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Abstract
We show that propensity score matching (PSM), an enormously popular method of preprocessing data
for causal inference, o�en accomplishes the opposite of its intended goal—thus increasing imbalance,
ine�iciency, model dependence, and bias. The weakness of PSM comes from its attempts to approximate
a completely randomized experiment, rather than, as with other matching methods, a more e�icient fully
blocked randomized experiment. PSM is thus uniquely blind to the o�en large portion of imbalance that
can be eliminated by approximating full blocking with other matching methods. Moreover, in data balanced
enough to approximate complete randomization, either to begin with or a�er pruning some observations,
PSM approximates randommatchingwhich, we show, increases imbalance even relative to the original data.
Although these results suggest researchers replace PSM with one of the other available matching methods,
propensity scores have other productive uses.

Keywords: matching, propensity score matching, coarsened exact matching, Mahalanobis distance
matching, model dependence

1 Introduction
Matching is an increasingly popular method for preprocessing data to improve causal inferences
in observational data (Ho et al. 2007; Morgan andWinship 2014). The goal ofmatching is to reduce
imbalance in the empirical distribution of the pretreatment confounders between the treated and
control groups (Stuart 2010, p. 13). Lowering imbalance reduces, or reduces the bound on, the
degree of model dependence in the statistical estimation of causal e�ects (Ho et al. 2007; Imai,
King, and Stuart 2008; Iacus, King, and Porro 2011), and, as a result, reduces ine�iciency, and
bias. The resulting process amounts to a search for a data set that might have resulted from a
randomized experiment but is hidden in an observational data set. Whenmatching can reveal this
“hidden experiment”, many of the problems of observational data analysis vanish.
Propensity score matching (PSM) (Rosenbaum and Rubin 1983) is the most commonly used

matchingmethod, possibly even “themost developed and popular strategy for causal analysis in
observational studies” (Pearl 2009). It is used or referenced in over 141,000 scholarly articles.1

We show here that PSM, as it is most commonly used in practice (or with many of the
refinements that have been proposed by statisticians and methodologists), increases imbalance,
ine�iciency,model dependence, researchdiscretion, and statistical bias at somepoint in both real
data and in data generated tomeet the requirements of PSM theory. In fact, themorebalanced the

Authors’ note: The current version of this paper, along with a Supplementary Appendix, can be found at j.mp/PScore. We
thank Alberto Abadie, Alan Dafoe, Justin Grimmer, Jens Hainmueller, Chad Hazlett, Seth Hill, Stefano Iacus, Kosuke Imai,
SimonJackman, JohnLondregan, AdamMeirowitz, GiuseppePorro,Molly Roberts, JamieRobins, Bradley Spahn, Brandon
Stewart, Liz Stuart, Chris Winship, and Yiqing Xu for helpful suggestions, and Connor Jerzak, Chris Lucas, Jason Sclar for
superb research assistance. We also appreciate the insights from our collaborators on a previous related project, Carter
Coberley, James E. Pope, and AaronWells. All data necessary to replicate the results in this article are available at Nielsen
and King (2019).

1 Count according to Google Scholar, accessed 3/5/2019, searching for: “propensity score” AND (matching OR matched
ORmatch).
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data, or themorebalanced it becomesbypruning someobservations throughmatching, themore
likely PSMwill degrade inferences—a problemwe refer to as the PSM paradox. If one’s data are so
imbalanced that making valid causal inferences from it without heavy modeling assumptions is
impossible, then the paradoxwe identify is avoidable and PSMwill reduce imbalance but then the
data are not very useful for causal inference by any method.
We trace thePSMparadox to theparticularwaypropensity scores interactwithmatching. Thus,

our results do not necessarily implicate themany other productive uses of propensity scores, such
as regression adjustment (Vansteelandt and Daniel 2014), inverse weighting (Robins, Hernan, and
Brumback 2000), stratification (Rosenbaum and Rubin 1984), and some uses of the propensity
score within other methods (e.g., Diamond and Sekhon 2012; Imai and Ratkovic 2014). Moreover,
the mathematical theorems in the literature used to justify propensity scores in general, such as
in Rosenbaum and Rubin (1983), are of course correct and useful elsewhere, but we show they are
not relevant to the practice of matching.
We define the neglected but essential problem of model dependence in causal inference

in Section 2. Suboptimal matching leads to unnecessary imbalance, which generates model
dependence, researcher discretion, and statistical bias. Section 3 then proves how successfully
applied matching methods can reduce model dependence. In Section 4, we show that PSM is
blind to an important source of information in observational studies because it approximates a
completely randomized, rather than a more informative and powerful, fully blocked experiment.
It also explains the inadequacies of the statistical theory used to justify PSM. We then show, in
Section 5, that PSM’s weaknesses are notmerely amatter of some avoidable ine�iciency. Instead,
when data arewell balanced either to beginwith or a�er pruning someobservations bymatching,
the fact that PSM is approximating the coin flips of a completely randomized experiment means
that it will prune observations approximately randomly, which we show increases imbalance,
modeldependence, andbias. Asa result, othermatchingmethodswill usually achieve lower levels
of imbalance thanPSM, even given the samenumber of observations pruned, anddonot generate
a similar paradox until much later in the pruning process, when a fully blocked experiment is
approximated and pruning is more obviously not needed.
Fortunately, since other commonly used matching methods reduce imbalance, model

dependence, and bias more e�ectively than PSM, and do not typically su�er from the same
paradox, matching in general should remain a highly recommended method of causal inference.
Section6o�ersadvice to thosewhowish tousePSMdespite theproblemsand to thoseusingother
methods. Our Supplementary Appendix reports extensive supporting information and analyses.

2 The Problem of Model Dependence in Causal Inference
Our results apply more generally, but for expository reasons we focus on the simplest probative
case. Methodologists o�en recommend more sophisticated approaches that encompass this
simple case but, as our Supplementary Appendix demonstrates, the core intuition from the setup
we give here a�ects these approaches in the same way, and has the advantage of being easier to
understand. Thus, for unit i (i = 1, . . . , n), denote the treatment variable asTi ∈ {0, 1}, where 0
refers to the “control group” and 1 the “treated group”. Let Xi denote a vector of k pretreatment
covariates andYi a scalar outcome variable. In observational data, the process by which values of
T are assigned is not necessarily random, controlled by the researcher, or known.

2.1 Causal Quantities of Interest
DenoteYi (1) andYi (0) as the “potential outcomes”, the values Yi would take on if treatment or
control were applied, respectively. Only one of the potential outcomes is observed for each unit i ,
Yi = TiYi (1) + (1 − Ti )Yi (0) (Rubin 1974; Holland 1986). The treatment e�ect for unit i is then the
di�erence TEi =Yi (1) −Yi (0).
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To clarify this notation, we require two assumptions (Imbens 2004). For expository simplicity,
but without loss of generality, we focus on treated units with, by definition, unobserved values
of Y (0). First, in order for Yi (0) and TEi ≡ Yi − Yi (0) to logically exist, we make the overlap
assumption: 0 < Pr(Ti = 0`X ) < 1 for all i (see also Heckman, Ichimura, and Todd 1998, p. 263)
or, for example, that it is conceivable that any unit actually assigned treatment could have been
assigned control. Second, for TEi to be a fixed quantity to be estimated, even assuming it exists,
we also assume the stable unit treatment value assumption (SUTVA) (Rubin 1980; VanderWeele and
Hernan 2012), which requires that the potential outcomes are fixed and so, for example, the value
ofYi (0) does not change ifTi , orTj [j , i , changes from 0 to 1.
Causal quantities of interest are then averages of TEi over di�erent subsets of units in the

sample, or the population from which we can imagine the sample was drawn. For simplicity,
we focus on the sample average treatment e�ect (SATE), τ = meani (TEi ), or the sample average
treatment e�ect on the treated (SATT), τ =meani ∈{i `Ti=1}(TEi ) (where for set S with cardinality #S ,
the mean over i of function g (i ) is meani ∈S [g (i )] = 1

#S
∑#S
i=1 g (i )).

2

2.2 Identification
For identification, we make the unconfoundedness assumption (or “selection on observables”,
“conditional independence”, or “ignorable treatment assignment”), which is that the values of
the potential outcomes are determined in a manner conditionally independent of the treatment
assignment: [Y (0),Y (1)]⊥T `X (Barnow, Cain, and Goldberger 1980; Rosenbaum and Rubin 1983;
Lechner 2001). A reasonable way to try to satisfy this assumption is to include in X any variable
known to a�ect eitherY orT , since if any subset of these variables satisfies unconfoundedness,
this set will too (VanderWeele and Shpitser 2011).
Then, alongwith overlap and SUTVA fromSection 2.1, we can identify the quantities of interest.

For example, using unconfoundedness, we can identify E [Y (0)`X = x ] as:

E [Y (0)`X = x ] = E [Y (0)`T = 0,X = x ] = E [Y `T = 0,X = x ]. (1)

Then, extending the logic to the average identifies τ (Imbens 2004, p. 8).

2.3 Estimation Ambiguity
When feasible,wemay estimate unobservedpotential outcomes via exactmatching. For example,
we can estimate SATT with the exact matching estimator, τ̂ = meani ∈{i `Ti=1}[Yi − Ŷi (0)], where
Ŷi (0) = meanj ∈{j `Xj=Xi ,Ti=1,Tj=0}Yj . Given the identification result in Equation (1), this estimator is
unbiased: E (τ̂) = τ .
Although exact matching is possible in hypothetical asymptotic samples, it is rarely feasible in

real data sets.3 In the common situation where exact matches are unavailable for one or more
units, researchers must span the distance for each treated unit (Ti = 1,Xi ) to the unobserved
counterfactualpoint (Ti = 0,Xi ) fromtheclosest control units in thedata set (T ,X ), via a statistical
model, Ŷi (0) = m` (Ti = 0,Xi ), where ` is an index for a modelm` (part of a larger class of models
defined below).

2 If some treated units have insu�iciently good matches and are thereby pruned as part of the matching procedure, then
the feasible SATT (or FSATT) or SATE (FSATE) may be used instead. Using FSATT or FSATE is widely recommended by
statisticians (andwidely used in applied research) and is appropriate so long as one is careful to characterize the resulting
quantity of interest (see Crump et al. 2009; Rubin 2010; Iacus, King, and Porro 2011).

3 Asymptotic results are not always applicable to common practice because researchers are in the business of pushing the
edge of the envelope, trying to see as far as they can given available data; if they find extra data or more certainty than
they absolutely need, they do subgroup analysis, analyze interactions, or explore geographic or time series patterns that
would not otherwise be discernible. Explaining the disproportionate number of t-statistics just above 2 throughout the
academic literature is thus no surprise, even without considering “file drawer” problems or researchers cherry picking
results. Similarly, the process of matching involves deleting observations—giving away unneeded precision for a di�erent
purpose, to reduce imbalance and bias.
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The di�iculty for data analysts is that di�erent models can generate substantively di�erent
estimates of τ , even if both models fit the data well. For example, one popular choice is a linear,
or weighted linear, regression of Y on T and X . Some researchers include in the regression
quadratic terms or interactions for some or all of the covariates. Other popular choices include
taking nonlinear transformations forY and/orX ; eliminating outliers; running robust estimators;
swapping classical for one of many types of heteroskedasticity-consistent standard errors; using
one of many nonlinear maximum likelihood, nonparametric, or semiparametric models; running
one of the highly flexible machine learning approaches; using variable or observation selection
methods; andmany others. Bayesianmodel averaging ormixtures of expertmodelsmay help, but
strong priors are usually unavailable and empirical evidence is normally insu�icient to distinguish
among the models.

2.4 Definition of Model Dependence
In observational data analysis, the point of the research process is to discover the data generation
process rather than to design and implement one. When our knowledge of the data generation
process is limited, it makes little sense to use one model as if it were known. The result of the
diversity of estimates fromall plausiblemodels is that the analyst is le�withmodel dependence—
empirically di�erent causal estimates from two or more models that fit the data approximately
equally (King and Zeng 2006; Iacus, King, and Porro 2011). Levels of model dependence in real
examples are o�en disturbingly large. Researchers respond to this ambiguity by choosing one or,
at best, 4–5 results (o�en in di�erent columns of a table) to publish. Crucially, the analyst chooses
among the empirical estimates while selecting one result to report, which leads Ho et al. (2007,
p. 199) to ask “How do readers know that publications are not merely demonstrations that it is
possible to find a specification that fits the author’s favorite hypothesis?”
To formalize this definition, we make two assumptions. The fit assumption restricts the class

of models to those that fit the data approximately as well or, equivalently, that give similar
predictions for potential outcomes given input points near large amounts of observed data.
Denote x̃ as a point in the center of the data or a large subset. Then, for two models m j and mk

(j , k ), `m j (x̃ ) − mk (x̃ )` ≤ h, given a small positive constant h. In other words, the fit assumption
requires that di�erent models give similar predictions when predicting points near the data.
Second, is the correspondence assumption, which restricts the class of models to those which,

when predicting points similar in the space of the covariates, are similar in the space of potential
outcomes. Denote a Lipschitz constant K` , and two k -dimensional points, x and x ′, each
measured in the space of the theoretical support of X (and not necessarily near its empirical
support). Also define a proper nondegenerate distance, such that d (x , x ′) = 0 for exact matching
(i.e., where x = x ′) and d (x , x ′) > 0 for deviations from exact matching (i.e., where x , x ′).
Then the correspondence assumption is `m` (x ) − m` (x ′)` ≤ K` · d (x , x ′). Models satisfying this
assumption (a�er conditioning on predictors) have at least a minimal level of continuity, such as
having bounded derivatives (see King and Zeng 2006; Iacus, King, and Porro 2011; Kallus 2018).
We combine these assumptions in this class of competingmodels (Iacus, King, and Porro 2011):

M = {m` : `m j (x̃ ) −mk (x̃ )` ≤ h, j , k , (fit)

and `m` (x ) −m` (x ′)` ≤ K` · d (x , x ′) (correspondence)

and definemodel dependence, for any twomodelsm j ,mk ∈ Mh in this class and some point x in
the theoretical space of X , as `m j (x ) −mk (x )` (King and Zeng 2007).

2.5 Model Dependence Biases Even Unbiased Estimators
We show here how estimators that are unbiased but ine�icient when applied to one model are
biased in the presence of model dependence and common researcher behavior.
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Human Choice Turns Model Dependence into Bias
At a minimum, model dependence creates additional o�en unaccounted for uncertainty (King
and Zeng 2007; Athey and Imbens 2015; Efron 2014). However, a researcher choosing among a set
of estimates, rather than a set of estimators, is e�ectively opting for a biased estimator. Indeed,
model dependence can turn even a set of unbiased estimators into a severely biased estimator.
Put di�erently, an ex ante unbiased but ine�icient estimator, conditional even on a randomly
generated treatmentassignment that in sample is to somedegree imbalanced, is anexpostbiased
estimator (Robins and Morgenstern 1987).
To see this, consider a set of modelsm1, . . . ,mJ that lead to estimators τ̂1, . . . , τ̂J of the causal

e�ect τ . Suppose we have model dependence, so that in any one data set the estimates vary:
1
J

∑J
j=1(τ̂j − ¯̂τ)2 > 0, where ¯̂τ = meanj (τ̂j ). Assume the (unrealistically optimistic) best case:

that each estimator is unbiased conditional on its model (i.e., the average over repeated samples
equals the true causal estimate): E (τ̂j `m j ) = τ (for j = 1, . . . , J ).
Now consider a human-in-the-loop estimator τ̂0 = g (τ̂1, . . . , τ̂J ), in which a researcher chooses

one of the existing J estimates to report, in part on the basis of the empirical estimates,
τ̂1, . . . , τ̂J , not merely the models which gave rise to them, where g (·) is any function other than
a fixed weighted average. One simple, but realistic, example is when the researcher chooses the
maximum among the estimates, τ̂0 = max(τ̂1, . . . , τ̂J ).
Since the researcher would likely choose a di�erent model’s estimate for each randomly

drawn data set, we can no longer condition on a single model in the bias calculation and must
instead condition on information from the empirical estimates. As a result, the human-in-the-loop
estimator is biased:E (τ̂0) , τ . In otherwords,ahumanmakinganunconstrainedqualitative choice
from among a set of di�erent unbiased estimates is a biased estimator. This is the reason scholars
who study matching uniformly recommend thatY should not be consulted during the matching
process (e.g., Rubin 2008b). The reality, of course, is usually worse than this, since some of the
models in the set are likely biased.

How Biased is Human Choice?
How bad is the bias likely to be in real applications? As it happens, the social-psychological
literature has shown that biases are highly likely to a�ect qualitative choices such as these
even when researchers conscientiously try to avoid them (Banaji and Greenwald 2016) (and of
course trust without verification is not an appropriate assumption about human behavior for
science anyway). The tendency to imperceptibly favor one’s own hypotheses, or to be swayed in
unanticipated directions even without strong priors, is unavoidable. People do not have easy
access to their own mental processes and they have little self-evident information to use to
avoid the problem (Wilson and Brekke 1994). To make matters worse, subject matter experts
overestimate their ability to control their personal biases more than nonexperts, and more
prominent experts are the most overconfident (Tetlock 2005). Moreover, training researchers
to make better qualitative decisions based on empirical estimates when there exists little
information to choose among them scientifically is unlikely to reduce bias even if taught these
social-psychological results. As Kahneman (2011, p. 170) explains, in this regard, “teaching
psychology is mostly a waste of time.”
Scientists arenodi�erent fromotherhumanbeings in this regard.Researchershave longshown

that flexibility in reporting, presentation, and analytical choices routinely leads directly to biased
decisions, consistent with the researcher’s hypotheses (Mahoney 1977; Ioannidis 2005; Simmons,
Nelson, and Simonsohn 2011). The literature makes clear that the way to avoid these biases is
to remove researcher discretion as much as possible—in the present case, by reducing model
dependence—rather than instituting training sessions or encouraging everyone to try harder
(Wilson and Brekke 1994, p. 118).
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3 Matching to Reduce Model Dependence
For applied researchers, “the goal ofmatching is to create a settingwithinwhich treatment e�ects
canbe estimatedwithoutmakingheroic parametric assumptions” (Hill 2008). The “setting” in this
quote is a subset of the data, chosen by a matching method, for which assumptions are tenable
andmodel dependence is greatly reduced.

3.1 How Successful Matching Reduces Model Dependence
In three steps, we prove that successfulmatching reducesmodel dependence. First, we define the
immediate goal of matching as finding a subset of the data closer to exact matching. Deviations
from exact matching are known as imbalance. One way to measure imbalance is the average
distance from each unit Xi to the closest unit in the opposite treatment regime, Xj (i ), i.e., where
j (i ) = argminj `Tj=1−Ti d (Xi ,Xj ). Thus, for the original data, imbalance could be measured as
I (X ) = meani ∈{i } d (Xi ,Xj (i )). For a particular (matched) data subset, Ø, imbalance is I (Ø).
Matching methods reduce imbalance when successful, so that I (Ø) < I (X ).
Second, we prove that the level of imbalance in a data set bounds the degree of model

dependence in estimating SATE. Denote an estimator of SATE, constructed using modelm j ∈ M,
as τ̂(m j ), and similarly for the treatment e�ect T̂Ei (m j ). Then:

`τ̂(m j ) − τ̂(mk )` =mean
i ∈{i }

|T̂Ei (m j ) − T̂Ei (mk )|

≤mean
i ∈{i }

|m j (Xi ) −mk (Xi )|

=mean
i ∈{i }

|[m j (Xi ) −m j (Xj (i ))] + [mk (Xi ) −mk (Xj (i ))] + [m j (Xj (i )) −mk (Xj (i ))]|

≤mean
i ∈{i }

[|m j (Xi ) −m j (Xj (i ))| + |mk (Xi ) −mk (Xj (i ))| + |m j (Xj (i )) −mk (Xj (i ))|]

≤ (K j + Kk )mean
i ∈{i }

d (Xi ,Xj (i )) + h. (2)

Finally, Equation (2) implies, ifmatching is successful in reducing imbalance, that the bound on
model dependence is lower in the matched subset than the original data:

`τ̂(m j ) − τ̂(mk )` ≤ I (Ø) < I (X ) (3)

which thus establishes howmatching reduces the problem of model dependence.

3.2 Matching Methods
Webriefly describe here PSM, and two othermatchingmethods representative of the large variety
used in the literature. We first present the simplest and most widely used version of each of the
threemethods and thendiscussmore rarely used refinements of PSM.We also report on a content
analysis we conducted of the prevalence of these refinements across applied literatures.

Technical Description
Each method we define here represents one of the two existing classes of matching methods:
Mahalanobis Distance Matching (MDM) is one of the longest standing matching methods that can
fall within the Equal Percent Bias Reducing (EPBR) class (Rubin 1976; Rubin and Stuart 2006)
and Coarsened Exact Matching (CEM) is the leading example within the Monotonic Imbalance
Bounding (MIB) class (Iacus, King, and Porro 2011). PSM can also be EPBR, if usedwith appropriate
data.
First define a function that prunes all observations from X that do not meet specified

conditions:Ø` = M (X `A` ,Ti = 1,Tj = 0, δ) ≡ M (X `A` ) ⊆ X , whereØ` is the subset of rows ofX
producedby applyingmatchingmethod ` , given conditionA` . For example, under exactmatching
ØEM =M (X `Xi = Xj ); underone-to-oneexactmatchingwith replacementØ

(1)
EM =M (X `Xi = Xj (i )).

The nonnegative parameter δ takes on adi�erentmeaning in eachmatchingmethod,where δ = 0
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is the best matched subset of X that can be produced according to method ` . Since δ is an
adjustable parameter, the three methods below can be thought of as producing a sequence of
matched sets, indexed by δ .
Under MDM,

ØMDM = M
(
X

����

√
(Xi − Xj )S−1(Xi − Xj ) < δ

)
,

given a “caliper” δ (Rosenbaum and Rubin 1985a; Stuart and Rubin 2008), and sample covariance
matrix S of the original data matrix X . (MDM is commonly chosen for methods articles, where
the standardization makes the variables unitless; in applications, metrics such as Euclidean
better enable a researcher to represent knowledge of the underlying variables and their relative
importance by scaling X .)
Under CEM, ØCEM = M [X ` Cδ (Xi ) = Cδ (Xj )], where Cδ (X ) has the same dimensions as X

but with coarsened values. The parameter δ represents a chosen coarsening such that δ = 0

is fine enough so that C (X ) = X , and larger values of δ represent coarser recordings for some
or all variables (larger values of δ are not necessarily ordered). Continuous covariates could be
coarsened at “natural breakpoints”, such as high school and college degrees in years of education,
poverty level for income, etc. Discrete variables can be le� as is or categories can be combined,
suchaswhendata analysts combine strongandweakDemocrats intoone category and strongand
weak Republicans into another. (Variables can also be coarsened in groups of related variables,
such as requiring the sum of three dichotomous variables to be equal.)
Finally, under PSM, ØPSM = M (X ` `π̂i − π̂j ` < δ), where πi ≡ Pr(Ti = 1`Xi ) is the scalar

“propensity score”, in practice almost always estimated by assuming a logistic regression model
π̂i = (1 + e−Xi β̂ )−1. Most important here is the reduction of the k dimensional Xi to the scalar πi
before measuring the distance.

Content Analysis of PSM Applications
Numerous refinements of these methods, and many others, have appeared (e.g., Imbens 2004;
Lunceford and Davidian 2004; Ho et al. 2007; Rosenbaum, Ross, and Silber 2007; Stuart 2010;
Zubizarreta et al. 2014; Pimentel et al. 2018), including preceeding PSM with exact matching on
a few variables and several ways of iterating between PSM and balance calculations in the space
of X (e.g., Rosenbaum and Rubin 1984; Ho et al. 2007; Rosenbaum, Ross, and Silber 2007; Austin
2008; CaliendoandKopeinig 2008; Stuart 2010; Imbens andRubin 2015). ThedefinitionofM (X `A)
allows for matching with or without replacement, one-to-many or one-to-one matching, and
optimal or greedy matching. These can be important distinctions in real data, but the issues
we raise with PSM apply regardless (about which more in Section 6 and the Supplementary
Appendix).
We now show that only the simplest version of PSM is used in practice with any frequency (see

also Austin 2009, p. 173). To do this, we downloaded from the JSTOR repository 1,000 randomly
selected English language articles, 1983–2015, which reference PSM. We then downloaded all 709
that we had permission to download with access through our university, read each one, and
narrowed the list to the 279 which used PSM and, of these, the 230 which applied PSM to real
data (49 additional articles were primarily methodological). We find that only 6% of the applied
articles use any iterativebalance checkingprocedure. The remaining94%use the simplest version
of PSM with one-to-one greedy matching (80%) or do so a�er exact matching on a few important
variables, such as school district in education or age group and sex in public health (14%). We
therefore use this approach in the illustrations below and give reanalyses with newer methods in
the Supplementary Appendix, none of which require altered conclusions.
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4 Information Ignored by Propensity Scores
Matching can be thought of as a technique for finding approximately ideal experimental data
hidden within an observational data set. In three separate ways, we show here how PSM
approximates an experimental design with lower standards than necessary, thus failing to use
all of the information available, and generating higher levels of imbalance, model dependence,
and bias.

4.1 Di�erent Experimental Ideals for Matching Methods
Consider two experimental designs. First, under a fully blocked randomized experimental design
(FB), such as a matched pair randomized experiment, treated and control groups are blocked
at the start exactly on the observed covariates. Imbalance in these experiments is thus always
0 by design, just as what exact matching tries to accomplish a�er the fact, but without having
to prune any observations: XFB = M (XFB`Xi = Xj ), which implies I (XFB) = 0. Second, under a
completely randomized experimental design (CR), treatment assignment T depends only on the
scalar probability of treatment π for all units, and so is random with respect to X . In any one
sample, random does not mean zero imbalance (except by rare coincidence or in asymptotic
samples): I (XCR) > 0. For simplicity, we also use the term “completely randomized” to describe
partially blocked designs, such as when a constant probability of treatment is assigned to units
within each of several strata, so that assignment is random, and potentially imbalanced, with
respect to (X `π) , X .
The di�erence between the two experimental ideals is crucial since, compared to a completely

randomized experimental design, a fully blocked randomized experimental design has more
power, more e�iciency, lower research costs, more robustness, less imbalance, and—most
importantly from the perspective here—lower model dependence and thus less bias (Box,
Hunter, and Hunter 1978; Greevy et al. 2004; Imai, King, and Stuart 2008; Imai, King, and Nall
2009). For example, Imai, King, and Nall (2009) found that standard errors di�ered in their data
between the two designs by as much as a factor of six. Indeed, “for gold standard answers,
complete randomization may not be good enough, except for point estimation in very large
experiments” (Rubin 2008a). Of course, the discrepancy between the estimate and the truth in
the one data set a researcher gets to analyze is far more important to that researcher than what
happens across hypothetical repeated samples from the same hypothetical population (cf. Gu
and Rosenbaum 1993).
Matching methods such as MDM and CEM approximate a fully blocked experimental design

(Iacus, King, and Porro 2011, p. 349) because they come with adjustable parameters that can
be set to produce the same result as exact matching, and thus zero imbalance. In particular,
ØEM = M (X `ACEM, δ = 0) = M (X `AMDM, δ = 0). However, this same calculation shows that
PSM approximates merely a completely randomized experiment, and thus has potentially higher
imbalance. That is, because ØEM ⊆ M (X `APSM, δ = 0), it follows that I (ØEM) ≤ I (ØPSM), and
strictly less thanexcept for theunusual special cases (seealsoRubinandThomas2000).Moreover,
the fact thatCEMandMDMapproximatea fullyblockedexperimentmeans that eachhas theability
to achieve lower levels of imbalance, model dependence, and bias than PSM.

4.2 The Inadequacy of PSM Theory
Theoriginal theoretical justification given for PSMwasbasedon theproof that unconfoundedness
conditional on the raw covariates, Y (0)⊥T ` X , along with overlap and SUTVA, implies
unconfoundedness conditional on the scalar propensity score, Y (0)⊥T ` π (Rosenbaum and
Rubin 1983, Theorem 1). With this result, Rosenbaum and Rubin use the identification result in
Equation (1) and show that a PSMmatched sample can be used to produce an unbiased estimate
of SATT or SATE, conditional on onemodel used for estimation. Themotivation for this calculation
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is that it is supposedly easier to match on the scalar π than the k -dimensionalX . Although this is
not the case for the exact matches required by the theorem if X contains at least one continuous
variable, it may be easier to find closer matches in one dimension than k .
Unfortunately, this proof, although mathematically correct, is either of little use or misleading

when applied to real data. First, as Section 2.5 shows, conditioning on a single model is
inappropriate, because users do no such thing. The point of observational data analysis is
to discover the data generation process, and so researchers reasonably try many approaches
and models. Yet, the theorem encourages researchers to settle for the lower standards of
approximating only complete randomization and only average levels of imbalance (across
experiments that will never be run), rather than a fully blocked experiment and balance in
their own samples guaranteed to reduce model dependence. Balancing on π only is unbiased
but ine�icient ex ante, leaving researchers with more model dependence, discretion, and bias
ex post.
The original idea behind PSM (and the proof) would have been somewhat more useful if it

were reversed—if unconfoundedness (andmatching) on π implied unconfoundedness onX—but
this cannot be proven because it is false. Although reducingmodel dependence requires reducing
imbalancewith respect toX , balancing only on π does not balanceX (since it is blind to variation
in X `π). More importantly, in sample, equality between any two estimated scalar propensity
scores, π̂i = π̂j , does not imply that the two corresponding k -dimensional covariate vectors are
matched exactly,Xi = Xj—even though exactmatching on the covariatesXi = Xj does imply that
the propensity scores are exactly matched π̂i = π̂j .

4.3 Illustration
We now simulate 1,000 data sets, each of which mixes data from three separate sources: (1) a
matched pair randomized experiment, (2) a completely randomized experiment, (3) observations
that, when added to the first two components, make the entire collection an imbalanced
observational data set. We then study whether MDM and PSM prune individual observations in
the correct order—starting with those at the highest level of imbalance (data set 3) to the lowest
(data set 1). For clarity, we use two covariates (usingmore covariates generates patterns like those
we present here, only stronger).
To fix ideas, we display one of our 1,000 data sets in the le� panel of Figure 1, which highlights

its three parts in separate colors. In blue in the upper right is the matched pair experiment with
25 treated units drawn uniformly from the [−2, 2] × [−2, 2] square and 25 control units which are
slightly jittered versions of each of these treated units. In red, at the bottom right is a completely
randomized experiment,with 50 randomobservations drawnuniformly from the [−2, 2]×[−8,−4]
rectangle and with 25 of these randomly assigned to treatment and 25 to control. Finally, we
simulate part of an imbalanced observational study by adding 50 control observations in black,
drawn uniformly from the [−6,−4] × [−8, 2] square, and without corresponding randomly drawn
(or otherwise overlapping) treated units.
We apply PSM and MDM, as per Section 3.2, to each data set, and iteratively remove the

(next) worst observation as defined by each matching method. In the two panels at the right
of Figure 1, each row of pixels stands for one simulated data set, with each individual pixel in a row
representing one pruned observation color-coded by data set type. The results show that both
MDMandPSMdowell at removing the 50 control units that lack common supportwith any treated
units (black is separate in both). MDM is able to separate the fully randomized experiment from
the matched pair experiment (red is clearly separated from blue) but PSM is unable to separate
the more informative matched pair experiment from the fully randomized experiment (red and
blue are mixed).
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Figure 1. Finding experiments hidden in observational data, with PSM, but not MDM, blind to information
from full blocking. Le� panel: one (of 1,000) randomly generated data sets from amatched pair randomized
experiment (in blue), a completely randomized experiment (in red), and control units from an imbalanced
observational data set (in black). Right Panels: Each of the 1,000 simulations is represented by a separate
row of pixels, color-coded by experiment type to indicate the order (from le� to right) of which observations
are pruned by MDM (le�) and PSM (right).

In an application, a researcher may prefer to prune only the control units from the le� part
of the graph and no others. This would be best if SATT were the quantity of interest or, in some
cases, to ensure that the variance is not increased too much by not pruning further. However, if
the researcher chooses to prune more, and is willing to estimate FSATT, then using PSM would
be a mistake. This simulation clearly shows that PSM cannot recover a matched pair experiment
from these data. At best, it can recover something that looks like a fully randomized experiment,
meaning that the covariates can no longer predict treatment on average. This is useful, since it
makes possible estimation that is unbiased before conditioning on the treatment assignment.
However, by definition somemodel dependence and researcher discretion remains which, when
combined can lead to bias. The ideal is a fully blocked experiment,which is approximatedby exact
matching, not merely overlapping data clouds.

5 The Propensity Score Paradox
Given the di�ering goals of PSM and other methods, it is no surprise, a�er PSM’s goal of complete
randomization has been approximated, that othermethodswould bemore e�ective at continuing
to reduce imbalance on X than PSM. However, it also follows that pruning a�er this point with
PSM does genuine damage—increasing imbalance, model dependence, and bias. That is, a�er
this point, pruning the observations with the worst matched observations, according to the
absolute propensity score distance in treated and control pairs, will increase imbalance, model
dependence, and bias; this will also be true when pruning the pair with the next largest distance,
and so on.We call this the PSMParadox. The paradox is apparent in data designed for PSM towork
well (Section 5.2) and in real applications (Section 5.3).
The reason for the PSM Paradox is because, a�er PSM achieves its goals of finding a

subset of the data that approximates complete randomization, with approximately constant
propensity scores within strata, any further pruning is at random with respect to X `π, exactly as
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a completely randomized experiment. And, as we show in Section 5.1, random pruning increases
imbalance.4

5.1 The Dangers of RandomMatching
We show here that random pruning, a process of deleting observations in a data set independent
of (T ,X ), not only reduces the information in the data; it also increases the level of imbalance.
Thismay seem counterintuitive, and to our knowledge has not before been noted in thematching
literature (cf. Imai, King, and Stuart 2008, p. 495). However, it is crucial, since pruning by PSM,
when it succeeds in approximating complete randomization, is equivalent to randompruning. For
intuition, we show this result in several ways (see also Section 1 in our Supplementary Appendix).
First, consider a completely randomized experiment with, for simplicity but no loss of

generality, zero causal e�ects. That is, let T be generated by Bernoulli random draws and X
by uniform random draws distributed over a nondegenerate space. If k = 3, then the expected
distance of pointXi to its nearest neighbor in the opposite treatment regimeXj (i ) (among n1 such
points) is d (Xi ,Xj (i )) = 0.554n−1/31 (Bansal and Ardell 1972). In amore general context, Abadie and
Imbens (2006) show, in samples with K continuous covariates from a distribution with bounded
support, that the nearest neighbor in X of a point is of order n−1/K1 . Thus, in either framework,
when amatchingmethod prunes observations randomly, n1 declines, the distance increases, and
imbalance I (Ø) grows.
Second, for intuition, consider a simple discrete data set that happened to be perfectly

balanced, with a treatment group composed of one male and one female, M1, F1, and a control
group with the same composition,M0, F0. Then, randomly dropping two of the four observations
leaves us with one matched pair among {M1,M0}, {F1, F0}, {M1, F0}, or {F1,M0}, with equal
probability. This means that with 1/2 probability the resulting data set will be balanced ({M1,M0}

or {F1, F0}) andwith 1/2probability it will be completely imbalanced ({M1, F0}or {F1,M0}). Thus,
on average in these data randommatching will increase imbalance.
Finally, for a simple continuous example, consider a randomly assigned T and a fixed

univariate X . Consider, as a measure of imbalance, the squared di�erence in means between the
treated and control group of X . The expected value of this measure (which equals the squared
standard error of the di�erence in means) is proportional to 1/n . Thus, as we prune from this
sample randomly, n declines and our measure of imbalance increases.
Of course, if all the matching discrepancies are of the same size, pruning at random or by

any other means will not change the average matching discrepancy (or most other measures
of imbalance). But in more realistic simulations, and real data we have examined, random
pruning increases imbalance. We also introduce a higher dimensional example with real data in
Section 5.3.

5.2 Simulation
We now turn to a demonstration of how PSM generates model dependence and bias. We begin
by hiding a completely randomized experiment within an imbalanced data set. Unlike Figure 1,
we do not include a fully blocked experiment within these data. For each of two covariates,

4 PSM is sometimesdescribedas solving thecurseofdimensionalityproblem(Dehejia 2004). In fact,we illustrate inSection3
in our Supplementary Appendix that PSM’s two-step procedure is an increasingly worse summary of Xi as the number of
elements k in thevector increasebeyondone (seeBrookhartetal.2006). Although thecurseofdimensionality a�ectsevery
matching method—and in high enough dimensions no matching method will be very e�ective—the problem with PSM
starts with only two covariates. Other issues with PSM arewell known. For one, estimating the propensity score regression
withmisspecification can bias estimates (Drake 1993; Smith and Todd 2005a; Kang and Schafer 2007; Zhao 2008; Diamond
and Sekhon 2012). For another, if Xi contains continuous variables, πi will be continuous and so is no easier to match
exactly thanX . The PSMParadox is in addition to these important points; evenwhen the propensity score logit is correctly
specifiedor known, andeven ifmatches canbe found, PSMdiscards considerable information, and this ex ante ine�iciency
is equivalent to bias.
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Figure 2. PSM Increases Model Dependence and Potential Bias. Top-le� panel: the vertical axis measures
model dependence as the average, over 100 data sets, of the variance in the causal e�ect estimate across 512
models applied to the same data. Top-right panel: the vertical axis shows the maximum estimated causal
e�ect from 512 models applied to each of 100 data sets. For one simulated data set, the order of matches is
indicated for MDM (bottom-le� panel) and PSM (bottom-right panel).

we randomly and independently draw 100 control units fromaUniform(0, 5) and 100 treated units
from Uniform(1, 6). This leaves the overlapping [1, 5] × [1, 5] square as a completely randomized
experiment and observations falling outside adding imbalance. We generate the outcome asYi =
2Ti + Xi1 + Xi2 + εi , where ε ∼ N (0, 1). We repeat the entire simulation 100 times. We assume,
as usual, that the analyst knows the covariates necessary to achieve unconfoundedness but does
not know the functional form.
To evaluate the methods, we compute both model dependence and potential for bias, each

averaged over 100 simulated data sets. We measure model dependence by the variance in the
estimate of the causal e�ect over 512 separate models (linear regression using every possible
combination of X1 and X2 and their 3 second order and 4 third order e�ects) from the same
simulated data set for each given caliper level; we do this for PSM and then also MDM as a
comparison. The results,whichappear in the top-le�panel of Figure2, showthatat first thedegree
of model dependence drops for both MDM and PSM, but then, a�er PSM has pruned enough so
that the PSM paradox kicks in, model dependence dramatically increases. Instead of benefiting
from units being dropped, PSM is causing damage. (This is like walking into a shoe store, giving
the cashier some money and, instead of handing you a new pair of shoes, he takes the shoes
you walked in with.) Model dependence for MDM, as expected, declines monotonically as stricter
calipers are applied andmore units are pruned.
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To show how the combination of model dependence and analyst discretion can result in
bias, we implemented an estimator meant to simulate the common situation where the analyst
chooses a preferred estimate to publish frommany possible estimates. Suppose the researcher’s
preferred hypothesis is that the causal e�ect is large, and that this preference intentionally or
unintentionally a�ects their choice. Thus, for each caliper level of PSM and then MDM, we select
the largest estimated treatment e�ect from among the estimates provided by the 512 possible
specifications. The results, in the top-right panel of Figure 2, show that calipering initially does
what we would expect by reducing the potential for bias for both MDM and PSM, with PSM even
slightly outperformingMDM.However, as calipering continues, the PSMparadox kicks in, andPSM
increases model dependence (as indicated in the top-le� graph), the potential for bias with PSM
dramatically grows even while the bias under MDM monotonically declines as we would expect
and desire. (Although we do not show the graph, these patterns are unchanged for mean squared
error as well.)
To provide intuition for how the paradox occurs in these data, we show which observations

are matched and in which order in one of the 100 simulated data sets. Thus also in Figure 2, we
plot X1,X2 points from one simulated data set, with matches from MDM (bottom-le� panel) and
PSM (bottom-right panel) denoted by lines drawn between the points, colored in by when they
were matched or pruned in the calipering process. (The outcome variable is ignored during the
matching process, as usual.) Darker colors were pruned later (i.e., matched earlier).
As expected, the MDM results (bottom-le� panel) show that treated (circles) and control (dots)

pairs that are close to each other arematched first (or pruned last). These darker blue linesmostly
appear within the (completely randomized) square in the middle. In stark contrast, PSM, in the
bottom-right panel, finds many matches seemingly unrelated to local closeness of treated and
control units and many even outside the middle square. The diagonal pattern in PSM dark lines
comes from the propensity score logit which cannot distinguish high values of X1 and low values
of X2 from low values of X1 and high values of X2.
Overall, the figure shows that PSM is trying to match globally—meaning it essentially has only

one chance to get it right, rather than matching locally like other methods and having some
additional degree of robustness. In fact, because the propensity score is outside the space of the
original data, using it for analysis violates the congruence principle. This principle holds that the
data space and analysis space should be the same. Statisticalmethodswhich violate this principle
are known to generate nonrobust and counterintuitive properties (Mielke and Berry 2007).

5.3 Damage Caused in Real Data
In this section, we reveal the PSM paradox in real applications, with data selected and analyzed
by others, including two published studies and a large number of others in progress. We obtained
the data from the studies in progress by advertising to assist scholars inmaking causal inferences,
in return for access to their data and a promise not to redistribute their data or publish their
substantive results (or identities). For almost all the more than 20 data sets in progress we
analyzed, we found patterns similar or analogous to the two we are about to present in detail.
From this, we conclude that the PSM Paradox is prevalent in many real applications.
In this first published study we reanalyze, Finkel, Horowitz, and Rojo-Mendoza (2012) showed

that civic education programs in Kenya cause citizens to have more civic competence and
engagement and be more supportive of the political system, with n = 3,141 survey responses,
1,347 of which received the program. They also measured a large number of socioeconomic,
demographic, and leadership covariates. Second,Nielsenetal. (2011) showthat a suddendecrease
in international foreign aid to a developing country (an “aid shock”) increases the probability of
the onset of lethal conflict within that country. They collect data on developing countries from
1975 to 2006, in total representing n = 2,627 country-years, including 393 (treated) aid shocks.
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Figure 3. Imbalance-matched sample size graph, with data from Finkel, Horowitz, and Rojo-Mendoza (2012)
for the le� panel and Nielsen et al. (2011) for the right.

The authors measure 18 pretreatment covariates representing national levels of democracy,
wealth, population, ethnic and religious fractionalization, and prior upheaval and violence.
Finally, we analyzed a large number of data sets obtained from scholars doing work in progress,
which we received by trading o�ers of help with their analyses and promising not to cite or scoop
them. The results of all sources of data yielded very similar conclusions to that from the two data
sets we now reanalyze.
For both of the published studies we replicate, Figure 3 plots imbalance (vertically) by

the number of pruned observations (horizontally). We measure imbalance (i.e., the di�erence
between the empirical distribution of X in the treated and control groups) by the “Mahalanobis
Discrepancy,” proposed by Abadie and Imbens (2006), which as per Section 3.1 measures
imbalance in the space ofX .5 In each plot, the open circle at the le� summarizes the imbalance in
original data set. For reference,wealso adda solid triangle that summarizes the level of imbalance
that would be present ifT were assigned via complete randomization.
The one-to-one PSM analysis (which in the case of Nielsen et al. 2011 is the published result and

in both cases is estimated by all main e�ects in a logit model) is represented by the le� end of the
solid line. In the le� panel, PSM’s initial result is worse than the original data; in the right panel
it is an improvement, as Nielsen et al. (2011) report. However, consider what happens in either
data set if we caliper o� the worst match according to the propensity scoremetric (i.e., the largest
value of `π̂i − π̂j ` across all matched pairs), recalculate the level of imbalance, and repeat. These
results, which are represented by the full black line in each panel, reveal the PSM paradox kicking
in immediately and continuing until no data is le�: That is, themore strict we are in applying PSM,
theworse imbalance gets. (In a fewof theunpublisheddata setsweanalyzed that hadmuchworse
initial imbalance, PSMhelped for initial pruning and then started increasing imbalance as in these
graphs; simulated examples of this pattern appear in Section 3 of our Supplementary Appendix.)
If we use the venerated practice of setting the caliper to 1/4 of a standard deviation of the

propensity score (Rosenbaum and Rubin 1985a), imbalance is worse than the basic PSM solution
for the le� panel and provides no improvement for the right panel. Following the strictures of
PSM even more closely, in the hopes of finding better balance and less model dependence,
accomplishes precisely the opposite.
For comparison, in each graph, we also prune via MDM (dot-dashed line) and CEM (dotted

line). For MDM, we do one-to-one matching (and so the line starts at the same horizontal point
as PSM) and then caliper o� the observations with the largest Mahalanobis distance, recompute

5 We repeated the analysis the L1 imbalance metric proposed by Iacus, King, and Porro 2011, and the average absolute
di�erence in means for the columns of X , the components of which are o�en used in applied articles. Essentially the
same conclusions result from each of these and other measures we have tried. We also repeated the analysis with various
direct measures of model dependence, and found similar conclusions, although the large number of covariates in these
applications mean that numerous measures could be chosen.
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imbalance, and repeat. For CEM, we begin with the loosest possible coarsening, so that all data
fall in a single stratum and no observations are pruned (and so the line starts from the original
data). We then randomly select a variable, add one cut-point to its coarsening (always arranging
the cutpoints so they divide the space between the minimum and maximum values into equal
sized bins), and compute the imbalance metric. Additional cutpoints eventually lead to more
observations being dropped.
As can be seen in both panels in Figure 3, theMDM and CEM lines both tend downward through

their entire range with no hint of the paradox that would be represented by an upward turn like
PSM: in this case, the trade-o� is as it should be, in that one can reasonably choose any point
along this frontier to do an analysis. (The figure also includes a dashed line marked “Random”
representing the average of a sequence of data sets constructed by random pruning; as with the
simpler examples in Section 5.1, the figure shows that random pruning increases imbalance.)

6 Guidance for Users
We o�er guidance in this section for those accustomed to using PSM, and prefer to keep using it,
and also for those willing to opt for better matching methods.

6.1 Advice for PSM Users
Our results indicate that those who wish to continue to use PSM, perhaps due to familiarity
or convenience in their established work flows, would improve their work by adhering to the
following points.
First, researchers using anymatchingmethodmust explicitly scale variables to represent their

importance (in terms of prior knowledge about e�ects on the outcome variable), since imbalance
combines with importance to a�ect bias. Some claim that PSM automatically solves the problem
of scaling when some variables have unknown importance, but this is untrue. Scaling is less
transparent with PSM than with MDM, Euclidean distance matching, or especially CEM, but PSM
users cannot avoid representing prior research in the scaling of their variables. Ignoring the issue
is an arbitrary choice that may well increase bias.
Second, choosing PSM introduces avoidable risks and so researchers should report on what

techniques they used to avoid the resulting problems. They should clarify how much imbalance,
and therefore model dependence and bias, is le� a�er applying PSM, especially compared to
how much existed in the original data. Readers deserve to know that the researcher is not
making imbalance worse due to the PSM paradox. In particular, setting a more restrictive caliper,
supposedly to meet the conditions of PSM more precisely, may well increase imbalance. We
recommend the routine reporting of diagnostic plots like those in Figure 3. Even carefully using
PSM will likely be suboptimal compared to other matching methods, but it can sometimes be an
improvement relative to the original data if used much more carefully than has been common
practice (see Section 3.2).
Third, researchers should be aware that PSM can help the most in data where valid causal

inferences are least likely (i.e., with high levels of imbalance) andmay do themost damage in data
that are well suited to making causal inferences (i.e., with low levels of imbalance). PSM is better
justified (i.e., still suboptimal but not as much) when very large sample sizes are available a�er
matching, both so as not to gopast the point of complete randomization and so that the di�erence
a�ermatching between fully blocked and completely randomized experiments is smaller and less
consequential.
Finally, researchers should understand what happens when combining PSM with other

matching methods, as is sometimes recommended in the literature. One option is running PSM
first, being careful to stop pruning before the PSM paradox kicks in, followed bymatching directly
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on X with another method. The matched sample will likely be close to only applying the second
method.
A second option is to precede PSM with exact or coarsened matching on a few important

covariates. The advantage of this procedure is that its first step can take one closer to full blocking
than PSM alone is capable of. Its disadvantage is that it makes applying PSMmore dangerous: the
closer the exactmatching step comes to balancing all ofX , the quicker pruningwith PSMwill lead
to the paradox and begin to increase imbalance.
A final option that has been suggested is iteratively checking balance and respecifying the

propensity score regression (see Section 3.2). To the extent that thesemethodswind upmatching
more on X than the propensity score, they may sometimes perform better than PSM alone,
although not as well as methods freed from the constraint of unnecessarily passing through a
one dimensional propensity score. In addition to being used only rarely in the applied literature
(see Section 3.2), the theoretical properties of most of these approaches have not been studied.
We provide some information about this approach by replicating the PSM analyses in this paper
and in our Supplementary Appendix with the automated iterative procedure proposed in Imbens
and Rubin (2015, chap. 13) and several others. We find little change, and more damage the more
the method relies on PSM. For one example, we replicated the top three graphs from Figure 5
in our Supplementary Appendix with the Imbens–Rubin iterative procedure and found almost
imperceptible di�erences.

6.2 Advice for Users of Other Matching Methods
Anymatchingmethod that prunes in amanner independent of the covariates (and thus is pruning
randomly) can increase imbalance. With PSM, this point, which we call the PSM paradox, kicks in
a�er the point of complete randomization is reached, since PSM is blind to information in X not
represented in the propensity score.
For other matching methods that can detect all di�erences in X , pruning a�er approximating

complete randomization will continue to help reduce imbalance. Much later, a�er we prune
enough to approximate a fully blocked experimental design, all information in X will have been
exhausted. At that point, all theunits are exchangeable aside fromtheir treatment assignment and
so any further pruning can only take place at random (with respect to X ), which would increase
imbalance.Of course, at full blocking—suchas for example a�er exactmatching—it is obvious that
further pruning serves no useful purpose. We can however contrive instances where the paradox
occurs with other methods, and conceivably researchers might be fooled. To illustrate, we o�er
two simulations in Section 4 of our Supplementary Appendix that involve pruning with MDM a�er
using all information in X .
In the end, discarding data, which violates a basic conceptual principle of statistical inference,

must be done only if you get something positive from it, such as reducing imbalance. In all
applications and with all matching methods, researchers should closely study the data, the units
pruned, howmuch imbalance andmodel dependence is le�, and whether the process of pruning
is improving or degrading inferences.
In choosing a matching method, the most important considerations are (a) ensuring one can

match on all of X , so that it is at least possible to approximate a fully blocked randomized
experiment, and (b) being able to encode prior knowledge about the relative importance of
the variables and their combinations. For data sets with solely continuous variables, Euclidean
distancematching shouldworkwell. For datawith continuous, discrete, andmixedvariables (such
as continuous variables with natural breakpoints), CEM is themost natural; it is also considerably
faster thanothermethodsandsoalsoworkswell formuch largerdata sets.Manyotherapproaches
aside from PSM also fit these criteria.

Gary King and Richard Nielsen ` Political Analysis 450

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

IT
 L

ib
ra

ri
es

, o
n 

09
 O

ct
 2

01
9 

at
 1

5:
01

:0
6,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/p
an

.2
01

9.
11

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2019.11


7 Concluding Remarks
The important insight behind PSM is to analyze an observational data set by approximating as
closely as possible a completely randomized experiment. However, when feasible, approximating
a fully blocked randomized experiment can be substantially better. The consequence of not doing
so will in some situations merely mean that important information is le� on the table—just as
those who actually design experiments know to block on all available pretreatment covariates
whenever feasible to avoidwasting research resources, statistical power, and e�iciency. However,
in the case of PSM, the problem is not merely information discarded but the damage PSM causes
by continuing to prune a�er it has nearly accomplished its goal of approximating a completely
randomized experiment; in this situation, the PSM paradox will kick in and pruning observations
will also increase imbalance, model dependence, researcher discretion, and bias.
Fortunately, these problems are usually easy to avoid by switching to one of the other popular

methods of matching with higher standards. However, the same paradox of matching increasing
imbalance can occur with other methods when enough observations have been pruned to
approximate full blocking. Although few researchers would prune observations that are exactly
matched, it is important to not be fooled by problems with too few observations or matching in
very high dimensional space, where nomatches may exist by any method.
In anymatchingmethod, the researcher should closely follow the advice in the literature about

these othermethods. For example, researchers shoulduse information about the substanceof the
problembeing analyzed,measurement characteristics of the variables included, such as encoded
in coarsenings in CEM or data measurements in MDM or Euclidean distance matching. And in all
cases, researchers need to provide full information anddiagnostics to readers to understandwhat
was done.
The results described here also cast doubt on other PSM-related practices and

recommendations. For example, Rubin (2008a) recommends that PSM be performed on data
from completely randomized experiments; although using matching in this situation may be a
good idea, using PSM can be extremely problematic because pruning would then be subject to
the PSM paradox from the outset. Many have recommended that all observations more than 1/4
of a standard deviation in the propensity scores be routinely calipered o� (Rosenbaum and Rubin
1985a; Rosenbaum and Rubin 1985b, p. 114; D’Augustino 1998, pp. 2269, 2271; Stuart and Rubin
2007, p. 161), but this will o�en result in an increase in imbalance and model dependence. Many
respecify the propensity score model a�er removing observations without overlap, but this may
make the second propensity score model less powerful and thus closer to random pruning. Most
suggest including all available pretreatment variables in the propensity score logit, even those
that have small or possibly nonexistent e�ects on the outcome (Rubin 2009, and citations in Pearl
2009), but this too may cause problems since it would make the propensity score estimates from
thismodel closer to random,and thusgeneratepruning that is closer to random.Theconsequence
of the use of PSMwith all of these techniques is likely to be higher imbalance,model dependence,
and bias, which is precisely what the technique was designed to avoid.
Anopenquestionworth followingup iswhether thePSMparadoxdiscussedhere explains some

of the di�iculties scholars have noticed that PSM has caused, or not solved, in real data analyses.
For example, Glazerman, Levy, and Myers (2003), Smith and Todd (2005b), and Peikes, Moreno,
andOrzol (2008) have eachpointed to PSM requiringmanymore observations than they expected
as one source of PSM’s problems, which is the di�erence one would experience when running a
completely randomized experiment instead of a fully blocked randomized experiment.

Supplementarymaterial
For supplementary material accompanying this paper, please visit https://doi.org/10.1017/pan.
2019.11.

Gary King and Richard Nielsen ` Political Analysis 451

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

IT
 L

ib
ra

ri
es

, o
n 

09
 O

ct
 2

01
9 

at
 1

5:
01

:0
6,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/p
an

.2
01

9.
11

https://doi.org/10.1017/pan.2019.11
https://doi.org/10.1017/pan.2019.11
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2019.11


References
Abadie, A., and G. W. Imbens. 2006. “Large Sample Properties of Matching Estimators for Average Treatment
E�ects.” Econometrica 74(1):235–267.

Athey, S., and G. W. Imbens. 2015. “A Measure of Robustness to Misspecification.” American Economic Review
Papers and Proceedings 105(5):476–480.

Austin, P. C. 2008. “A Critical Appraisal of Propensity-Score Matching in the Medical Literature Between 1996
and 2003.” Journal of the American Statistical Association 72:2037–2049.

Austin, P. C. 2009. “Some Methods of Propensity-Score Matching had Superior Performance to Others:
Results of an Empirical Investigation and Monte Carlo Simulations.” Biometrical Journal 51(1):171–184.

Banaji, M. R., and A. G. Greenwald. 2016. Blindspot: Hidden Biases of Good People. New York: Bantam.
Bansal, P. P., and A. J. Ardell. 1972. “Average Nearest-Neighbor Distances Between Uniformly Distributed
Finite Particles.”Metallography 5(2):97–111.

Barnow, B. S., G. G. Cain, and A. S. Goldberger. 1980. “Issues in the Analysis of Selectivity Bias.” In Evaluation
Studies, vol. 5, edited by E. Stromsdorfer and G. Farkas. San Francisco: Sage.

Box, G. E. P., W. G. Hunter, and J. S. Hunter. 1978. Statistics for Experimenters. New York: Wiley-Interscience.
Brookhart, M. A., S. Schneeweiss, K. J. Rothman, R. J. Glynn, J. Avorn, and T. Sturmer. 2006. “Variable
Selection for Propensity Score Models.” American Journal of Epidemiology 163:1149–1156.

Caliendo, M., and S. Kopeinig. 2008. “Some Practical Guidance for the Implementation of Propensity Score
Matching.” Journal of Economic Surveys 22(1):31–72.

Crump, R. K., V. J. Hotz, G. W. Imbens, and O. Mitnik. 2009. “Dealing with Limited Overlap in Estimation of
Average Treatment E�ects.” Biometrika 96(1):187.

D’Augustino, R. B. 1998. “Propensity Score Methods for Bias Reduction in the Comparison of a Treatment to
a Non-Randomized Control Group.” Statistics in Medicine 17:2265–2281.

Dehejia, R. 2004. “Estimating Causal E�ects in Nonexpermental Studies.” In Applied Bayesian Modeling and
Causal Inference from Incomplete-Data Perspectives, edited by A. Gelman and X.-L. Meng. New York: Wiley.

Diamond, A., and J. S. Sekhon. 2012. “Genetic Matching for Estimating Causal E�ects: A General Multivariate
Matching Method for Achieving Balance in Observational Studies.” Review of Economics and Statistics
95(3):932–945.

Drake, C. 1993. “E�ects of Misspecification of the Propensity Score on Estimators of Treatment E�ects.”
Biometrics 49:1231–1236.

Efron, B. 2014. “Estimation and Accuracy A�er Model Selection.” Journal of the American Statistical
Association 109(507):991–1007.

Finkel, S. E., J. Horowitz, and R. T. Rojo-Mendoza. 2012. “Civic Education and Democratic Backsliding in the
Wake of Kenya’s Post-2007 Election Violence.” Journal of Politics 74(01):52–65.

Glazerman, S., D. M. Levy, and D. Myers. 2003. “Nonexperimental Versus Experimental Estimates of Earnings
Impacts.” The Annals of the American Academy of Political and Social Science 589:63–93.

Greevy, R., B. Lu, J. H. Silver, and P. R. Rosenbaum. 2004. “Optimal Multivariate Matching Before
Randomization.” Biostatistics 5(2):263–275.

Gu, X. S., and P. R. Rosenbaum. 1993. “Comparison of Multivariate Matching Methods: Structures, Distances,
and Algorithms.” Journal of Computational and Graphical Statistics 2:405–420.

Heckman, J., H. Ichimura, and P. Todd. 1998. “Matching as an Econometric Evaluation Estimator: Evidence
from Evaluating a Job Training Program.” Review of Economic Studies 65:261–294.

Hill, J. 2008. “Discussion of Research Using Propensity-Score Matching: Comments on “A Critical Appraisal
of Propensity-Score Matching in the Medical Literature Between 1996 and 2003” by Peter Austin,
Statistics in Medicine.” Statistics in Medicine 27(12):2055–2061.

Ho, D. E., K. Imai, G. King, and E. A. Stuart. 2007. “Matching as Nonparametric Preprocessing for Reducing
Model Dependence in Parametric Causal Inference.” Political Analysis 15:199–236. URL: j.mp/matchP.

Holland, P. W. 1986. “Statistics and Causal Inference.” Journal of the American Statistical Association
81:945–960.

Iacus, S. M., G. King, and G. Porro. 2011. “Multivariate Matching Methods that are Monotonic Imbalance
Bounding.” Journal of the American Statistical Association 106:345–361. URL: j.mp/matchMIB.

Imai, K., G. King, and C. Nall. 2009. “The Essential Role of Pair Matching in Cluster-Randomized Experiments,
with Application to the Mexican Universal Health Insurance Evaluation.” Statistical Science 24(1):29–53.
URL: j.mp/essrole.

Imai, K., G. King, and E. A. Stuart. 2008. “Misunderstandings Among Experimentalists and Observationalists
about Causal Inference.” Journal of the Royal Statistical Society, Series A 171(2):481–502.
URL: j.mp/misunEO.

Imai, K., and M. Ratkovic. 2014. “Covariate Balancing Propensity Score.” Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 76(1):243–263.

Imbens, G. W. 2004. “Nonparametric Estimation of Average Treatment E�ects Under Exogeneity: A Review.”
Review of Economics and Statistics 86(1):4–29.

Gary King and Richard Nielsen ` Political Analysis 452

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

IT
 L

ib
ra

ri
es

, o
n 

09
 O

ct
 2

01
9 

at
 1

5:
01

:0
6,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/p
an

.2
01

9.
11

http://www.j.mp/matchP
http://www.j.mp/matchMIB
http://www.j.mp/essrole
http://www.j.mp/misunEO
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2019.11


Imbens, G. W., and D. B. Rubin. 2015. Causal Inference for Statistics, Social, and Biomedical Sciences An
Introduction. New York: Cambridge University Press.

Ioannidis, J. P. A. 2005. “Why Most Published Research Findings are False.” PLoS Medicine 2(8):e124.
Kahneman, D. 2011. Thinking, Fast and Slow. London: Macmillan.
Kallus, N. 2018. “Optimal A Priori Balance in The Design of Controlled Experiments.” Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 80(1):85–112.

Kang, J. D. Y., and J. L. Schafer. 2007. “Demystifying Double Robustness: A Comparison of Alternative
Strategies for Estimating a Population Mean from Incomplete Data.” Statistical Science 22(4):523–539.

King, G., and L. Zeng. 2006. “The Dangers of Extreme Counterfactuals.” Political Analysis 14(2):131–159. URL:
j.mp/dangerEC.

King, G., and L. Zeng. 2007. “When Can History Be Our Guide? The Pitfalls of Counterfactual Inference.”
International Studies Quarterly, 183–210. URL: j.mp/pitfallsH.

Lechner, M. 2001. “Identification and Estimation of Causal E�ects of Multiple Treatments under the
Conditional Independence Assumption.” In Econometric Evaluation of Labour Market Policies, edited by
M. Lechner and F. Pfei�er, 43–58. Heidelberg: Physica.

Lunceford, J. K., and M. Davidian. 2004. “Stratification and Weighting via the Propensity Score in Estimation
of Causal Treatment E�ects: A Comparative Study.” Statistics in Medicine 23(19):2937–2960.

Mahoney, M. J. 1977. “Publication Prejudices: An Experimental Study of Confirmatory Bias in the Peer
Review System.” Cognitive Therapy and Research 1(2):161–175.

Mielke, P., and K. Berry. 2007. Permutation Methods: A Distance Function Approach. New York: Springer.
Morgan, S. L., and C. Winship. 2014. Counterfactuals and Causal Inference: Methods and Principles for Social
Research, 2nd edn. Cambridge: Cambridge University Press.

Nielsen, R., M. Findley, Z. Davis, T. Candland, and D. Nielson. 2011. “Foreign Aid Shocks as a Cause of Violent
Armed Conflict.” American Journal of Political Science 55(2):219–232.

Nielsen, R., and G. King. 2019. “Replication Data for: Why Propensity Scores Should Not Be Used for
Matching.” https://doi.org/10.7910/DVN/A9LZNV, Harvard Dataverse, V1.

Pearl, J. 2009. “Myth, Confusion, and Science in Causal Analysis.” Unpublished paper,
http://web.cs.ucla.edu/∼kaoru/r348.pdf.

Pearl, J. 2009. “The Foundations of Causal Inference.” Sociological Methodology 40(1):75–149.
Peikes, D. N., L. Moreno, and S. M. Orzol. 2008. “Propensity Score Matching.” The American Statistician
62(3):222–231.

Pimentel, S. D., L. C. Page, M. Lenard, and L. Keele. 2018. “Optimal Multilevel Matching Using Network Flows:
An Application to a Summer Reading Intervention.” The Annals of Applied Statistics 12(3):1479–1505.

Robins, J. M., M. A. Hernan, and B. Brumback. 2000. “Marginal Structural Models and Causal Inference in
Epidemiology.” Epidemiology 11(5):550–560.

Robins, J. M., and H. Morgenstern. 1987. “The Foundations of Confounding in Epidemiology.” Computers &
Mathematics with Applications 14(9):869–916.

Rosenbaum, P. R., R. Ross, and J. Silber. 2007. “Minimum Distance Matched Sampling With Fine Balance in
an Observational Study of Treatment for Ovarian Cancer.” Journal of the American Statistical Association
102(477):75–83.

Rosenbaum, P. R., and D. B. Rubin. 1983. “The Central Role of the Propensity Score in Observational Studies
for Causal E�ects.” Biometrika 70:41–55.

Rosenbaum, P. R., and D. B. Rubin. 1984. “Reducing Bias in Observational Studies Using Subclassification on
the Propensity Score.” Journal of the American Statistical Association 79:515–524.

Rosenbaum, P. R., and D. B. Rubin. 1985a. “Constructing a Control Group Using Multivariate Matched
Sampling Methods That Incorporate the Propensity Score.” The American Statistician 39:33–38.

Rosenbaum, P. R., and D. B. Rubin. 1985b. “The Bias Due to Incomplete Matching.” Biometrics 41(1):103–116.
Rubin, D. B. 1974. “Estimating Causal E�ects of Treatments in Randomized and Nonrandomized Studies.”
Journal of Educational Psychology 6:688–701.

Rubin, D. B. 1976. “Inference and Missing Data.” Biometrika 63:581–592.
Rubin, D. B. 1980. “Comments on “Randomization Analysis of Experimental Data: The Fisher Randomization
Test”, by D. Basu.” Journal of the American Statistical Association 75:591–593.

Rubin, D. B. 2008a. “Comment: The Design and Analysis of Gold Standard Randomized Experiments.”
Journal of the American Statistical Association 103(484):1350–1353.

Rubin, D. B. 2008b. “For Objective Causal Inference, Design Trumps Analysis.” Annals of Applied Statistics
2(3):808–840.

Rubin, D. B. 2009. “Should Observational Studies be Designed to Allow Lack of Balance in Covariate
Distributions Across Treatment Groups? Statistics in Medicine 28:1415–1424.

Rubin, D. B. 2010. “On the Limitations of Comparative E�ectiveness Research.” Statistics in Medicine
29(19):1991–1995.

Rubin, D. B., and E. A. Stuart. 2006. “A�inely Invariant Matching Methods with Discriminant Mixtures of
Proportional Ellipsoidally Symmetric Distributions.” Annals of Statistics 34(4):1814–1826.

Gary King and Richard Nielsen ` Political Analysis 453

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

IT
 L

ib
ra

ri
es

, o
n 

09
 O

ct
 2

01
9 

at
 1

5:
01

:0
6,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/p
an

.2
01

9.
11

http://www.j.mp/dangerEC
http://www.j.mp/pitfallsH
https://doi.org/10.7910/DVN/A9LZNV
http://web.cs.ucla.edu/~kaoru/r348.pdf
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2019.11


Rubin, D. B., and N. Thomas. 2000. “Combining Propensity Score Matching with Additional Adjustments for
Prognostic Covariates.” Journal of the American Statistical Association 95:573–585.

Simmons, J. P., L. D. Nelson, and U. Simonsohn. 2011. “False-Positive Psychology Undisclosed Flexibility in
Data Collection and Analysis Allows Presenting Anything as Significant.” Psychological Science
22(11):1359–1366.

Smith, J. A., and P. E. Todd. 2005a. “Does Matching Overcome LaLonde’s Critique of Nonexperimental
Estimators? Journal of Econometrics 125(1–2):305–353.

Smith, J., and P. Todd. 2005b. “Rejoinder.” Journal of Econometrics 125:365–375.
Stuart, E. A. 2010. “Matching Methods for Causal Inference: A Review and a Look Forward.” Statistical
Science 25(1):1–21.

Stuart, E. A., and D. B. Rubin. 2007. “Best Practices in Quasi-Experimental Designs: Matching Methods for
Causal Inference.” In Best Practices in Quantitative Methods, edited by J. Osborne, 155–176. New York:
Sage.

Stuart, E. A., and D. B. Rubin. 2008. “Matching with Multiple Control Groups with Adjustment for Group
Di�erences.” Journal of Educational and Behavioral Statistics 33(3):279–306.

Tetlock, P. E. 2005. Expert Political Judgment: How Good Is It? How CanWe Know? Princeton: Princeton
University Press.

VanderWeele, T. J., and M. A. Hernan. 2012. “Causal Inference Under Multiple Versions of Treatment.”
Journal of Causal Inference 1:1–20.

VanderWeele, T. J., and I. Shpitser. 2011. “A New Criterion for Confounder Selection.” Biometrics
67(4):1406–1413.

Vansteelandt, S., and R. Daniel. 2014. “On Regression Adjustment for the Propensity Score.” Statistics in
Medicine 33(23):4053–4072.

Wilson, T. D., and N. Brekke. 1994. “Mental Contamination and Mental Correction: Unwanted Influences on
Judgments and Evaluations.” Psychological Bulletin 116(1):117.

Zhao, Z. 2008. “Sensitivity of Propensity Score Methods to the Specifications.” Economic Letters
98(3):309–319.

Zubizarreta, J. R., R. D. Paredes, and P. R. Rosenbaum et al. 2014. “Matching for Balance, Pairing for
Heterogeneity in an Observational Study of the E�ectiveness of For-Profit and Not-For-Profit High
Schools in Chile.” The Annals of Applied Statistics 8(1):204–231.

Gary King and Richard Nielsen ` Political Analysis 454

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

IT
 L

ib
ra

ri
es

, o
n 

09
 O

ct
 2

01
9 

at
 1

5:
01

:0
6,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/p
an

.2
01

9.
11

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2019.11

	Why Propensity Scores Should Not Be Used for Matching
	Introduction
	The Problem of Model Dependence in Causal Inference
	Causal Quantities of Interest
	Identification
	Estimation Ambiguity
	Definition of Model Dependence
	Model Dependence Biases Even Unbiased Estimators

	Matching to Reduce Model Dependence
	How Successful Matching Reduces Model Dependence
	Matching Methods

	Information Ignored by Propensity Scores
	Different Experimental Ideals for Matching Methods
	The Inadequacy of PSM Theory
	Illustration

	The Propensity Score Paradox
	The Dangers of Random Matching
	Simulation
	Damage Caused in Real Data

	Guidance for Users
	Advice for PSM Users
	Advice for Users of Other Matching Methods

	Concluding Remarks
	References


