has almost no effect on the parameters.”” Additionally, the
differences are small not only in magnitude, but also very small with respect to the standard
erTors.

Table 7 presents the estimation results for the VAR and no-arbitrage models when
cointegration (without a trend) is imposed. Here we present standard errors computed by
a parametric bootstrap due to the well-known non-standard asymptotics and small-sample
bias associated with unit roots. The method which we used to bootstrap the standard errors
is as follows: we randomly choose a data t € {1,2,...216} and initialize the state as the
value of P on this date. Then, using the maximum likelihood estimate of the parameters, we
simulate a path of the term structure for the sample size of 216 months and estimate the
model based on this simulated data. These steps are repeated 1000 times. Although the
no-arbitrage assumption has a somewhat larger effect than the diagonal case, the differences
are again generally small. Taken together, these results suggest that although theoretically
the no-arbitrage model may offer improved inference over the simple VAR model when

stand-alone P-constraints are imposed, such differences may, evidently, be small in practice.

5.3 Small-sample standard errors

Another feature of our normalization is that it facilitates the computation of smal-sample
standard errors that can be compared to the asymptotic standard errors using the outer
product of the first derivative of the likelihood function. We compare these results to
bootstrapped standard errors computed with the procedure given in Section 5.2.

Table 8 presents the results for the model RPC. The asymptotic standard errors tend to
overstate the precision with which we measure the effect of the level PC on the conditional
means of the PC's (Kﬁu, Klﬂfm, ngl) by a factor of about two. These effects on standard
errors for K} and 0% are necessarily due to the small sample properties of OLS estimates in
the VAR for P since, by Proposition 3, the full information M L estimates in the GDTSM
agree with the OLS estimates. Additionally, the precision with which we estimate the Q
parameters is overstated by the asymptotic method by a factor of about 50%. Overall though,

the asymptotic standard errors line up rather well with the bootsrapped standard errors.

[Table 8 about here]

29The average log-likelihood (across t) for the unconstrained no arbitrage model was 38.392, while for
the diagonal-constrained model it was 38.291. The corresponding likelihood ratio test statistic is 44.0, far
exceeding the 99% rejection region of 16.8 indicating a very strong rejection of this constraint.
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5.4 Out-of-Sample Forecasting Results

An interesting question at this juncture is whether differences in parameter estimates translate
into differences in the out-of-sample forecasting performance of these GDTSMs. We compute
rolling re-estimation of each model using data from months ¢t = 1,...,7 (T =61, ...,215)
and use the model to predict, out of sample, the changes in the principal components over the
next 1-, 3-, 6-, and 12-month periods. As a benchmark, we use the corresponding forecasts
from an unconstrained VAR. As we noted in Section 3, theoretically the forecasts of P, are the
same across all models that assume these PC's are measured without error and that differ only
in the constraints they impose on the Q distribution of P;. In particular, with £ = 3, whether
we assume distinct real eigenvalues, complex eigenvalues or repeated eigenvalues (as in the
AFNS model), the forecasts of P; are all ezactly the same as those from an unconstrained

VAR. This explains the rows of zeros in Table 9.
[Table 9 about here]

Under the constraint £ = 1 (constrained risk premiums), there is an implicit constraint on
K}, and, hence, enforcing the no-arbitrage constraints may improve forecasts. From Table 9
we see that there is a moderate improvement in forecasts for PC'1 and PC?2, particularly at
longer horizons. Models RPC; and JPC; have different predictions (though only slightly).
This is because the differences under Q implied by the repeated root assumption now propagate
to the P-dynamics through the restriction relating the P- and Q-drifts.

As further evidence on the empirical relevance of constraints on the P distribution of
P for forecasting we pursue the examples of Section 5.2: constraining K}p to be diagonal
(Table 6) or constraining P; to have a common unit root (the cointegration example of
Table 7).%Y The last four rows of Table 9 present the relative forecasting accuracy of VAR
models with these constraints imposed, as well as their no-arbitrage counterparts with RPC
being the unconstrained GDTSM. The constrained model VAR + diag(K{p) shows notable
improvements in out-of-sample forecast accuracy for the first and third PC's, particularly
over longer horizons, but interestingly there is a deterioration in the forecast quality for PC2.
This suggests that feedback from (PC1, PC3) to PC2 is consequential for forecasting the
slope of the yield curve. Imposing the cointegration constraint improves the forecasts of PC'1
and, unlike in the prior example, also the forecasts of PC2.

Of most interest for our analysis is the finding that starting from either of the constrained

V ARs and then imposing the no-arbitrage restrictions has virtually no incremental effect

39For the cointegration example, we enforce the constraint that [Kgp,Kip’P} has a zero eigenvalue or,
equivalently, there is a common unit root and no trend.
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on forecast performance. Even though no-arbitrage restrictions can improve out-of-sample
forecasts in these cases, in practice they have virtually no effect on the results in our data. The
improvements in forecasting with either model RPC + diag(K{p) or RPC + 1UR [K}p, K}p)]
are entirely a consequence of imposing restrictions on the VAR model for P.

It is instructive to place the findings of Christensen, Diebold, and Rudebusch (2007) for
the AFNS model in the context of these results. They compare the forecast performance of
an AFNS model with both KTy and Xx in (1) constrained to be diagonal to Duffee (2002)’s
canonical GDTSM based on the DS normalization (which is equivalent to our RPC model).*!
As with our examples, forcing K7y to be diagonal is a direct constraint on the P distribution
of P and, as such, may lead to more reliable forecasts than those from an unconstrained
VAR model for P. In fact, they report that their constrained AFNS model does outperform
Duffee’s model in forecasting bond yields, also with larger improvements over longer horizons.
However, the results in Table 9 suggest that this improvement comes from the restrictions

they imposed on the VAR model for P and not to the use of an AFNS pricing model.

6 Observable Factors with Measurement Errors

Up to this point we have assumed that N portfolios of yields are priced perfectly by the
GDTSM. We turn next to the case where all of the zero-coupon yields used in estimation
equal their GDTSM-implied values plus measurement errors. Under the assumption that the

measurement errors are jointly normal, this is a Kalman filtering problem.

Case F: The yields on J(> N) zero-coupon bonds equal their GDTSM-implied values plus

mean zero, normally distributed errors, vy — y;.

A number of researchers (see, e.g., Duffee and Stanton (2007) and Duffee (2009)) have
emphasized the computational challenges of estimation under Case F. Under the normalization
of Dai and Singleton (2000) (DS), a researcher must estimate (K%, Kby, K&, po, p1), where
K (1@)( is lower triangular. In this parametrization, a researcher would likely have a diffuse
prior on all of the parameters. Moreover, the states of the model depend on the parameters,
so they too are unknown. We now show that our JSZ canonical representation extends to
the setting of Case F' and demonstrate its benefits both for interpretation and estimation of

GDTSMs.

31Christensen, Diebold, and Rudebusch (2007) assume that all yields are measured with additive measure-
ment errors, the case we turn to in Section 6. However, three-factor models price bonds quite accurately over
the maturity range that they and we consider, so Theorem 2 should be informative about their findings.
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Theorem 1 shows that any GDTSM is observationally equivalent to a model where the
latent states are a given set of portfolios of yields, purged of measurement errors. In Case P,
when the portfolios are assumed to be observed without measurement errors, this means the
states are simply these portfolios of yields. In Case F we can maintain the interpretation
that the latent states are portfolios of yields with known portfolio matrix W, though now
constructed with the model-implied (measurement-error free) yields y,. Equivalently, under
Case F, one can view P, = Wy, as the “true” values of the pricing factors and view Py = Wyy
as its observed counterpart.®

To set up the Kalman filtering problem for Case F we start with a given set of portfolio
weights W € RN, From W and (A9, 7%, ¥p), we construct (K(()@, K(l@, Po, p1) as prescribed
in Proposition 2. From the no arbitrage relation (A2-A3) we then construct A € R’ and
B € RN with i, = A+ BP, and thus the relations

AP, = Kyp + KipP: + Ype, (37)
y> = A+ BP, + Sye?, (38)

where € ~ N(0,Iy) and e® ~ N(0,I);) are the measurement errors. Researchers have

considered several parameterizations of the volatility matrix ¥y for €". In our subsequent
empirical examples we examine the cases of independent (diagonal Yy) errors with distinct
or common volatilities. These relations give the usual observation and state equations of the
Kalman filter and they fully characterize the conditional distribution of the yield curve in
terms of rotation-invariant parameters.

The computational benefits from using the JSZ normalization in this Case F arise, in part,
from the observation that the least-squares projection of Py onto P;_; will nearly recover the
ML estimates of K and KJp to the extent that P{ & P, (and we can choose portfolios, such
as the principal components, to make these errors small).** Additionally, although not exact,
we have nearly concentrated the likelihood in that the optimal P parameters will typically
have weak dependence on the Q parameters owing to the fact that, as the QQ parameters vary,
the filtered states largely do not change.**

With the JSZ normalization, the parameter estimates are directly comparable across

distributional assumptions on the measurement errors. That is, in analogy to Section 3,

32In fact, an equivalent characterization of the JSZ normalization is that, for a given portfolio matrix W,
Aw (09) = 0 and By (09) = Iy.

33This approximation can be verified empirically by comparing Py to Ef [P;] or EX.[Py].

34This is in contrast to, for example, the rotation of DS where, as the lower triangular K iQ is changed, the
latent states vary as well. Thus, necessarily, so do the optimal P parameters given the specified Q parameters.
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by fixing the yield portfolios, both measured with and without error, the P parameters are
now directly comparable regardless of the Q structure. The parameters are also directly
comparable across sample periods. When the P-parameters are defined indirectly through a

Q-normalization, such comparisons will in general not be possible.

6.1 Empirical Implication

To illustrate Case F we estimate model RKF in which all J zero-coupon bonds used in
estimation are measured with errors, and the eigenvalues of K are all real. From Table 2
it is seen that the estimates of the Q parameters for model RKF are similar to those for
models RPC and RY that are fit with N portfolios of yields priced exactly by the GDTSM(3).
Similarly, from Table 3 and Table 4 we see that the P parameters also generally match up
across the models with and without filtering. An exception is the P distribution of PC'3:
when filtering, the volatility of PC3 is reduced by about 10%, and PC3 has a larger effect on
the conditional mean of PC1 and PC2 (higher Kﬁlg, K%B). That is, PC3 both becomes a bit
smoother and the model attributes a slightly greater affect of PC3 on forecasts of changes in
the level and slope of the yield curve. For out-of-sample forecasts using model RKF, Table 9
shows that PC'1 is better predicted by a simple VAR, while PC?2 is predicted better than a
VAR (though the differences are modest).

Also of interest in the presence of filtering are comparisons of the model-implied PC's with
their corresponding sample estimates that, by assumption, are contaminated by measurement
errors. Figure 1 plots the time series of the PC's computed from data against those from models
RCMT, RY and RKF. For model RKF we plot the model-implied filtered PCi{ = E,[PCi,].
For all three models, the PCi° are nearly identical to their model-implied counterparts. This
is not surprising: if the model is accurately pricing the cross section of bonds, then it is
almost a necessity that it will accurately match level, slope, and curvature. PC3/ deviates

slightly from PC'3°, and this is the source of the small differences seen in Figure 1.
[Figure 1 about here]

A quite different picture emerges when we increase the number of pricing factors to four or
five using the JSZ normalization under Case F. For i = 1,2,3, PCi/ lines up well with PC1°,
as before. However from Figure 2 it is seen that (PC4/, PC5') appears to be a smoothed
version of (PC4°, PC5°), with the differences being substantial during some periods. To
interpret these patterns we note that the likelihood function, through the Kalman filter,

attempts to match both the cross-sectional pricing relationships and the time series variation
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in excess returns. The higher order PC4 and PC5 only have small impacts on pricing since
a three factor model already prices the cross-section of bonds well, but they do contain

information about time-variation in expected returns.*
[Figure 2 about here]

Further insight into how M L addresses this dual objective is revealed by the estimated
half-lives of the pricing factors under Q (computed from the estimated A\?). In the five-
factor GDTSM the Q half-lives of P, are (in years) (15,8.4,2.4,0.13,0.08), whereas they
are (24,1.2,0.78) in the three-factor model. The presence of a factor with a very low half-
life induces large movements in the short rate (the one-month rate in our discrete time
formulation). Moreover, the sample average short rate is 23% which also results in large,
wildly oscillating Sharpe ratios.

It is not the need to filter per se that gives rise to these fitting problems with a 5-factor
model. When the first five PCs are priced perfectly by the GDTSM (Model RPC), the
properties of the short rate are now more plausible (see Table 10). However, the model-
implied yields on bonds with maturities beyond those included in estimation are now wildly
implausible. Furthermore, imposing the reduced rank restriction (Model RPC;) does not
materially improve the fit with five factors. For all of these error specifications with five
factors, the Sharpe ratios for the higher-order PCs show substantial variation.*® In contrast,
the 3-factor specifications produce plausible values for these moments. We interpret this

evidence as being symptomatic of over-fitting, of having too many pricing factors.
[Table 10 about here]

Does the accommodation of filtering substantially increase the computational complexity
of estimation using the JSZ normalization? The parameters (Kg p K Fp) and Opricing are NOW
included as part of the parameter search. As we argued for ¥p in the Case RP case, we obtain
very accurate starting points for (Kg’l p, KVp) irrespective of any inaccuracies in (rg, \?). The
additional cost of computing the Kalman filter as well as the lack of concentration of the

likelihood function results in estimation times of approximately 10.4 seconds and, as without

35 Cochrane and Piazzesi (2005, 2008) find that a portfolio of smoothed forward rates, that is correlated
with PC4, predicts bond returns. Joslin, Priebsch, and Singleton (2010) find that smoothed growth in
industrial production, which is also correlated with PC4, is an important determinant of excess returns for
level and slope portfolios.

36See Duffee (2010) for a more extensive empirical evaluation of the properties of Sharpe ratios in GDTSMs.
Joslin, Priebsch, and Singleton (2010) also investigate maximal Sharpe ratio variation within the context of
macro- GDTSMs.

32



filtering, virtually all local optima are identical to within set tolerances. Using the results of
the RP estimation as a starting point for the RF estimation decreased the estimation time to
approximately 8.7 seconds. Thus, under the JSZ normalization, the estimation remains very

fast even when all yields are measured with errors.

7 Conclusion

We derive a new canonical form for Gaussian dynamic term structure models. This canonical
form allows for (essentially) arbitrary observable portfolios of zero-coupon yields to serve
as the state variable. This allows us to characterize the properties of a GDTSM in terms
of salient observables rather than latent states. Additionally, the risk-neutral distribution
is parsimoniously characterized by the eigenvalues, A2, of the drift matrix and a constant
that, under Q-stationarity, is proportional to the long run mean of the short rate, 7%. Our
canonical form reveals that simple OLS regression gives the maximum likelihood estimates
of the parameters governing the physical distribution of bond yields. This results remains
true even if additional restrictions of several types, such as restrictions on the risk-neutral
condtional distribution of yields, are imposed. An immediate implication of this result is that
constraints such as imposing the arbitrage-free Nelson Siegel model or imposing complex
Q-eigenvalues are irrelevant for forecasting bond yields. However, when one imposes structure
on risk premia, such as the reduced-rank risk premium, a wedge from the unconstrained OLS
estimates arises. Our canonical form allows us to easily overcome the challenge of empirical
estimation of GDTSMs in the case of filtering. The empirical results suggest that either
some caution should be exercised in interpreting higher-dimensional model or alternatively
(perhaps preferably) care should be taken to avoid highly overparametrized models with
implausible implications for either pricing or bond risk premia. Taken together, our results
shed new light on estimation and interpretation of GDTSMs, and the effects of different
specifications of the risk premiums and the risk-neutral distribution of bond yields on the

observed dynamics of the yield curve.
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Appendices

A Bond Pricing in GDTSMs

Under (1-3), the price of an m-year zero-coupon bond is given by
Dt,m — E;@[ei Zzigl TH—i] — 6Am+Bth7 (Al)
where (A,,, B,,) solve the first-order difference equations

! 1 /
A1 — Ay = KYB,, + 5B 0B — po (A2)
Bm+1 - Bm - Ki@/Bm — pP1 (A3>

subject to the initial conditions Ay = 0, By = 0. See, for example, Dai and Singleton (2003).
The loadings for the corresponding bond yield are A,, = —A,,/m and B,, = —B,,/m.

B Invariant Transformations of GDTSMs

As in DS, given the GDTSM with parameters as in (1-3) and latent state X3, if we may
apply the invariant transformation X, = C'+ DX, we then have an observationally equivalent
GDTSM with latent state X; and parameters given by

K(;@X = DK — DK% D7'C, (A4)
KP = DK}D™, (A5)
Pox = pox — pixD7'C (A6)
Pz = (D7) pix, (A7)
K. = DKjx — DK{xD™'C, (A8)
Ki¢ = DK{xD™", (A9)
H,s = DHyx D' (A10)

Given a parameter vector ©, we denote the parameter vector of X, as C + DO.
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C Proof of Proposition 1

We require a slight variation of the standard Jordan canonical form of a square matrix which
maintains all real entries and bears a similar relation to the real Schur decomposition and

the Schur decomposition.

Definition 1. We refer to the real ordered Jordan form of a square matrix A € R™"™
with eigenvalues (A1, Aa, . .., Am) with corresponding algebriac multiplicities (my, ma, ..., my,)

as

A=J\) = diag(Jy, Ja, ..., Jm),

where if \; is real, J; is the (m; X m;) matric

A1 0
0 N 0
Ji = )
1
0 0 X\

and if |imag(\;)| > 0, J; is the (2m; X 2m;) matriz

R I, - 0
0O R --- 0 , —14 :
= with B — real( ;) limag(\;)]
T limagl(N;)|  real(\;)
0 -~ 0 R

and otherwise the block is empty. Additionally, we apply an arbitrary ordering on C to order
the blocks by their eigenvalues. In case there exist eigenvalues with geometric multiplicity

greater than one, we also order the blocks by size.

Proof of Proposition 1: We first prove the existence by showing that a latent factor X,
with arbitrary Q-dynamics

AXt = K(()@X + K;@XXt—l + ZXE;,Qa

can be transformed to our desired from. By standard linear algebra, there exists matrix U
so that UK ;@XU ~1is in the standard Jordan normal form. By Lemma 1 of the supplement
to this paper (see Joslin, Singleton, and Zhu (2010)), we can further transform to have the

real ordered form of Definition 1. Note that by Joslin (2007), each eigenvalue has geometric
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multiplicity one and thus is associated with only one block due to the Markovian assumption.
Now we separately consider the cases of real and imaginary Jordan blocks and show that we

may transform the latent state to have p; = «.

1. A Jordan block J; corresponds to real eigenvalues with algebraic multiplicity m; (m;

could be 1). Then J; is m; X m; matrix

AL 0
0 A 0

J; =
1
0 0 A

Let p1; = ( %), . ,pglz)) be the components of p; that correspond to the Jordan block
Ji. We observe that pﬁ) # 0, for otherwise we can do without state variable Xt(il),

contradicting our assumption of an N-factor model. One can check that B;J; B, L—J,

if and only if B; has the form

bgl) bz@) bl(mz)
0 bgl) . bl(mfl)
0 0 bt

In particular, we can verify that the matrix

W @M (m) _ (mi])

P Pii — A1 P — P
1) (m;—1) (m;—2)
0 4 RN — "
BZ' _ ' plz ' plz . plz
0 0 - Py

satisfies BiJiBi’l = J; and (Bfl)'pu = L.

2. A Jordan block J; corresponds to complex eigenvalues with multiplicity m;. Then J; is
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the 2m; x 2m,; matrix defined by

0O R --- 0 . i 4

J = with B — real(\;) limag(\;)] |
SR £ limagl(\;)|  real(\;)
0O --- 0 R

The proof is analogous to the real case, as the individual steps are the same but require
lemmas to verify the intuitive steps hold with (2 x 2) block matrices replacing scalars.
The details of the proof and subsequent steps for this case are available in Joslin,
Singleton, and Zhu (2010).

We obtain the correct form of K((?X as follows. We can demean the components of X
corresponding to non-singular Jordan blocks by transforming X! = X? + <K%(b ) - KX
There can be at most one block corresponding to a zero eigenvector (which by our ordering
would be the first), and the first m; — 1 entries of K(()QX can then be set to zero by translating
to XP = XP — (Kgﬁm Kf%(l”g, . ,K[(%’(b,mrl, ,0). Finally, py can then be set to zero by the
translation Xml,t = Xyt — Po-

The uniqueness of the canonical GDTSM stated in Proposition 1 follows from the unique-
ness of an ordered Jordan decomposition and the fact that (i) the Jordan decomposition is
maintained only by a block matrix where B has form (A11) and (ii) the only such B that
satisifies B’t = ¢ is B = I. Furthermore, for § € O ;57 and any vector of parameters a # 0,
either the translating by a violates the form of Ké%( (which happens if any state besides
the last zero eigenvalue state (if one exists) is translated) or the translating violates py = 0
(which happens if there is a zero eigenvalue and only the last such state is translated). This

establishes the uniqueness and completes the proof of Proposition 1.

D Details of Step 3 in the Proof of Theorem 1

We have established that every GDTSM is observationally equivalent to a Jordan normalized
model and the transformation relating the two models is found by computing the associated

portfolio loadings:

Gh = {Aw(©7) + By (©7)0’ : 0 € G,}. (A12)
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Observe that since p{ = ¢, By (©7) depends only on A\?; let us denote Byo = By (67)".
Similarly, let us denote Aye ), = Aw (©7). Since, for any A2, the map syo(X) = B;&E is a

bijection®”, we can reparametrize the conditional volatility by
Gh = {Ags + Bes0” : ©7 = (KQe,n,, J(AY), 0,1, K5y, K1y 530 (32p)) ) (A13)

Here we use ¥p to denote the parameterization since, for ©7 = (kZe,,, J(A?),0,¢, K, K1y, Byg Sp),
the transformed model Ags + Bgs©7 (which has P; as the factors since it is in Gp) has
innovation volatility of Byo B/\’Q} Yip = Yp.

Define the bijective map k on RY x RV*N by:

Fress s, (K0 K1) = (BraKo = ByoKi Bl Ay ye 0 BraKiByl) . (AL4)

The function & maps (Ko, K1) under the change of variables X; — Ay 5, + BrxeX;. Using

k, we further reparametrize G5 by

GE = {Ags + Bg:0” : 07 = (K¢, J(A9), 0,0, k7 ZP(KEP,KFP),SA@(ZP))}. (A15)

TN RS,

This gives our desired reparameterization of G5 by © ;57 = (A9 K2 Sp, Kip, Kip). This is
because, for 7 = (k:geml, J(A\2),0, 0, k7! EP(K(?P,KFP),SAQ(EP))

TUAQRL,

@P - A@J + B@J(")J

0 0 s op (A16)
= <k,\(@,k‘2;,27; (O? J<)\ ))7 T)\Q,kg’,gp (kooa L), KOP7K1737 E'P> )

where 7,q ;0 5 maps (po, p1) under the change of variables X; — Aq ;0 5+ ByeX:
el 5, (P0 p1) = (po — /1Bl Avose 5,00 (B;Q})’m) . (A17)

E Proof of Theorem 2

We first prove that (26-27) holds when H® = {1, = (C°, D°, %%, P%)}. Let

(Kggﬁ K??() = aIrg maxf<PT7 Yyr, - .- 7P17 y1|7)07 Yo; 7]0)7
Kox,K1x

37For simplicity, we denote the Cholesky factorization, ¥, but we have in mind the covariance 3.
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which we subsequently show is uniquely maximized.
Let (C3, D%) denote the first N-element of C° and upper left N x N block of D°,
respectively. By our assumption of invertibility of D%, we have that X; = (D)~ (P, — C2).

Thus, by our assumptions on the measurement errors,

T
f(Pryyrs - -, Proyi|Pos yos no, Kox, Kix) = f(Pr, - ... P1[Poimo, Kox, KlX)XH f(€mt| P mo),

t=1

and so

(Ko%, K{%) = argmax f(Pr, ..., P1|Po; m)- (A18)
Kox,K1x

Furthermore, substituting into (24) we have
AP, = Dy pKixDypPi + (DopKox — DpKix(Dop) ' Cop) + Dey, € ~ Xx

It follows that the maximum value in (A18) is at most equal to the value of the likelihood
corresponding to the OLS estimate. Note that although the value of the maximum likelihood
depends on D, the argument that maximizes the value does not depend on D by the classic
Zellner (1962) result. The OLS likelihood value is achieved by choosing (Kox, K1x) to satisfy
(26-27) , which is feasible by the assumption that (Kox, Kx) is unconstrained and DY, is
full rank.

This proves our result since (K%, K1%) = (K%, K{%) for some 19 and we have shown
that (26-27) hold for any 79. Note that in the case that the parameters are under-identified,
there will not be a unique maximum likelihood estimate in the sense that several ny may give
the same likelihood, but (26-27) will hold for all possible choices. For some H, there may not
exist a maximizer, in which case the result holds vacuously. However, standard conditions

and arguments, such as compactness, provide for the existence of a maximizer.

F ML Estimation of Reduced-Rank Regressions

Consider the regression as in (29) of the general form Y; = a + X, + ¢ subject to the
constraint that 5 has rank r and where ¢, ~ N(0,X) i.i.d. with ¥ known. That is, we wish

to solve the program
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It is easy to verify that by first de-meaing the variables we may assume without loss of
generality that a = 0. Furthermore, by transforming the variables we may assume again
without loss of generality that ¥ = I and ), X; X] = I. Under these assumptions, we wish

to solve

[ = argmin trace (Y — X3')(Y — X))
rank(8)=r

= ar%(r’gin trace (Y — Xfos)(Y — X o)) — 2 trace (X'(Y = XB515) (6 — Bors))

+ trace(((X'X (8" = BoLs)) (B — Bows))

= argmin ||3 — Bors|lr
rank(8)=r
where Y and X are (T' x N) and (7" x M) matrices with the time series stacked vertically,
Bors = (X'X)7'X'Y, and F denotes the Frobenius norm: [|A[z = 37, . [4;;[*. The above
equalities repeatedly use the identity trace(AB) = trace(BA). As in Keller (1962), this
minimization problem has solution §* = UD!V' where UDV" gives the singular value
decomposition of Bprs and D] is the same as D except setting all of the singular values for
n > r to 0. This same proof applies again in the case where ( is not square which would be
the case where one assumes that only a single risk is priced (i.e. [KE, KF] — [KQ, K2 has

reduced rank) rather than only a single risk has time-varying price of risk, as we do here.
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Tables

Table 1: Summary of Model Specifications

Model Name Specification

RPC Real A\Y = (A2, A2, \D), PC1, PC2, PC3 priced exactly

RY Real \¥ = ()\(9, A2 )\;)Q), 0.5-, 2-, and 10-year zeros priced exactly
CPC Complex A? = (A%, A2, \9), PC1, PC2, PC3 priced exactly

JPC Real repeated A2 = (A2, A2, \Q), PC1, PC2, PC3 priced exactly
RPC, RPC and rank 1 risk premia

RY, RY and rank 1 risk premia

RCMT, RCMT and rank 1 risk premia

JPCy JPC and rank 1 risk premia

RKF Real distinct A2, and all yields are measured with error

RCMT Real \¥ = ()\(9, A3 Ag), 0.5-, 2-, and 10-year CMT's priced exactly
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Table 2: ML estimates of the risk-neutral parameters of the model-implied principal

components.
Model Parameter Estimate
AT A AF /im(A3) ry
RPC -0.0024 -0.0481 -0.0713 8.61
(0.000566) (0.0083) (0.0133) (0.73)
RY -0.00196 -0.0404 -0.0897 9.37
(0.000378) (0.00274) (0.0073) (0.789)
RKF -0.00245 -0.0472 -0.0739 8.45
(0.000567) (0.00724) (0.0125) (0.678)
RCMT -0.00178 -0.0372 -0.103 11.2
(7e-005) (0.000819) (0.0029) (0.346)
JPC -0.00225 -0.0582 -0.0582 8.87
(0.000409) (0.00123) (0.00123) (0.536)
CPC -0.00225 -0.0582 -0.0582 8.87
(0.000409) (0.00123) (0.00123) (0.536)
RPCy -0.00241 -0.0477 -0.0721 8.61
(0.000559) (0.00766) (0.0126) (0.715)
RY; -0.00197 -0.0403 -0.0902 9.37
(0.000373) (0.00269) (0.00723) (0.775)
RCMT; -0.00178 -0.0371 -0.103 11.2
(6.92e-005) (0.000828) (0.003) (0.345)
JPC, -0.00224 -0.0583 -0.0583 8.9
(0.000405) (0.00122) (0.00122) (0.54)

7% is normalized to percent per annum (by multiplying by 12 x 100). Asymptotic standard

errors are given in parentheses.
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Table 5: Likelihood ratio tests.

Hy: A3 = \Y
H, logLy¢ H, logL, LR stats x*(1) p-value
JPC 38.3912 RPC 38.3921 0.375 0.540
JPC; 38.3865 RPC;  38.3876 0.463 0.496
JY 38.1679 RY 38.1863 7.906 0.005
JY, 38.1638 RY; 38.183 8.266 0.004
JRCMT 39.0123 RCMT 39.0414 12.513 0.000
Hy :rank (Kp — K%) =1
Hy log Ly H, logL, LR stats x*(4) p-value
RPC, 38.3876 RPC 38.3921 1.9475 0.745
JPC, 38.3865 JPC 38.3912 2.0358 0.729
RY 38.1863 RY; 38.1830 1.4217 0.840
JY 38.1679 JY, 38.1638 1.7819 0.776
RCMT; 39.0387 RCMT 39.0414 1.161 0.884

The top panel reports tests equality of two eigenvalues, and bottom panel reports tests
for rank-1 risk premium. The likelihood-ratio statistics are computed as LR = —2(T —
1)(log Ly — log L,), where T' = 216 is sample size and log Ly and log L, are the log-likelihoods
under the null and alternative, respectively. All log-likelihoods are conditional on ¢t = 1 and

are time series averages across the 7' — 1 observations.
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Table 6: The conditional mean parameters for the model with K7, constrained to be
diagonal.
With No Arbitrage Without No Arbitrage
K K K% K
-0.0129 -0.151 -0.0129 -0.151
(0.0193)  (0.135) (0.0188)  (0.131)
0.00754 -0.286 0.00761 -0.289
(0.00636) (0.202) (0.00635) (0.201)
0.013 -1.97 0.0129 -1.95
(0.00292) (0.423)  (0.00292) (0.421)

K1y is annualized by multiplying by 12. The left panel imposed no arbitrage and uses yield
data for all maturities. The right panel does not use no arbitrage and simply computes the
estimates of a VAR of P, with K constrained to be diagonal through GLS.
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Table 7: The conditional mean parameters for the model with cointegration with no trend
and one unit root imposed.

With No Arbitrage Without No Arbitrage
K%, K5, K%, K5,
-0.0644 -0.258 0.113 5.22 -0.0668 -0.24 0.266 5.29
(0.0602) (0.336) (0.733) (3.17) (0.218) (0.225) (0.792) (2.67)
-0.0189 0.0495 -0.112 4.32 -0.0172 0.0519 -0.168 4.32
(0.0236) (0.124) (0.288) (1.28) (0.0827) (0.0824) (0.31) (1.03)
0.007 -0.0241 0.0482 -1.73 0.00713 -0.0184 0.0632 -1.71

(0.0105)  (0.0562)  (0.117)  (0.565)  (0.0326)  (0.0362)  (0.126)  (0.471)

The left panel imposed no arbitrage and uses yield data for all maturities. The right panel does
not use no arbitrage and simply computes the estimates of a VAR of P, with cointegration
imposed so that [K(p, Kip] has rank 2.
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Table 8: The standard errors of the parameter estimates computed both by the asymptotic
method and using a bootstrap method.

Here 6% =

Parameter Estimate Asymptotic S.E. Bootstrap S.E.
Ky -0.2543 (0.1551) (0.2733 )
KT 1 0.1595 (0.5428) (0.8277 )
KT 13 5.235 (2.761) (3.1)
K} o 0.03235 (0.05425) (0.1057 )
K} o -0.3153 (0.2359) (0.3187)
K} o3 4.239 (1.212) (1.233)
K} s -0.03047 (0.02263) (0.04143 )
K7 3 -0.02772 (0.08759) (0.1314)
K7 33 -1.755 (0.4638) (0.5337 )

07 -0.1109 (0.02762) (0.02496)
05 0.02539 (0.007469) (0.00731)
0% 0.00631 (0.0003512) (0.0003162)
AY -0.002403 (0.0005662) (0.0006167)
AY -0.04813 (0.008296) (0.007395)
AY -0.07127 (0.0133) (0.01162)
rQ 0.08606 (0.007302) (0.01067)
o1 0.02205 (0.00126) (0.001337)
09 0.008838 (0.0004084) (0.001508)
o3 0.003735 (0.0001643) (0.0002803)
po1 -0.5694 (0.04155) (0.2268)
P31 0.5842 (0.0485) (0.1161)
032 -0.4218 (0.06114) (0.156)

o1

—(KT)"'K} and p;; is the conditional correlation between the i
nents of P;.

and ;"

compo-
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Table 10: This sample moments for three-factor and five-factor GDTSMs.

3 Factor Models 5 Factor Models

RPC RPC; RKF RPC RPCy RKF
mean 1-month rate 4.2% 4.2% 4.2% 4.3% 4.3% 23%
mean 30-year rate 5.8% 5.8% 5.9% -31% -39% 0.63%
PC4 Sharpe ratio mean 0.096 0.095 0.032 0.031 0.076 30
PC4 Sharpe ratio volatility 0.086 0.018 0.088 0.31 0.2 25
PC5 Sharpe ratio mean 0.096 0.095 0.032 0.031 0.076 30
PC5 Sharpe ratio volatility 0.086 0.018 0.088 0.31 0.2 25
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Figure 1: This figure plots the PC's implied by models RCMT, RY, and RKF against

the estimated PC's from the data. All three models imply PC'1 and PC?2 that are almost
indistinguishable from the data and from each other. The models imply slightly different
PC'3 but the difference is very small.
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Figure 2: This figure plots the model implied and sample principal components for the
fourth and fifth PC's when all PC's are assumed to be measured with normally distributed
errors. High order PC's implied by the models are visibly different from the data.
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