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Abstract

We highlight common problems in the application of random treatment assignment in large-scale program
evaluation. Random assignment is the defining feature of modern experimental design, yet errors in design,
implementation, and analysis often result in real-world applications not benefiting from its advantages. The
errors discussed here cover the control of variability, levels of randomization, size of treatment arms, and power
to detect causal effects, as well as the many problems that commonly lead to post-treatment bias. We illustrate
these issues by identifying numerous serious errors in the Medicare Health Support evaluation and offering
recommendations to improve the design and analysis of this and other large-scale randomized experiments.
(Population Health Management 2011;14(suppl 1):S-11–S-22)

Introduction

Randomized experiments have revolutionized the
field of program evaluation, as they offer the potential to

generate validated information on what works, a path for-
ward to create improvements, and demonstrated progress in
a wide variety of programs in government, industry, and the
nonprofit sector. However, many—perhaps even most—
large-scale randomized experiments fail.1 They fail because of
unexpected interventions that disrupt the randomization, or
its intended effects, when applied in the real world. These
unexpected interventions can arise from myriad sources such
as by research subjects, politicians, or others interested in af-
fecting the assignment of people to treatment and control
groups or affecting the results. They also fail when investi-
gators do not anticipate these or other issues in the design and
do not respond to them by choosing statistical methods that
can correct the problems. The main advantage of experiments
comes from random treatment assignment, which enables
researchers to make inferences without modeling assump-
tions; however, failures of random treatment assignment also
account for many of the problems in large-scale experiments.
In this article, we describe several common problems with the
design, implementation, and analysis of randomized experi-
ments, and show how to avoid or fix them.

Throughout, we use as our example the Medicare Health
Support (MHS) evaluation. A brief summary of the experi-
ment appears in the following section. The Randomization

Design Decisions section discusses ex ante choices in the
assignment of subjects to treatment and control conditions.
The Post-treatment Bias section considers what can go wrong
in randomization and, because in the real world many
problems arise, the Ex Post Adjustment section discusses
how to fix a broken experiment by adjusting statistically for
problems that may have arisen. The Recommendations sec-
tion summarizes how to recover useful information from the
MHS experimental data, despite the severe problems that
occurred during its design and implementation.

The Medicare Health Support Program

The MHS program is used as an example to help illumi-
nate the general methodological points we discuss here (for
details, see https://www.cms.gov/CCIP/). MHS is an eval-
uation of chronic care (or disease) management programs as
implemented by 8 private companies. MHS is a large and
consequential experiment in its own right, the results of
which will likely affect public policies with major fiscal,
health, and social welfare implications. The cost of the
evaluation, to either the government or the companies, totals
nearly half a billion dollars. (This amount includes payments
from the government to the companies, which legislation
requires be returned if medical spending is not reduced by at
least the cost of their services.)

We give a brief overview of the experiment here.2 MHS
was authorized by Section 721 of the Medicare Prescription
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Drug, Improvement, and Modernization Act of 2003 (Pub. L.
108–173). It was administered by the Centers for Medicare
and Medicaid Services (CMS), which then hired a financial
reconciliation contractor (the Actuarial Research Corpora-
tion) and an independent evaluation contractor (RTI Inter-
national) to perform the data analyses.

The design was initially tested on a group of 240,000
Medicare beneficiaries, and a second separate intervention
cohort of 47,000 beneficiaries added a year later. Because our
access to data was limited to parts of the Healthways data
set, we focus on the original sample of the Healthways
portion of the evaluation, which included approximately
30,000 beneficiaries.

Figure 1 gives a time line for the Healthways portion of
the experiment. During the calendar year 2004, experimental
subjects were identified. Each Medicare beneficiary identi-
fied for participation in the experiment had to meet the in-
clusion criteria, which are that they each (1) were eligible for
benefits under Medicare Part A, enrolled under Part B, and
not enrolled in a plan under Part C; (2) were diagnosed with
heart failure and/or diabetes; and (3) had a Hierarchical
Condition Category (HCC) risk score of 1.351 or greater,
which is designed to select beneficiaries with at least 35%
higher estimated payments than average. To participate,
beneficiaries also must have not met any of the exclusion
criteria, which included (1) Medicare was not their primary
payer; (2) they were not eligible for Medicare Part A and Part
B; (3) they were enrolled in a Medicare end-stage renal dis-
ease program, hospice, Medicare Advantage plan, or CMS-
sponsored Medicare fee-for-service chronic care demonstra-
tion. These rules imply that a beneficiary who dies also will
be excluded. These criteria were applied continuously
through the experiment so that each beneficiary could be
included in the experiment, removed, or included again de-
pending on whether he or she met these eligibility criteria at
any point.

On May 11, 2005, approximately 30,000 beneficiaries
meeting all inclusion criteria and none of the exclusion cri-
teria (during calendar year 2004) were randomized to receive
treatment or control. Treatment involved the Healthways
chronic care management program that included a complex
and contingent set of telephonic and in-person patient con-
tacts and advice. Control involved no contact with the ben-
eficiaries.

The specific assignment procedure involved randomiza-
tion within strata defined by the cross-classification of low,
medium, and high HCC scores (above the threshold for in-

clusion), Medicaid eligibility, and heart failure diagnosis. For
each control, 2 subjects were assigned to treatment. Spouses
and others living in the same household eligible for partici-
pation in the experiment were always assigned to treatment
or control together (based on the random assignment of the
eligible person in the household with the earliest birthday in
the calendar year).

On August 1, 2005, Healthways began to contact the ap-
proximately 20,000 beneficiaries assigned to the treated
group. To be in the treatment (but not control) arm of the
experiment, a beneficiary was required to consent verbally to
be part of the experiment via a formal, scripted procedure.
Those who refused consent or who could not be reached
were not removed from the study; they counted toward
treatment group medical costs but did not receive treatment.
At any time during the experiment, beneficiaries could
withdraw consent by informing Healthways or CMS, in
which case they would not receive treatment. They could
also opt back into the experiment at any time by giving
consent and agreeing to be contacted. In all situations,
medical costs accrued during periods of treatment and no
treatment were counted toward the pool of treated group
costs.

Investigators were not required to (and did not) obtain
consent from those assigned to the control group; control
group members thus could not opt out of participation in the
experiment, but they would be removed and included at any
time depending on the inclusion and exclusion criteria.

Financial evaluation was conducted in several ways. The
most prominently discussed (and the method included in the
contract) included a difference-in-difference analysis. This
involved computing the medical costs of beneficiaries in the
control group minus costs for the treated group at various
time points up to a final determination 3 years following
randomization, minus baseline differences between the
treated and control groups. CMS also allowed an ‘‘actuarial
adjustment’’ to be applied, which added a constant amount
to the estimated treatment effect to adjust for what they
described as a drift in the treated and control groups away
from balance after randomization but before treatment began
(CMS, unpublished data, January 9, 2008).

Randomization Design Decisions

Once data are collected, statistical inference typically in-
volves a trade-off between bias and variance. Both require
imagining the same procedures being applied to hypotheti-

FIG. 1. Medicare Health Support program time line. Specific dates given are for Healthways; the other organizations had
different time lines in similar or identical order.
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cal repeated samples of different sets of subjects selected in
the same ways in different runs of the same experiment. Bias
refers to deviation in an estimate from the true causal effect
on average across experiments, whereas variance summarizes
differences in the estimate of the causal effect across experi-
ments. Having an unbiased estimate with a very large vari-
ance is of little use because in the one experiment we actually
run, our estimate may be far from the truth; similarly, having
an estimate with a small variance is of no use if there is large
bias. As much as possible, we wish to minimize bias and
variance, but given a fixed set of already collected data,
different analytic strategies usually lead to a trade-off.

Yet, when the investigator creates the data and controls
the assignment of subjects to treated and control groups, bias
and variance need not be in conflict, as it is often possible to
reduce both by carefully designing how the data are to be
collected in the first place. We thus discuss fundamental
decisions involved in designing the procedure by which
MHS beneficiaries are assigned to the treated and control
groups. These decisions fall into 4 related categories in-
volving control of variability, the level of randomization, the
relative and absolute size of the experimental groups, and the
power of the experiment to detect causal effects. Each will be
discussed in turn.

Control

The purpose of statistical control is to reduce bias by ad-
justing for potential confounding variables. For example, if
the treated group is comprised of healthier beneficiaries than
the control group, then health is a confounder that can bias
our causal inferences—which, in this instance, could lead one
to conclude that the treatment has an effect even if it does
not; the reverse bias can also occur. If a researcher could
measure all possible confounders, it may be possible to
produce an unbiased causal estimate through statistical ad-
justment. However, this strategy is not always feasible. The
remarkable contribution of random assignment is that it is
known to be unrelated (on average across experiments) to all
possible confounders, known and unknown, and so unbi-
asedness is guaranteed without adjusting for any other
variable. In other words, properly executed random assign-
ment eliminates all potential confounders, on average.

Unfortunately, the widespread adoption of this powerful
bias-reduction procedure seems to have led to complacency
with respect to variance reduction. In fact, different methods
of random assignment, even if unbiased, have very different
variance profiles. These choices can therefore have dramatic
effects on the size of an experiment’s confidence intervals
around causal effects for a given sample size, or enable
one to spend less on the experiment (ie, include fewer ben-
eficiaries) to yield the same degree of confidence in the
outcome.

We discuss 3 randomization designs. First is complete
randomization, which involves a separate randomization for
each subject, such as flipping a coin to decide on the treat-
ment assignment. A better alternative procedure is that used
in the MHS study, which is randomized blocks. Although both
procedures are unbiased, randomized blocks have lower
variance than complete randomization. That is, whereas
complete randomization equalizes the treated and control
groups on average across experiments, blocking guarantees

that in the one experiment we actually run (and across the
hypothetical repeats of this experiment) there is zero vari-
ability in the causal effect because of variation in the blocking
variables. In the MHS study, the treated and control group
data are exactly balanced with respect to the 3 variables
blocked on and their cross-classifications. This means that
chance differences between the 2 groups cannot exist with
respect to these variables and the variance is accordingly
reduced.

A final randomization procedure is matched pairs, whereby
similar subjects are paired together using all available mea-
sured pretreatment variables and then a coin is flipped for
each pair, assigning either the first to treatment and the
second to control or the reverse. When exact matches are
unavailable for the pairs, the closest available matches are
used.3 The matched pairs design is the logical extension of
the randomized blocks procedure to blocking on all available
pretreatment variables. In the same way that blocking re-
duces variance relative to complete randomization, matched
pairs reduces variance relative to either procedure. In fact,
for all observations in a stratum with the same value on
each of the blocking variables, randomized blocks is equiv-
alent to complete randomization and, as such, some varia-
tion is clearly left to chance when it could be controlled
exactly. In contrast, with matched pairs, everything known
and measured is matched on and thus controlled ex ante;
only that which is unknown is left to be controlled by
randomization.4,5

Thus, when feasible, one should block on all potentially
important variables. Statistically, one is uniformly better off
by making the blocks as small as possible so that all known
pretreatment variability is controlled as well as possible. The
result is that matched pairs is preferable in most situations.6

The exceptions to this rule are not statistical but adminis-
trative. For example, in drug trials for serious but rare dis-
eases, eligible patients may become available only
sporadically, and medical personnel cannot wait until a good
match is found to treat one patient. In other situations, col-
lecting information on important pretreatment variables may
be too expensive or infeasible. In still others, a strong case
can be made that some measured pretreatment variables are
unrelated to the outcome variable (eg, hair color), and so
blocking may matter little and be more effort than its worth
in terms of variance reduction.

What about MHS? The pretreatment variables that are
most important to block on are those likely to be predictive
of the outcome variable, which is the cost of a beneficiary’s
medical care. As indicated in the previous section, this ex-
periment blocked on measures related to health, chronic
conditions, access to health care, and income level, all of
which may be predictive to some degree of future medical
spending. However, the data collected included more infor-
mation that could (and probably should) have been used to
block on, such as prior baseline medical spending, age, sex,
race, end-stage renal disease diagnoses, nonorganic mental
psychosis diagnoses, and likelihood of death.

To illustrate the unnecessary variability (and hence sta-
tistical inefficiency) introduced into the analysis by the fail-
ure to block on available covariates, Figure 2 re-randomizes
the treatment assignment 1000 times and plots a histogram
of the difference in means between treated and control
groups for each of 6 variables. This is accomplished in 2
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ways, once for the actual manner in which the experiment
was conducted including blocking (in gray) and once under
the assumption of complete randomization (ie, without
blocking [in a black line]).

For example, in the upper middle panel, we can see that
the gray distribution resulting from partially blocking on the
HCC risk score is narrower than what would have occurred
from complete (or ‘‘unblocked’’) randomization. The nar-
rowed variance that results illustrates the power of blocking
on this important covariate, but it also shows that by blocking
only on the coarsened 3-category version of the HCC, much
variability was unnecessarily left to random chance. If instead
the experiment had used matched pairs, the distribution
would be a spike (or nearly a spike) over zero.

In the bottom right panel of Figure 2, we see a different
result for baseline claims. This variable was not blocked on,
but the experiment nevertheless produced a slightly smaller
variance for it than complete randomization would. The
reason for this pattern is that baseline claims are partially
related to the variables that were blocked on, and so the
blocking that was done proxied to a small extent for this key
variable and controlled some of the variabilty.

In contrast, other variables commonly used in health care
outcomes research were not blocked on, including sex, race,
and age. Because these variables were also apparently not
correlated with the variables blocked on, the actual distri-
bution and complete randomization versions had approxi-
mately the same variance. These variances are substantial.
For example, the age histogram in the bottom left panel has a
range of� 0.3 of a year, which is� 3.6 months. Because

mortality is approximately exponential in age, this is a sub-
stantively important difference for the elderly. (Fig. 2 studied
only main effects of 6 variables. It excludes all other mea-
sured variables and the interactions among them, all of
which may be worth additional study.)

In fact, although implementation began in August of 2005
(Fig. 1), randomization occurred in May of 2005 based on
data through only the end of 2004. In the 7 months that
elapsed between the data and implementation, many in this
older and relatively sick population died. As such, this ex-
periment would also have benefited from randomizing at the
time of implementation, or equivalently blocking on death
and, of course, only choosing those alive at the time of im-
plementation. The variation in the bottom center panel of
Figure 2 summarizes the consequences of inefficiency and
bias resulting from the 7-month delay. The bias is portrayed
in the figure by the deviation of the vertical line from the
zero point. This experimental inadequacy also interacts ad-
versely with the biased method of constructing the outcome
variable, which we discuss in the next section.

The design of the MHS experiment meant that the actual
balance was a random draw from the gray distributions,
rather than, say, under matched pairs, which would fix them
to exactly or nearly zero. The actual randomization in this
experiment is represented by the vertical line in each panel.
None are exactly zero, and the difference from zero indicates
the clear potential for bias. The actual degree of bias induced
by the vertical line in each graph not being zero is a function
of this distance and the importance of each variable (or the
conditional effect of a variable on the outcome). Note that the

FIG. 2. Randomization distributions, for the actual blocked experiment (gray) and under complete randomization (black),
with a vertical line representing the one actual randomization assignment. Note that the horizontal range, and thus the
meaning of the distance from the vertical line from the zero point, of each variable differs.
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scale of each variable in the figure, and thus the meaning of
the difference between the vertical line and zero, differs.

By this measure, the most important predictor of medical
spending this year is baseline medical spending, shown in the
bottom right panel and which was not blocked on directly. The
range for this variable in the difference in means is� $1000 per
month, which is enormous on the scale of the expected benefits
of the experiment. The experimenters were lucky that the ac-
tual randomization chosen was near the center of this distri-
bution, as the design allowed it to have been much farther
with reasonably high probability. However, the actual differ-
ence in means in per beneficiary per month medical claims
from perfect balance is still a considerable �45.75. The fact that
the experiment was randomized means that, on average across
experiments, there will be no bias because of these variables.
But in the one experiment actually run, this discrepancy means
that the estimated causal effect can be substantially farther
from the truth solely because of the design decision not to
block on spending. How much farther? The answer depends
entirely on the predictive capacity of this variable on the out-
come, after controlling for treatment assignment and the var-
iables used to do the blocking.

One way to measure the predictive importance of this
variable is to regress the outcome variable on baseline
medical spending, controlling completely for the blocking
variables and all their interactions. We do this within the
treated group observations to control for treatment assign-
ment. (We do not have access to the control units for this
test.) When we run this analysis, MHS baseline claims has a
coefficient of 0.221 and a t statistic of 31.247, which indicates
an extremely strong pattern estimated with an unusually
high degree of certainty. This result alone offers very strong
evidence that baseline claims is a very important predictor of
medical spending and should have been blocked on. This
considerable predictive power could have easily been used
to increase the power of the experiment massively at almost
no additional cost to the government.

We illustrate this relationship in Figure 3, which gives 3
measures of the relationship between baseline (horizontally)

and follow-up (vertically) medical spending totals. The 3
measures include a linear regression (straight solid line/
straight dashed lines with confidence intervals), a semi-
parametric LOESS smooth line (curved line), and a non-
parametric average of the outcome for each $500-width
binning of baseline medical spending. All show approxi-
mately the same result: baseline medical spending is a tre-
mendously important predictor of ultimate medical
spending. In fact, because most of the observations occur
toward the extreme left of the graph, we can see that the
actual relationship between the 2 variables for most people is
even steeper than the regression results indicate.

Baseline medical spending and other variables were all
available prior to the experiment but none were blocked on.
This is unfortunate, because for the same cost and the same
number of beneficiaries randomized, the experiment could
have produced far more certain results with much narrower
confidence intervals and results closer to the true answer
with much higher probability. Or alternatively, it could have
produced results with the same degree of uncertainty as re-
ported at substantially lower cost to the government.

Level

A second issue is the level at which randomization is
conducted. In MHS, individual beneficiaries were not ran-
domized; instead, randomization was at the level of the
household and all eligible beneficiaries living in the same
household were assigned together. This is known as the
difference between unit randomization and cluster randomiza-
tion. Unit randomization usually has lower variance than
cluster randomization. However, unit randomization is not
always feasible. The MHS evaluation appears to be one such
case, as giving services to one spouse but denying the other
may lead to complaints, noncompliance, or lack of consent
from both. And even when feasible, encouraging one spouse
to take his or her medicines will plausibly have an effect on
the behavior, and ultimately the medical spending, of the
other spouse. This nonindependence of units then violates
the ‘‘no statistical interference’’ condition of most statistical
analysis procedures (this is the stable unit treatment value
assumption7), and thus when present is a good reason to
choose cluster randomization.

However, whatever level of randomization is chosen for
an experiment, and whether the choice is made for statistical
or administrative reasons, the resulting data must be ana-
lyzed using a statistical procedure designed for that level.
The most common mistake is to randomize at the cluster
level and analyze the data as if they were randomized at the
unit level. The problem with this is that the number of in-
dependent pieces of information is the number of clusters but
the computer program processing the data is incorrectly
being told that the much larger number of units are all in-
dependent. Doing this can lead to significantly under-
estimated uncertainty estimates. As Cornfield wrote more
than 3 decades ago, ‘‘Randomization by cluster accompanied
by an analysis appropriate to randomization by individual is
an exercise in self-deception … and should be avoided.’’8

Unfortunately, this appears to be precisely the mistake made
in the MHS analysis. The consequence is that the already
wide confidence intervals reported in the MHS evaluation
are actually somewhat larger than indicated. How much

FIG. 3. The predictive capacity of prior medical spending
on future medical spending.
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larger? The answer depends on the number of households
with clusters larger than 1 and the degree of dependence
among those within households. The reported MHS confi-
dence intervals would not be biased by this problem only if
one were able to demonstrate that household members, such
as spouses or sisters, have no effect on one another, which is
an assumption contradicted by a considerable body of social
science research. Full access to the complete data would be
necessary to ascertain the correct confidence interval size,
but clearly this information must be included in a proper
analysis.

As a general rule, experimenters should randomize at the
lowest level that is politically and administratively feasible,
subject only to the constraint that interference is kept low.
The statistical procedures selected must always be those
appropriate to the level of randomization.

Size

The size-related design features of experiments involve the
total sample size and how much of that sample is allocated to
each treatment arm. Assuming that the expected variance in
medical spending for any one person is exchangeable, con-
ditional on the blocking covariates and treatment status, then
the variance in the difference in means between randomly
assigned treated and control groups equals the sum of the
variance of each mean. The implication of this result is that
the variance of the difference (ie, of the causal effect estimate)
is mainly driven by the smaller of the 2 groups. (This is easy
to see for a highly unbalanced experiment in which the
sample size of one group is so large that the variance is
essentially zero. In that situation, adding more observations
to the larger group would have an imperceptible change in
the variance of the difference, whereas adding the same
number of observations to the other group would reduce the
variance of the difference considerably.) Thus, the optimal
allocation across groups is equal sizes. If exchangeability
does not hold, then more complicated calculations may be
necessary to produce more precise estimates.

In the MHS experiment, twice as many beneficiaries were
placed in the treated group as the control group. This would
only be efficient if the experimenters had reason to believe
that the intervention, while attempting to reduce costs,
would double the variance in costs. In fact, the variance might
plausibly increase to some extent, because some beneficiaries
might be made aware of or be encouraged to use medical
services they would not have known about in the control
group. Increased variance in some intervention groups is
common9; the question is whether a 2-fold variance differ-
ence would have been expected, or at least observed after the
fact. Given prior experience with chronic care management
programs, a variance of twice the size seems highly im-
plausible; if the underlying data collected were made avail-
able, it would be possible to directly estimate these
quantities. The likelihood that a doubling of variance would
occur is further reduced by the terms of the experiment,
which, by prior agreement (between CMS and the MHS
Organizations), caps total costs counted in the experiment.
Thus, the 2-to-1 treatment-to-control size differential in the
MHS study design may well have been a waste of resources
that could have been better marshaled by equalizing the
group sizes.

Power

In the specific sense of Neyman–Pearson hypothesis
testing, power is the probability that a statistical test ap-
plied to data collected in a particular way will reject the null
hypothesis of no causal effect, when in fact the true causal
effect is zero. More generally, power refers to the level of
uncertainty we can expect from a particular experimental
design. In the MHS experiment, a key question is how
much money a given health service intervention saves (eg,
the causal effect of the Healthways intervention on medical
spending); in this more general sense, ‘‘power’’ can refer to
the width of the confidence interval around the quantity of
interest.

In the Second Report to Congress on the MHS evaluation,
McCall et al give a 95% confidence interval on the causal
effect of� $47 per month, which of course is an interval
width of $94.10 This interval could then span a strong posi-
tive result to a negative one. And this difference is over and
above the bias built into the experiment of �$45.75 resulting
from not blocking on baseline costs. To detect a savings of
reasonable size in a way that is still clearly distinguishable
from zero would require a much narrower confidence in-
terval without bias; in other words, a substantially more
powerful experimental design. This is a major issue, of
course, since the point of the experiment was to detect this
effect, but it appears that the design made detection highly
unlikely whether the MHS Organizations were as effective as
advertised.

Some aspects of the uncertainty of statistical inferences
cannot be computed until the final data available to the
federal evaluators are made publicly available, but most can
be computed as a direct result of design decisions, including
those discussed in this section. The largest reduction in un-
certainty would have come from a large-n, matched pair,
unit-level randomization with no interference, and equal
numbers of treatment and control units. This is not possible
in all experiments but, fortunately, understanding the trade-
offs makes many more choices possible. For example, we can
increase the sample size to accommodate the fact that ran-
domization needed to be at the household level, or we can
collect and block on pretreatment variables that have a big-
ger effect on the outcome in order to avoid the costs of col-
lecting more observations. But whatever point on the various
trade-offs one chooses, we must choose a design that makes
it possible to draw inferences about the quantities of interest
with the level of uncertainty minimized.

Post-treatment Bias

To understand the paramount issue of post-treatment bias,
consider a randomized experiment in which a drug is given
to one group and a placebo to the other. A reasonable pro-
cedure for estimating the causal effect of the drug would be
to compute the difference in the average life span of people
in the 2 groups. However, suppose instead that the investi-
gators had estimated the causal effect by taking the differ-
ence in means between the groups based only on those who
had survived through the first 2 years of the experiment. The
result would be what is known as post-treatment bias.11 For
example, if the drug kills 20% of the people who take it
within the first 2 years but causes those who survive the first
2 years to live longer than expected, dropping those who
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died early would (incorrectly) reverse the conclusions of the
experiment.

To avoid post-treatment bias, researchers should follow a
simple principle: Keep all subjects and do not alter measures
of them based upon information available following ran-
domized treatment assignment, other than measuring the
outcome variable at the end of the evaluation period. (The
only reasonable exception to this rule, in some circum-
stances, would be matching or another adjustment used in
order to reduce variance in an inefficiently designed exper-
iment. As the cost of doing so would be giving up the model-
free benefits of randomization, this decision must be very
carefully made.) Any adjustment that comes after treatment
could be affected by that treatment assignment, and may
therefore lead to post-treatment bias. Everything that is a
consequence of the treatment gets attributed to the causal
effect and so researchers must be careful to include only the
effect of interest. We now discuss 4 key ways this principle is
violated.

Compliance

The stated goal of the investigators of the MHS experi-
ment was to ‘‘follow an intent-to-treat pre-randomization
model.’’2 Intent-to-treat designs focus solely on randomiza-
tion to treatment as the causal factor, and leave the degree to
which each randomly assigned subject complies with the
experimental protocol as part of the causal effect. For ex-
ample, if the intervention itself among those who comply has
a positive effect, then the more subjects comply, the larger
will be the intent-to-treat effect.

In another example, if a subject is assigned to take a par-
ticular drug, then the quantity of interest in an intent-to-treat
design is the causal effect of the decision to assign the patient
to take the drug. In an experiment, this assignment is the
result of the randomization process. (In clinical practice,
which the experiment approximates, the assignment is the
result of the doctor advising the patient to take the drug.)
This causal effect is distinct from (and usually smaller than)
the effect of the drug itself among those who comply with
the experiment and take the drug only when assigned to
do so.

The distinction between intent-to-treat and complier cau-
sal effects is crucial in estimation because, from the per-
spective of an intent-to-treat design, the decision to comply
with the treatment assignment by a research subject is post-
treatment, and likely a consequence of the treatment, and so
may lead to bias if used to adjust the sample or measures.
For example, selecting for analysis only those patients who
take the drug in the treatment group and do not take the
drug in the control group leads to a classic example of post-
treatment bias when attempting to estimate intent-to-treat
causal effects. (Studying the complier causal effect—that is,
the effect among those who would accept treatment if they
were assigned to the treated group and would not take
treatment if assigned to the control group—requires special
statistical procedures).6

In the MHS experiment, because of the way the analysis
was conducted, beneficiaries who received an intent-to-treat
random assignment did not necessarily have the opportunity
to receive treatment. The data analysis procedure included
and excluded beneficiaries at different points in the study,

including after randomization, based on the eligibility crite-
ria. Some of the inclusion and exclusion of subjects was in-
duced by the beneficiaries’ own decisions (such as whether
to move to a hospice), some were the result of uncontrollable
events (such as death), and some were caused by adminis-
trative rules, such as exclusion because of alternative plan
coverage. Either way, what was intended to be an intent-to-
treat design was not. And because these inclusion and
exclusion rules are at least in part a consequence of treat-
ment assignment, such as if a beneficiary learns about a
hospice from the MHS Organization, then post-treatment
bias results.

Consent

In the United States and most other developed countries,
human subjects must give explicit legal consent before par-
ticipating in an experiment. This is usually dealt with by
asking a large group of people for their consent and then
randomizing the assignment of only those who agree to
participate. Causal inferences can be made only with re-
spect to those who give consent, but the decision to par-
ticipate, occurring prior to treatment, cannot result in
post-treatment bias.

In the MHS experiment, subjects were asked for consent
only after treatment assignment and only in the treated
group. Subjects were included in the experiment, and their
costs were calculated, whether or not they consented, even
though those who did not consent received no services. By
not excluding patients who did not give consent, post-
treatment bias resulting from this unusual consent procedure
was avoided. This does not mean, however, that bias was
avoided, a subject to which we now turn.

Defining the treatment

The treatment in a randomized experiment includes
whatever was assigned to the treated group and not the
control group. This definition is sometimes not quite what it
seems and requires careful attention in order to understand
what the experiment actually measures. For example, in a
drug trial, the treatment includes not only the molecular
composition of the designated ‘‘active’’ ingredient, but also
how that drug is packaged into a pill or other delivery de-
vice, how the doctor explains to the patient to take the drug,
and even apparently irrelevant issues (eg, what the doctor is
wearing, when the patient takes the drug).

In this light, a fundamental issue in the MHS experiment is
that consent was obtained for some in the treated group and
for no one in the control group, and so the consent process
itself is in fact part of the definition of the causal effect. In
other words, the (intent-to-treat) causal effect of this experi-
ment includes both the intent to deliver MHS services and the
process of attempting to obtain consent. This combined
quantity can thus be estimated without post-treatment bias,
but it is not the quantity of interest. This is a problem because
the MHS organizations do not obtain consent in this way in
the normal course of their business and so the combined
causal effect cannot be considered relevant. Instead, the
quantity of interest is only the intent to treat with MHS
services. Estimating the wrong (ie, combined) quantity cor-
rectly is of course the same thing as estimating the quantity
of interest with bias, which is the situation here.
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In particular, the standard operating procedures of the
Healthways business model has patients automatically opted
in, without discussion, unless the patients raise the issue
themselves and opt out. In these traditional programs, the
initial telephone calls focus almost immediately on the na-
ture of the beneficiary’s chronic condition and actions they
can take to change behavior and enable better self-care or
doctor-patient interactions. In contrast, initial MHS calls
were focused almost solely on providing members with a
reason to want to opt in to the program, as well as delivering
customized messages designed to engage and invite the
member to be a part of the study. Requiring this opt-in
process also delayed the onset of actual service delivery,
which is a significant factor in a very sick population with a
high mortality rate.

Moreover, the strong financial incentives provided to the
chronic care management companies by CMS led to ag-
gressive attempts to obtain consent. In practice, for Health-
ways, this meant designing customized messages, asking for
consent on the welcome call, repeating calls if the beneficiary
allowed it, recontacting the beneficiary after hospitalizations,
and contacting primary care physicians and other providers
to try to persuade the beneficiaries. From qualitative reports,
difficulty in obtaining consent stemmed from reaching the
beneficiary in the first place, overcoming objections from
older people worried about fraud, and combating some in-
advertently publicized misinformation about whether this
was a genuinely authorized program. In contrast, the normal
business practice outside of an experiment is to just start
working with the beneficiary, with little or no discussion
of consent, and with no immediate financial incentives
involved.

To illustrate the size of this difference in the MHS data,
ideally we would like to compare the estimated treatment
effect of the chronic care management program separately
from the treatment effect of the consent process. Of course,
the randomization process makes this impossible without
unverifiable assumptions, but we can see within the treated
group how those who consent differ from those who do not
consent. If the differences were zero, then we wouldn’t have
to worry about this source of bias.

For this purpose, the left panel of Figure 4 plots the
standardized difference in means between those who con-
sented and those who did not (among those in the treated
group) for each of several variables. (Because beneficiaries
were permitted to give or withdraw consent at any time, and

even multiple times, during the experiment, this figure gives
the last consent status for each person in our data set.) The
vertical line marks the point of no difference, and each dot
gives a difference in means; a 95% confidence interval is
plotted as a horizontal line through each point. As can be
seen, all but one or two of the differences are clearly distin-
guishable from zero. As such, we conclude that the source of
bias in consenting only the treated group post-treatment is
likely to be substantial.

Thus, the quantity of interest in the MHS experiment is the
causal effect of the intent to assign the chronic care man-
agement program to an individual Medicare beneficiary. The
purpose of the experiment is not to assess the effect on
participation and medical spending of the consent process
itself, although it and the quantity of interest are conflated.
To estimate the quantity of interest with the data produced
by the MHS experiment then involves modeling assumptions
to separate the two out—some of the same assumptions that
random treatment assignment is designed to avoid. The
consequence of getting these assumptions wrong is post-
treatment bias.

In addition, subjects who did not provide consent initially
were allowed to opt in and opt out as often as they wished
over time. This series of decisions are all post-treatment, all
potentially a consequence of the chronic care management
program, and thus another source of post-treatment bias.

Exclusion and inclusion criteria

Once subjects are randomly assigned to the treated or
control group, they should remain in those groups and in the
study until completion. Removing subjects after randomi-
zation risks post-treatment bias.

In MHS, the consent process removes no beneficiaries
from the sample, but the inclusion and exclusion criteria are
applied continually, leading to a constantly changing sample
composition for both the treated and control groups. Un-
fortunately, each of these criteria are post-treatment and
potentially a consequence of the treatment assignment. In
addition, we can directly validate that the included group is
not a representative sample of the entire group; we do this in
the right panel of Figure 4, which gives the standardized
difference in means between the eligible and ineligible (at the
last time point for which they are observed in our data).
Clearly, these inclusion and exclusion criteria were not re-
motely representative.

FIG. 4. Bias induced by consenting (left
panel) and eligibility requirements (right
panel). Standardized differences in means
and 95% confidence intervals.
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This procedure thus induces post-treatment bias with high
probability. To take one example, suppose a beneficiary
moves to a hospice because of information received from the
treatment regime offered by the chronic care management
company. This and all the other inclusions and exclusions are
post-treatment. It may well be that these patients become
ineligible for treatment but, to avoid post-treatment bias, the
outcome variable needs to include them all or else a different
subset of beneficiaries must be randomized in the first place.

Missing data

Information on baseline medical spending is missing from
each of the data sets CMS made available to us. For example,
in the most recent data set representing 36 months post-
treatment, this information is missing for 571 treateds and
261 controls. These beneficiaries were in the experiment, but
their medical spending information is missing from the data
set. Part of the reason for this issue may be the delay in
applying eligibility criteria post randomization, and part
appears to be because CMS withheld medical spending in-
formation about these individuals.

This delay in implementing the biased procedure of de-
leting ineligible individuals also produces more potential for
bias. If missing data cannot be recovered, then the problem
here is deleting the missing observations listwise. Better
methods of treating the missing data are available that can
avoid some of these issues if missingness is unavoidable,12

but it is almost always better to avoid such issues via ex ante
design than ex post adjustment, when feasible.

Constructing the outcome variable

Adjustments made to the outcome variable in the course
of the experiment induced serious post-treatment bias in 2
ways.

First, the basic measure of the outcome variable used in
the MHS experiment is the average per beneficiary per
month Medicare expenditure. It is calculated by computing
total Medicare payments for all days in which a beneficiary
meets the inclusion criteria and does not meet the exclusion
criteria, divided by 30.42 to convert the days eligible into
fractional months in which these conditions are met. Because
these decisions are post treatment, the time periods from
which the outcome variable is calculated are not even
defined until after randomization. As such, the outcome
variable constructed in this way will strongly induce post-
treatment bias.

This first problem is considerably more serious because
the adjustment for noneligibles also leads to dollar figures
unrelated to actual health care costs. For example, consider 2
individuals who are eligible on the first day of a month, but
died at the end of the day, and so are ineligible for the rest of
the month. Suppose also that the first dies at home, incurring
no medical costs, whereas the other dies in a hospital after
$10,000 in costs. The value of the per beneficiary per month
variable is the cost on that first day multiplied by 30, which is
$0 for the first beneficiary and $300,000 for the second. This
makes no sense, of course, because there is no reality under
which the second patient would cost $10,000 per day for 30
days. This is especially the case as the largest costs are often
incurred just prior to death, rather than repeatedly over time.
And once a person has died, there are no additional costs to

Medicare, and so the actual cost of this person, as distinct
from the value implied by the way the outcome variable is
coded, should simply be $10,000 for the entire month. The
immediate biases in calculating this variable are therefore
substantial on their own, but the biases then multiply be-
cause eligibility is determined post treatment.

Second, for some calculations, CMS allowed the medical
cost variable to be capped so that no beneficiary’s costs were
higher than the top 1% of all beneficiaries. The reasoning
here is presumably that sometimes reinsurance for cata-
strophic expenditures protects the government and the MHS
Organizations. Although reinsurance for catastrophic ex-
penditures may be a viable option in the private health care
space, there is no reinsuring entity for the government. But
whatever the justification, the threshold for when the cap
was implemented was defined after the treatment and as
such leaves the potential for additional post-treatment bias.
Fixing the cap, if there is one, to an exogenous amount,
chosen prior to randomization and applied to both the
treated and control groups, could have been used to avoid
this particular source of bias, but eliminating it entirely
probably would have been preferable.

Ex Post Adjustment?

Ex post adjustment in experimental data involves any
statistical modeling or other adjustment for confounders that
occurs during data analysis. This is necessary in some cases
and wasteful or inefficient in others.

Useful adjustments: Reducing bias or inefficiency

A carefully designed intent-to-treat experiment can be
analyzed via a simple difference in means between the
treated and control groups, and will not benefit from ex post
statistical adjustment. For example, a unit-randomized mat-
ched pair design will not benefit from adjusting on variables
that defined the pairs because the groups are already well
balanced in the sample.

When a proper experimental design is not used or is used
but not implemented correctly, a good scientific strategy is to
repeat the experiment; after all, correcting statistical analyses
via design decisions that enable one to avoid assumptions is
usually preferable to ex post statistical corrections that make
assumptions. Of course in the real world, and especially with
large-scale evaluations, this strategy is typically infeasible or
undesirable. In that case the randomization cannot then be
relied upon to avoid assumptions entirely, and so the data
from the broken experiment must be regarded as effectively
observational. In these situations, 2 types of adjustments may
be relevant, both of which apply to the MHS experiment.

First, and most obviously, statistical adjustments should
be applied if the analysis without them will lead to bias. In
this situation, the advantages of randomization are already
lost and the researcher might as well try to recover some
information from the data in whatever condition they are in.
In modern data analyses, matching methods are typically
preferable in these situations.5,13

The second condition involves choosing to adjust even if
there is no bias, such as for the purpose of reducing the
variance. This is a more difficult decision because we
would be intentionally giving up the assumption-free bene-
fits of randomization, and thus risking bias, in return for the
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possibility of a larger variance reduction. For example, a
researcher may wish to control for variables they neglected
to block on ex ante, such as via matching or regression. This
decision is usually only justified if the confidence intervals
are not narrow enough for substantive purposes, as may be
the case with the MHS experiment.

Unnecessary or harmful adjustments

Our analysis in Figure 2 shows that the MHS experiment
appears to have been randomized as described, at least with
respect to the variables we had available to evaluate. It was
far from the most efficient method of randomizing, but it was
nevertheless valid. As such, there was no immediate need for
adjustment after randomization. However, the analysis
methods chosen were flawed: As described above, the
method of computing the outcome variable, the procedure
for consenting subjects, the method of dealing with missing
data, and the protocol for including and excluding ben-
eficiaries after the experiment began all likely induced
post-treatment or other biases. The point of the ex post ad-
justments, then, was only to reduce the bias unnecessarily
introduced by these flawed analysis procedures. Drop these
procedures, and one may be able to drop the adjustments,
run an appropriate statistical analysis, and recover some of
the model-free benefits of randomization.

We describe here 3 of the ex post adjustments used in
analyzing the MHS experiment.

First, the analysts used a difference-in-difference proce-
dure to estimate the causal effect.10 This strategy involves
subtracting from the usual estimate (based on the difference
in means between the treated and control groups after an
intervention period) the difference in means at baseline. This
is a reasonable strategy in many observational contexts, or in
experimental designs in which certain types of measurement
error may be present,14 but it is highly inefficient and thus ill
advised when randomization succeeds and the variables are
measured well.

To see the problem with the difference-in-difference
analysis in a randomized experiment like MHS, let YT and
YC denote the average values of the outcome variable for the
treated and control groups, respectively, at follow-up. Then
the simple estimate of the causal effect is the difference in
means: d¼YT �YC. Let Y

�
T and Y

�
C denote the average values

of the treated and control groups at baseline. The difference-
in-difference estimator is based on the fact that the true
causal effect at baseline (before the program is implemented)
is known to be zero if no problems occurred. To check for
problems, we merely estimate the bias directly by computing
the difference in means at baseline: B¼Y

�
T �Y

�
C. If B is sys-

tematically different from zero, and we assume that d also
has this same degree of bias, then we can simply subtract out
the estimated bias at baseline D¼ d�B, which gives us the
difference-in-difference estimator.

However, consider what happens in a randomized ex-
periment (with no confounding factors or other biases). Be-
gin by denoting the true causal effect of the program as y. In
this situation, the simple difference in means estimator is
unbiased, E(d)¼ y (meaning that on average, across repeated
randomizations, the expected value of the estimator d gives
us y), and the baseline correction is zero on average across
experiments, E(B)¼ 0. This means that the correction RTI

applied will do nothing on average across repeated runs of
the same experiment: E(d)¼E(D)¼ y. However, the variance
of a difference-in-difference estimator across experiments is
larger, V(D)¼V(d)þV(B)>V(d), usually about twice as
large. A larger variance with no bias means that in the one
run of the experiment actually conducted, d is likely to be
closer to the true y than B. This can be seen if standard errors
or confidence intervals are computed correctly because both
will be a good deal larger than if the simple difference in
means had been used. Put differently, RTI’s choice of ad-
justing via the difference-in-difference estimator was equiv-
alent to discarding about half of the observations collected
and research funds used.

However, the problem is worse because RTI did not per-
form a classic difference-in-difference analysis. Instead, they
chose to adjust further by weighting the difference in
spending between baseline and follow-up by the beneficia-
ry’s fraction of eligible days during the evaluation period.10

Because eligibility is a post-treatment decision, this adjust-
ment would likely induce further post-treatment bias, which
in turn would be further magnified if the rate and timing of
ineligibility are not equivalent between the control and
treated groups.

The second CMS ex post analytic change to the simple
difference in means involved an ‘‘actuarial adjustment’’ that
attempted to counterbalance drift in the treatment and con-
trol groups after randomization but prior to the start date.
CMS identified the cause of the drift as ‘‘due to the analytic
approach used by RTI in which length of eligibility is fac-
tored into’’ the per beneficiary per month calculation of the
outcome variable (CMS, unpublished data, January 9, 2008).
Again, dropping this analytic approach would obviate the
need for adjustment. Making the adjustment, then, will have
an indeterminate effect on bias and efficiency.

There also is no reason to think that an adjustment, even if
it were necessary, should be constant over the entire sample.
In all likelihood, it would add other biases. For example, it is
highly likely that beneficiaries with the highest medical
spending have the largest causal effects and so would require
the largest adjustments. Ignoring this basic feature of the
data and shoehorning all effects into a constant adjustment
strategy is not advisable and is unlikely to solve the problem.

A final ex post adjustment method was a multivariate
statistical adjustment used by RTI in the Second Report to
Congress.10 A multivariate linear regression was used to
statistically adjust for baseline covariates. (The specific re-
gression specification was not given and so is not replicable.
This adjustment also apparently included some type of ‘‘re-
gression-to-the-mean’’ adjustment, but exactly what that is
also was not specified.) This adjustment had large effects
results, with the program administered by Healthways
costing the government $26 per beneficiary per month to
saving it $18. The fact that this adjustment made such a large
difference is a direct indication of a serious problem with the
experiment. Assignment rules generated randomly are, by
design, unrelated to potential pretreatment confounders and
all other variables. Controlling for variables like these, un-
related to the treatment variable, should have no effect on the
outcome. What likely happened is that the inappropriate
post-treatment adjustments introduced bias and unneces-
sarily induced a relationship between the treatment and
these control variables.
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Recommendations for MHS Data Analysis

So far as it is possible to tell without access to the complete
data and better reporting on what was done, the MHS ex-
periment was designed highly inefficiently with several seri-
ous biases. For the same expenditure and the same number of
beneficiaries randomized, simple changes to the design could
have produced considerably narrower confidence intervals
and far more informative and less biased conclusions about
MHS services. These design inefficiencies were then com-
pounded by bias resulting from the changing consent process
and post-treatment biases induced by a series of analytical
mistakes. The biases were then confounded further by flawed
adjustment procedures that were, in effect, designed to correct
for the biases that need not have been induced in the first place.

A new experiment designed from scratch is attractive from
a scientific perspective, but with the ever-growing challenge
in the quality and affordability of health care, we probably
do not have the luxury of either the cost or time of repeating
the experiment. Fortunately, a great deal of information does
exist in the data from this experiment. Thus, even if rerun-
ning this large-scale, long-term, and expensive experiment
were feasible, learning as much as possible from the data
already produced would be prudent. Thus, we now offer 5
recommendations designed to facilitate this process.

First, the outcome variable should be constructed to mea-
sure total costs, without bias-inducing post-treatment adjust-
ments. Dollar figures should not be weighted up to monthly
values that do not and cannot exist. When someone dies or
does not receive services, the costs are zero; adjustments, and
especially adjustments that are calculated with information
available post treatment, should be avoided. Post-treatment
bias can be extremely difficult to correct once induced,11 and
so it is best to avoid the situation in the first place.

Second, data sets should be constructed with all variables
measured at the time of randomization and then again at the
‘‘go live’’ point when treatment began to be implemented.
These data sets should then be subject to randomization tests
like the ones we implemented in Figure 2, but for all avail-
able variables (and their interactions). Depending on the re-
sults of this step, different steps would be taken next. For
example, if the randomization tests suggest that the experi-
ment was implemented as designed, it would be best to
analyze the data without the eligibility and other features
that induced post-treatment bias and without the 3 ex post
adjustments designed to correct them.

Third, even if no bias is found in the many other detailed
procedures of design, implementation, administration, and
analysis, some assumptions need to be made in order to
correct for biases related to the consent process differing from
how the companies do this in their normal business practices.

Fourth, an important decision needs to be made regarding
the inefficiency of the experiment because of a failure to block
on the key background covariates. A principal advantage of
random treatment assignment is that, without modeling as-
sumptions, one can assure unbiased causal effect estimates,
but one can control statistically ex post for some of the vari-
ables that should have been blocked on ex ante. Doing this
gives up the model-free aspect of the experiment in return for
considerably more efficiency. Therefore, if the confidence in-
tervals are still too wide, we also recommend a modern
matching and, if necessary, modeling procedure be applied.

Finally, real-world experiments involve a large number of
detailed components, many of which can individually cause
randomization to fail or can induce bias or inefficiency in
casual effect estimation. Such failures are especially common
in large-scale evaluations, which tend to be more compli-
cated to design, implement, and analyze. In this light, the
difficulties we illustrate here with the MHS evaluation are
not exceptional, even though they appear to be serious. To
ensure that research conclusions are valid, however, the
details of evaluations and the resulting data must be made
public. Science does not merely involve acting scientifically
and following methodological advice, such as that offered
here; it also involves a community of scholars and re-
searchers competing and cooperating in the pursuit of
common goals. Only with access to the same information
can that community form and check each other’s work, and
only then can we all benefit from building on each other’s
research.

In this light, the MHS experiment and other evaluations
ought to follow the emerging replication movement and the
replication standard now spreading across many fields of
science: ‘‘The replication standard holds that sufficient infor-
mation exists with which to understand, evaluate, and build
upon a prior work if a third party can replicate the results
without any additional information from the author.’’15 Re-
plication in this context means beginning with the data and
being able to reproduce the numerical results in the tables and
figures that support the conclusions of the study. (Of course,
one may also wish to replicate the entire experiment from
scratch, but that is a separate matter that still would benefit
from meeting the replication standard discussed here.) To
meet this standard, the data and all the information necessary
to follow the whole chain of evidence from the population of
research subjects to the specific numerical conclusions must
be made available to the research community. Like much
social science data, privacy laws prevent all of this from
merely being posted on the Web, but there now exist well-
developed and legally vetted procedures that make it possible
to properly share all information among researchers. Some
information about the MHS experiment has been shared, but
the rest also needs to be made available before researchers and
the American public can begin to benefit from this large-scale,
extraordinary experimental evaluation.16

A key methodological conclusion of this review is that the
small details in large-scale experiments can matter enor-
mously. As such, other corrections may be necessary in the
MHS experiment, aside from those we have identified here,
once the research community learns about the remaining
features of this experiment and has access to the data.

Concluding Remarks

An attempt to randomly assign treatment in a formal ex-
perimental design does not imply that reasonable inferences
will be drawn from the data that result. To ensure that
possibility, an experimental design must provide efficient
use of available resources in a manner robust to problems
that may arise. The implementation and administration must
go as planned, and the analysis of the data that results must
not induce biases and inefficiencies afterward. Only by en-
suring each of these will we be able to reap the benefits of
random treatment assignment.
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Proper design, implementation, administration, and
analysis are much more difficult to ensure in large-scale
evaluation experiments because so many more possibilities
exist for problems to arise. However, although the risks
are higher, the potential rewards are significantly greater,
too. For centuries, large governmental and other pro-
grams have been implemented without the benefits of
modern experimental design. The increasing prevalence of
large-scale randomized evaluations promises to bring sci-
ence to bear on improving numerous types of large-scale
programs.

The dynamic change and growth in programs that deliver
and manage health care in the United States comprise a
crucial area for improvement. US health care spending, even
as a percent of gross domestic product, has soared over the
last 4 decades, with Medicare comprising a large proportion
of the increases. The vast majority of the increases in Medi-
care spending are attributable to chronic diseases and their
management and treatment.17 In this light, it is no surprise
that the MHS project ranks as one of the largest and most
expensive randomized program evaluations to date. Ensur-
ing that appropriate conclusions are drawn, and that they are
drawn as soon as possible, from the extensive data generated
by the experiment is essential.
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