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extension, but under the assumption that the explicit demand distributions are not known and that the only information
available is a set of independent samples drawn from the true distributions. Under the assumption that the demand distributions
are given explicitly, these models are well studied and relatively straightforward to solve. However, in most real-life scenarios,
the true demand distributions are not available, or they are too complex to work with. Thus, a sampling-driven algorithmic
framework is very attractive, both in practice and in theory.

We shall describe how to compute sampling-based policies, that is, policies that are computed based only on observed
samples of the demands without any access to, or assumptions on, the true demand distributions. Moreover, we establish
bounds on the number of samples required to guarantee that, with high probability, the expected cost of the sampling-based
policies is arbitrarily close (i.e., with arbitrarily small relative error) compared to the expected cost of the optimal policies,
which have full access to the demand distributions. The bounds that we develop are general, easy to compute, and do not
depend at all on the specific demand distributions.
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1. Introduction. In this paper, we address two fundamental models in stochastic inventory theory, the
single-period newsvendor model and its multiperiod extension, under the assumption that the explicit demand
distributions are not known and that the only information available is a set of independent samples drawn from
the true distributions. Under the assumption that the demand distributions are specified explicitly, these models
are well studied and usually straightforward to solve. However, in most real-life scenarios, the true demand
distributions are not available or they are too complex with which to work. Usually, the information that is
available comes from historical data, from a simulation model, and from forecasting and market analysis of future
trends in the demands. Thus, we believe that a sampling-driven algorithmic framework is very attractive, both in
practice and in theory. In this paper, we shall describe how to compute sampling-based policies, that is, policies
that are computed based only on observed samples of the demands without any access to and assumptions on
the true demand distributions. This is usually called a nonparametric approach. Moreover, we shall prove that
the quality (expected cost) of these policies is very close to that of the optimal policies that are defined with
respect to the true underlying demand distributions.

In the single-period newsvendor model, a random demand D for a single commodity occurs in a single period.
At the beginning of the period, before the actual demand is observed, we decide how many units of the commod-
ity to order, and this quantity is denoted by y. Next, the actual demand d (the realization of D) is observed and
is satisfied to the maximum extent possible from the units that were ordered. At the end of the period, a per-unit
holding cost h > 0 is incurred for each unused unit of the commodity, and a per-unit lost-sales penalty cost
b >0 is incurred for each unmet unit of demand. The goal is to minimize the total expected cost. This model
is usually easy to solve if the demand distribution is specified explicitly by means of a cumulative distribution
function (CDF). However, we are not aware of any optimization algorithm with analytical error bounds of the
kind we obtain in the case where only samples are available and no other parametric assumption is taken.

For the newsvendor model, we take one of the most common approaches to stochastic optimization models that
is also used in practice, and solve the sample average approximation (SAA) counterpart (Shapiro [39]). The
original objective function is the expectation of some random function taken with respect to the true underlying
probability distributions. Instead, in the SAA counterpart the objective function is the average value over finitely
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many independent random samples that are drawn from the probability distributions either by means of Monte
Carlo sampling or based on available historical data (see Shapiro [39] for details). In the newsvendor model the
samples will be drawn from the (true) demand distribution, and the objective value of each order level will be
computed as the average of its cost with respect to each one of the samples of demand. The SAA counterpart
of the newsvendor problem is extremely easy to solve.

We provide a novel analysis regarding the number of samples required to guarantee that, with a specified
confidence probability, the expected cost of an optimal solution to the SAA counterpart has a small specified
relative error. Here, small relative error means that the ratio between the expected cost of the optimal solution to
the SAA, with respect to the original objective function, and the optimal expected cost (of the original model)
is very close to one. The upper bounds that we establish on the number of samples required are general, easy
to compute, and apply to any demand distribution with finite mean. In particular, neither the algorithm nor its
analysis require any other assumption on the demand distribution. The bounds depend on the specified confidence
probability and the relative error mentioned above, as well as on the ratio between the per-unit holding and
lost-sales penalty costs. However, they do not depend on the specific demand distribution. Conversely, our results
indicate what kind of guarantees one can hope for, given historical data with fixed size. The analysis has two
novel aspects. First, instead of approximating the objective function and its value, we use first-order information,
and stochastically estimate one-sided derivatives. This is motivated by the fact that the newsvendor cost function
is convex and hence, optimal solutions can be characterized in a compact way through first-order information.
The second novel aspect of the analysis is that we establish a connection between first-order information and
bounds on the relative error of the objective value. Moreover, the one-sided derivatives of the newsvendor cost
function are nicely bounded and are expressed through the CDF of D. This implies that they can be estimated
accurately with a bounded number of samples (Hoeffding [18], Shorack and Wellner [44], Devroye et al. [11]).

In the multiperiod extension, there is a sequence of independent (not necessarily identically distributed) ran-
dom demands for a single commodity, which need to be satisfied over a discrete planning horizon of a finite
number of periods. At the beginning of each period we can place an order for any number of units. This order
is assumed to arrive after a (fixed) lead time of several periods. Only then do we observe the actual demand in
the period. Excess inventory at the end of a period is carried to the next period, incurring a per-unit holding
cost. Symmetrically, each unit of unsatisfied demand is carried to the next period, incurring a per-unit backlog-
ging penalty cost. The goal is to find an ordering policy with minimum total expected cost. The multiperiod
model can be formulated as a tractable dynamic program, where at each stage we minimize a single-variable
convex function. Thus, the optimal policies can be efficiently computed, if the demand distributions are specified
explicitly (see Zipkin [47] for details).

As was pointed out in Shapiro and Nemirovski [42], solving and analyzing the SAA counterparts for multistage
stochastic models seem to be very hard in general. Instead of solving the SAA counterpart of the multiperiod
model, we propose a dynamic programming framework that departs from previous sampling-based algorithms.
The approximate policy is computed in stages backward in time via a dynamic programming approach. The
main challenge here arises from the fact that in a backward dynamic programming framework, the optimal
solution in each stage depends heavily on the solutions already computed in the previous stages of the algorithm.
Therefore, the algorithm maintains a shadow dynamic program that “imitates” the exact dynamic program that
would have been used to compute the exact optimal policy if the explicit demand distributions were known. That
is, in each stage, we consider a subproblem that is similar to the corresponding subproblem in the exact dynamic
program that is defined with respect to the optimal solutions. However, this subproblem is defined with respect
to the approximate solutions for the subsequent periods already computed by the algorithm in the previous
stages. The algorithm is carefully designed to maintain (with high probability) the convexity of each one of
the subproblems that are being solved throughout the execution of the algorithm. Thus, in each stage there is a
single-variable convex minimization problem that is solved approximately. As in the newsvendor case, first-order
information is used to approximately solve the subproblem in each stage of the algorithm. To do so, we use some
general structural properties of these functions to establish a central lemma (Lemma 3.3) that relates first-order
information of these functions to relative errors with respect to their optimal objective value. We believe that
this lemma will have additional applications in approximating other classes of stochastic dynamic programs.
As was true for the newsvendor cost function, the one-sided derivatives of these functions are nicely bounded.
Thus, the Hoeffding inequality implies that they can be estimated using only a bounded number of samples. The
analysis indicates that the relative error of the approximation procedure in each stage of the algorithm is carefully
controlled, which leads to policies that, with high probability, have small relative error. The upper bounds on
the number of samples required are easy to compute and do not depend on the specific demand distributions. In
particular, they grow as a polynomial in the number of periods. To the best of our knowledge, this is the first
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result of its kind for multistage stochastic models and for stochastic dynamic programs. In particular, the existing
approaches to approximating stochastic dynamic programs do not admit constant worst-case guarantees of the
kind discussed in this work (see Si et al. [45]).

We believe that this work sets the foundations for additional sampling-based algorithms for stochastic inven-
tory models and stochastic dynamic programs with analyzed performance guarantees. In particular, it seems
very likely that the same algorithms and analysis described in this paper will be applicable to a (minimization)
multiperiod model with Markov-modulated demand process.

We next relate our work to the existing literature. There has been a lot of work to study the newsvendor model
with only partial information on the underlying demand distribution. (This is sometimes called the distribution-
free newsvendor model.)

The most popular parametric approach is the Bayesian framework. Under this approach, we assume knowledge
of a parametric family of distributions to which the true distribution belongs, but we are uncertain about the
specific values of the parameters. Our belief regarding the uncertainty of the parameter values is updated through
prior and posterior distributions based on observations that we collect over time. However, in many applications
it is hard to parsimoniously update the prior distributions (Nahmias [30]). This approach has been applied to the
newsvendor model and several other inventory models (see, for example, Azoury [2], Iglehart [20], Karlin [23],
Murray and Silver [29], Scarf [38, 37]). In particular, the Bayesian approach has been applied to the newsvendor
model and its multiperiod extension, but with censored demands. By censored demands we mean that only sales
are observable, that is, in each period where the demand exceeds the available inventory, we do not observe the
exact demand (see, for example, Conrad [10], Ding et al. [12], Lariviere and Porteus [25], Lu et al. [28, 27]). In
recent work Liyanage and Shantikumar [26] have introduced a new approach that is called operational statistics.
In this approach the optimization and estimation are done simultaneously.

The sample average approximation method has been analyzed in several recent papers. Kleywegt et al. [24],
Shapiro and Nemirovski [42], and Shapiro [40] have considered the SAA in a general setting of two-stage
discrete stochastic optimization models (see Ruszczyriski and Shapiro [35] for discussion on two-stage stochastic
models). They have shown that the optimal value of the SAA problem converges to the optimal value of the
original problem with probability one as the number of samples grows to infinity. They have also used large-
deviation results to show that the additive error of an optimal solution to the SAA model (i.e., the difference
between its objective value and the optimal objective value of the original problem) converges to zero with
probability one as the number of samples grows to infinity. Moreover, they have developed bounds on the
number of samples required to guarantee a certain confidence probability that an optimal solution to the SAA
model provides a certain additive error. Their bounds on the number of samples depend on the variability and
other properties of the objective function as well as on the diameter of the feasible region. Hence, some of
these bounds might be hard to compute in scenarios in which nothing is known about the demand distributions.
Shapiro et al. [43] and Shapiro and Homem-De-Mello [41] have also focused on two-stage stochastic models
and considered the probability of the event that an optimal solution to the SAA model is in fact an optimal
solution to the original problem. Under the assumption that the probability distributions have finite support and
the original problem has a unique optimal solution, they have used large-deviation results to show that this
probability converges to one exponentially fast as the number of samples grows to infinity. In contrast, our focus
is on relative errors and our analysis is significantly different.

In addition, Swamy and Shmoys [46], Charikar et al. [9], and Nemirovski and Shapiro [31] have analyzed the
SAA counterparts of a class of two-stage stochastic linear and integer programs and established bounds on the
number of samples required to guarantee, with specified high confidence probability, that the optimal solution to
the corresponding SAA model has a small specified relative error. Like ours, these bounds are easy to compute
and do not depend on the underlying probability distributions. However, these results do not seem to capture the
models we consider in this work. Moreover, for multistage stochastic linear programs Swamy and Shmoys [46]
have shown that the SAA model is still effective in providing a good solution to the original problem, but the
bounds on the number of samples and the running time of the algorithms grow exponentially with the number
of stages.

In subsequent work, Huh and Rusmevichientong [19] have applied a nonparametric approach to the newsven-
dor model and the multiperiod model with censored demands. For these models they have shown that a stochastic
variant of the classical gradient descent method has a convergence rate proportional to the square root of the
number of periods. That is, the average running cost converges in expectation to the optimal expected cost as
the number of periods considered goes to infinity.

The robust or the min-max optimization approach is yet another way to address the uncertainty regarding the
exact demand distributions in supply chain models including the maximization variant of the newsvendor prob-
lem; see, for example, Scarf [36], Gallego and Moon [13], Gallego et al. [14], Bertsimas and Thiele [3], Perakis
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and Roels [32], Ahmed et al. [1], and Bienstock and Ozbay [4]. (This approach has been applied to many other
stochastic optimization models.) This approach is attractive in scenarios where there is no information about the
demand distributions. However, the resulting solution can be very conservative.

Other approaches have been applied to this type of inventory models. Infinitesimal perturbation analysis is
a sampling-based stochastic gradient estimation technique that has been extensively explored in the context
of solving stochastic supply chain models (see Glasserman and Ho [15], Glasserman and Tayur [16], and
Kapuscinski and Tayur [22] for several examples). The concave adaptive value estimation (CAVE) procedure
successively approximates the objective cost function with a sequence of piecewise linear functions (Godfrey
and Powell [17], Powell et al. [33]). The bootstrap method (Bookbinder and Lordahl [7]) is a nonparametric
approach that aims to estimate the newsvendor quantile of the demand distribution. Another nonparametric
approach is based on a stochastic approximation algorithm that approximates the newsvendor quantile of the
demand distribution directly, based on censored demand samples (Burnetas and Smith [8]). However, to the best
of our knowledge, except from asymptotic convergence results, there is no theoretical analysis of bounds on the
number of samples required to guarantee a solution with small relative (or additive) error, with a high confidence
probability.

The rest of the paper is organized as follows. In §2 we discuss the single-period newsvendor model, and in §3
we proceed to discuss the multiperiod model. In §4 we consider the case of approximating myopic policies.
Finally, in §5 we provide a proof for a general multidimensional version of Lemma 3.3.

2. Newsvendor problem. In this section, we consider the minimization variant of the classical single-
period newsvendor problem. Our goal is to find an ordering level y that minimizes the cost function C(y) =
E[h(y — D)™ + b(D — y)*], where h is the per-unit holding cost, b is the per-unit lost-sales penalty, x* =
max(x, 0), and the expectation is taken with respect to the random demand D.

The newsvendor problem is a well-studied model, and much is known about the properties of its objective
function C and its optimal solutions (Zipkin [47]). It is well known that C(y) is convex in y. Moreover,
it is easy to derive explicit expressions for the right-hand and left-hand derivatives of C, denoted by C’(y)
and C!(y), respectively. Using a standard dominated convergence theorem (see Billingsley [5]), the order of
integration (expectation) and the limit (derivatives) can be interchanged, and the one-sided derivatives of C can
be expressed explicitly. We get C"(y) = —b + (b + h)F(y), where F(y) :=Pr(D <y) is the CDF of D, and
C'(y)=—b+ (b+ h)Pr(D < y). The right-hand and the left-hand derivatives are equal at all continuity points
of F. In particular, if F is continuous, then C is continuously differentiable with C'(y) = —b+ (b + h)F(y).

Using the explicit expressions of the derivatives, one can characterize the optimal solution y*. Specifically,
y*=inf{y: F(y) = b/(b+ h)}. That is, y* is the b/(b + h) quantile of the distribution of D. It is easy to check
that if F is continuous we have C’(y*) =0, i.e., not surprisingly, y* zeros the derivative. In the more general
case, we get C"(y*) >0 and C'(y*) <0, which implies that zero is a subgradient at y*, and that the optimality
conditions for C(y) are satisfied (see Rockafellar [34] for details). Moreover, if the distribution of the demand D
is given explicitly, then it is usually easy to compute an optimal solution y*.

Finally, we note that all of the above is valid for any demand distribution D with E[|D|] < oo, including cases
when negative demand is allowed. It is clear that in the case where E[|D|] = oo, the problem is not well defined,
because any ordering policy will incur infinite expected cost.

2.1. Sample average approximation. In most real-life scenarios, the demand distribution is not known and
the only information available is data from past periods. Consider a model where instead of an explicitly specified
demand distribution there is a black box that generates independent samples of the demand drawn from the true
distribution of D. Assuming that the demands in all periods are independent and identically distributed (i.i.d)
random variables, distributed according to D, this will correspond to available data from past periods or to
samples coming from a simulation procedure or from a marketing experiment that can be replicated. Note that
there is no assumption on the actual demand distribution. In particular, there is no parametric assumption, and
there are no assumptions on the existence of higher moments (beyond the necessary assumption that E[|D|] < o0).
A natural question that arises is how many demand samples from the black box or, equivalently, how many
historical obsevations are required to be able to find a provably good solution to the original newsvendor problem.
By a provably good solution, we mean a solution with expected cost at most (14 €)C(y*) for a specified € > 0,
where C(y*) is the optimal expected cost that is defined with respect to the true demand distribution D.

Our approach is based on the natural and common idea of solving the sample average approximation (SAA)
counterpart of the problem. Suppose that we have N independent samples of the demand D, denoted by
d',...,d". The SAA counterpart is defined in the following way. Instead of using the demand distribution
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of D, which is not available, we assume that each one of the samples of D occurs with a probability of 1/N.
Now define the newsvendor problem with respect to this induced empirical distribution. In other words, the
problem is defined as

N

min C(y) == - 3 (h(y — d')* +b(d' ~)").

y=0 NI
Throughout the paper we use the symbol hat to denote quantities and objects that are computed with respect to
the random samples drawn from the true demand distributions. For example, we distinguish between determin-
istic functions such as C above, which are defined by taking expectations with respect to the underlying demand
distributions, and their SAA counterparts (denoted by 6), which are random variables because they are functions
of the random samples which are drawn from the demand distributions. In addition, all expectations are taken
with respect to the true underlying demand distributions unless stated otherwise.

Let ¥ = ?(N ) denote the optimal solution to the SAA counterpart. Note again that Y is a random variable that
is dependent on the specific N (independent) samples of D. Clearly, for each given N samples of the demand D, y
(the realization of 1?) is defined to be the b/(b+ h) quantile of the samples, i.e., § = inf{y: (1/N) XX 1(d’ <y)
> b/(b+ h)} (where 1(d’ <y) is the indicator function that is equal to one exactly when d' <y). It follows
immediately that § = min,_,_y{d’: (1/N)X},1(d" < d’) = b/(b+ h)}. Hence, given the demand samples
d',...,d", the optimal solution to the SAA counterpart, J, can be computed very efficiently by finding the
b/(b+ h) quantile of the samples. This makes the SAA counterpart very attractive to solve.

Next we address the natural question of how the SAA counterpart is related to the original problem as a
function of the number of samples N. Consider any specified accuracy level € > 0 and a confidence level 1 — &
(where 0 < 6 < 1). We will show that there exists a number of samples N = N(€, d, h, b) such that, with
probability at least 1 — J, the optimal solution to the SAA counterpart defined on N samples, has an expected
cost C(¥) that is at most (1 + €)C(y*). Note that we compare the expected cost of 3 (the realization of ¥) to
the optimal expected cost that is defined with respect to the true distribution of D. As we will show, the number
N of required samples is polynomial in 1/€ and log(1/8), and is also dependent on the minimum of the values
b/(b+ h) and h/(b+ h) (that define the optimal solution y* above).

In the first step of the analysis, we shall establish a connection between first-order information and bounds on
the relative error of the objective value. To do so, we introduce a notion of “closeness” between an approximate
solution y and the optimal solution y*. Here, “close” does not mean that |y* — y| is small, but that F(3) =
Pr(D < 39) is “close” to F(y*). Recall, that F(y) :=Pr(D <y) (for each y € R), and let F(y) :=Pr(D >y) =
1 — F(y) +Pr(D =y) (here we depart from traditional notation). Observe that by the definition of y* as the
b/(b+ h) quantile of D, F(y*) > b/(b+h) and F(y*) > h/(b+ h). The following definition provides a precise
notion of what we mean by “close” above.

DEFINITION 2.1. Let 3 be some realization of ¥ and let @ > 0. We will say that § is a-accurate if F () =
b/(b+h)—a and F($) = h/(b+h) —a.

This definition can be translated to bounds on the right-hand and left-hand derivatives of C at y. Observe
that Pr(D < y) =1 — F(y). It is straightforward to verify that we could equivalently define  to be a-accurate
exactly when C"($) > —a(b + h) and C'(3) < a(b + h). This implies that there exists a subgradient r € dC(3)
such that |r| < a(b + h). Intuitively, this implies that, for « sufficiently small, 0 is “almost” a subgradient at y,
and hence J is “close” to being optimal.

LEMMA 2.1. Let @ > 0 and assume that y is a-accurate. Then:
() CG)—CO) <ab+hl—y|
(ii) C(y*) = (hb/(b+h) — amax(b, h))|y —y*|.
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PrROOF. Suppose y is a-accurate. Clearly, either y > y* or y < y*. Suppose first that y > y*. We will obtain
an upper bound on the difference C(3) — C(y*). Clearly, if the realized demand d is within (—oo, y), then the
difference between the costs incurred by ¥ and y* is at most 4(y — y*). On the other hand, if d falls within
[7, 00), then y* has higher cost than y, by exactly b(J — y*). Now because y is assumed to be a-accurate, we
know that L

PR(D € [, 00)) =Pr(D = 5) = F(5) = 7 —a
We also know that

Pr([De[0,9)])=Pr(D<§)=1—F(§)§1—(ﬁhh—a>=L+a.
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This implies that

b h
C@O)—-CO)<hl — y—y)—bl —— — y—y)=ab+h)(H—y).
) €09 (537 +a) 6= =b( 5~ @) =) =at+ 16 -5

Similarly, if § < y*, then for each realization d € (9, c0) the difference between the costs of y and y*,
respectively, is at most b(y* — ¥), and if d € (—oo, y], then the cost of y* exceeds the cost of y by exactly
h(y* — ). Because j is assumed to be a-accurate, we know that

b
Pr(D<$)=F@F)> — —a,
r(D <y) (w_b+h @

which also implies that
Pr(D>y)=1—-F(y)< —— .
r(D > J) (w_b+h+a
We conclude that

C6) =€) =0y +a )07 =) = (535 = @) 0 = 5) =+ D" =),
The proof of part (i) then follows.

The above arguments also imply that if § > y*, then C(y*) > E[1(D > $)b(3 — y*)] = bF($)($ — y*). We
conclude that C(y*) is at least b(h/(b + h) — «)(y — y*). Similarly, in the case § < y*, we conclude that
C(y*) is at least E[L(D < y)h(y* — y)] = h(b/(b + h) — a)(y* — ¥). In other words, C(y*) > (hb/(b+ h) —
amax(b, h))|y — y*|. This concludes the proof of the lemma. O

We note that there are examples in which the two inequalities in Lemma 2.1 above are simultaneously tight.
Next we show that, for a given accuracy level €, if « is suitably chosen, then the cost of the approximate
solution y is at most (1 + €) times the optimal cost, i.e., C(y) < (1 4+ €)C(y*).

CoOROLLARY 2.1.  For a given accuracy level € € (0, <1], if y is a-accurate for o = (¢/3) min(b, h)/(b+ h),
then the cost of y is at most (1+ €) times the optimal cost, i.e., C(y) < (1+€)C(y*).

ProOF. Let @ = (e/3)min(b, h)/(b+h). By Lemma 2.1, we know that in this case C(y) — C(y*) < a(b+h)-
|9 — ¥*| and that C(y*) > (hb/(b+ h) — amax(b, h))|y — y*|. It is then sufficient to show that a(b + h) <
€(hb/(b+ h) — amax(b, h)). Indeed,

a(b+h) < (24 €)amax(b, h) — eamax(b, h)
_ (2+e€)e max(b, h) min(b, h)
3 b+h

hb
—eamax(b, h) < e(

b amax(b, h))

In the first equality we just substitute « = (e€/3)min(b, h)/(b + h). The second inequality follows from the
assumption that € < 1. We conclude that C(¥) — C(y*) < eC(y*), from which the corollary follows. [

To complete the analysis, we shall next establish upper bounds on the number of samples N required to guar-
antee that y, the realization of Y, is a-accurate with high probability (for each specified @ > 0 and confidence
probability 1 — 8). Because Y is the sample b/(b + h) quantile and y* is the true b/(b + h) quantile, we can
use known results regarding the convergence of sample quantiles to the true quantiles, or more generally, the
convergence of the empirical CDF Fj (y) to the true CDF F(y). (For N independent random samples all dis-
tributed according to D, we define Fy(y) := (1/N) Zf\;l X', where for each i=1,...,N, X;=1(D' < D), and
D!,...,D" are iid. according to D.)

Lemma 2.2 below is a direct consequence of the fact that the empirical CDF converges uniformly and exponen-
tially quickly to the true CDF. This can be proven as a special case of several well-known results in probability
and statistics, such as the Hoeffding inequality [18] and Vapnik-Chervonenkis theory (Shorack and Wellner [44],
Devroye et al. [11]).
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LEMMA 2.2. For each a> 0 and 0 < & < 1, if the number of samples is N > N(a, 8) = 1(1/a?)log(2/8),
then Y, the b/(b+ h) quantile of the sample, is a-accurate with probability at least 1 — .

Combining Lemma 2.1, Corollary 2.1, and Lemma 2.2 above, we can obtain the following theorem.
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THEOREM 2.2. Consider a newsvendor problem specified by a per-unit holding cost h > 0, a per-unit
backlogging penalty b > 0 and a demand distribution D with E[D] < oo. Let 0 < € <1 be a specified accuracy
level and 1— 8 (for 0 < 8 < 1) be a specified confidence level. Suppose that N > (9/2€*)(min(b, h)/(b+h))~2-
log(2/8) and the SAA counterpart is solved with respect to N i.i.d samples of D. Let Y be the optimal solution
to the SAA counterpart and 3 denote its realization. Then, with probability at least 1 — 8, the expected cost of
Y is at most 1 + € times the expected cost of an optimal solution y* to the newsvendor problem. In other words,
C(Y) < (1+€)C(y*) with probability at least 1 — 8.

We note that the required number of samples does not depend on the demand distribution D. On the other
hand, N depends on the square of the reciprocal of min(b, h)/(b + h). This implies that the required number
might be large when b/(b + h) is very close to either zero or one. Because the optimal solution y* is the
b/(b + h) quantile of D, this is consistent with the well-known fact that in order to approximate an extreme
quantile, one needs many samples. The intuitive explanation is that if, for example, b/(b + h) is close to one,
it will take many samples before we see the event [D > y*]. We also note that the bound above is insensitive
to scaling of the parameters 4 and b. It is important to keep in mind that these are worst-case upper bounds on
the number of samples required, and it is likely that in many cases a significantly smaller number of samples
will suffice. Moreover, possibly with additional assumptions on the demand distribution it might be possible to
get improved bounds.

Finally, the above result holds for newsvendor models with positive per-unit ordering cost as long as E[D] > 0.
Suppose that the per-unit ordering cost is some ¢ > 0 (i.e., if y units are ordered a cost of cy is incurred).
Without loss of generality, we can assume that ¢ < b because otherwise the optimal solution is to order nothing.
Consider now a modified newsvendor problem with holding cost and penalty cost parameters & = + ¢ > 0 and
b=b—c > 0, respectively. It is readily verified that the modified cost function C(y) = E[h(y—D)* +b(D —y)*]
is such that C(y) = C(y) + cE[D], and hence the two problems are equivalent. Moreover, if E[D] > 0 and if the
solution y guarantees a 1+ € accuracy level for the modified problem, then it does so also with respect to the
original problem, because the cost of each feasible solution is increased by the same positive constant cE[D].
Observe that our analysis allows negative demand.

3. Multiperiod model. In this section, we consider the multiperiod extension of the newsvendor problem.
The goal now is to satisfy a sequence of random demands for a single commodity over a planning horizon of T
discrete periods (indexed by t =1,...,T) with minimum expected cost. The random demand in period ¢ is
denoted by D,. We assume that D,, ..., D, are independent, but not necessarily identically distributed.

Each feasible policy P makes decisions in T stages, one decision at the beginning of each period, specifying
the number of units to be ordered in that period. Let Q, > 0 denote the size of the order in period ¢. This
order is assumed to arrive instantaneously and only then is the demand in period ¢ observed (d, will denote
the realization of D,). At the end of this section, we discuss the extension to the case where there is a positive
lead time of several periods until the order arrives. For each period t =1,...,T, let X, be the net inventory
at the beginning of the period. If the net inventory X, is positive, it corresponds to physical inventory that is
left from previous periods (i.e., from periods 1,...,¢ — 1), and if the net inventory is negative it corresponds
to unsatisfied units of demand from previous periods. The dynamics of the model are captured through the
equation X, =X,_, + Q,_, — D,_, (for each r=2,...,T). Costs are incurred in the following way. At the end
of period #, consider the net inventory x,,, (the realization of X, ). If x,,, > 0, i.e., there are excess units in
inventory, then a per-unit holding cost %, > 0 is incurred for each unit in inventory, leading to a total cost of
h,x,,, (the parameter A, is the per-unit cost for carrying one unit of inventory from period ¢ to ¢t 4 1). If, on the
other hand, x,,, <0, i.e., there are units of unsatisfied demand, then a per-unit backlogging penalty cost b, >0
is incurred for each unit of unsatisfied demand, and the total cost is —b,x,,. In particular, all of the unsatisfied
units of demand will stay in the system until they are satisfied. That is, b, plays a role symmetric to that of
h, and can be viewed as the per-unit cost for carrying one unit of shortage from period ¢ to 7 4+ 1. We assume
that the per-unit ordering cost in each period is equal to zero. At the end of this section, we shall relax this
assumption. The goal is to find an ordering policy that minimizes the overall expected holding and backlogging
cost.

The decision of how many units to order in period ¢ can be equivalently described as the level Y, > X, to
which the net inventory is raised (where clearly Q, =Y, — X, > 0). Thus, the multiperiod model can be viewed
as consisting of a sequence of constrained newsvendor problems, one in each period. The newsvendor problem
in period ¢ is defined with respect to D,, h,, and b,, under the constraint that y, > x, (where x, and y, are the
respective realizations of X, and Y,). However, these newsvendor problems are linked together. More specifically,
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the decision in period ¢ may constrain the decision made in future periods because it may impact the net
inventory in these periods. Thus, myopically minimizing the expected newsvendor cost in period ¢ is, in general,
not optimal with respect to the total cost over the entire horizon. This makes the multiperiod model significantly
more complex. Nevertheless, if we know the explicit (independent) demand distributions D, . . ., D,, this model
can be solved to optimality by means of dynamic programming. The multiperiod model is well studied. We
present a summary of the main known results regarding the structure of optimal policies (see Zipkin [47]
for details), emphasizing those facts that will be essential for our results. This serves as background for the
subsequent discussion about the sampling-based algorithm and its analysis.

3.1. Optimal policies. It is a well-known fact that in the multiperiod model described above, the class of
base-stock policies is optimal. A base-stock policy is characterized by a set of target inventory (base-stock)
levels associated with each period # and each possible state of the system in period . At the beginning of each
period ¢, a base-stock policy aims to keep the inventory level as close as possible to the target level. Thus, if
the inventory level at the beginning of the period is below the target level, then the base-stock policy will order
up to the target level. If, on the other hand, the inventory level at the beginning of the period is higher than the
target, then no order is placed.

An optimal base-stock policy has two important properties. First, the optimal base-stock level in period ¢
does not depend on any decision made (i.e., orders placed) prior to period z. In particular, it is independent
of X,. Second, its optimality is conditioned on the execution of an optimal base-stock policy in the future
periods 4 1,...,T. As a result, optimal base-stock policies can be computed using dynamic programming,
where the optimal base-stock levels are computed by a backward recursion from period T to period 1. The
main problem is that the state space in each period might be very large, which makes the relevant dynamic
program computationally intractable. However, the demands in different periods are assumed to be independent
in the model discussed here, and the corresponding dynamic program is therefore usually easy to solve, if we
know the demand distributions explicitly. In particular, an optimal base-stock policy in this model consists of T
base-stock levels, one for each period.

Next, we present a dynamic programming formulation of the model discussed above and highlight the most
relevant aspects. In the following subsection, we shall show how to use a similar dynamic programming frame-
work to construct a sampling-based policy that approximates an optimal base-stock policy.

Let C,(y,) be the newsvendor cost associated with period ¢ (for r =1,...,T) as a function of the inventory
level y, after ordering, i.e.,

C,(v)=E[h,(y, — Dt)+ +b,(D,— yt)+]'

Foreachr=1,...,T, let V,(x,) be the optimal (minimum) expected cost over the interval [#, T] assuming that
the inventory level at the beginning of period ¢ is x, and that optimal decisions are going to be made over the
entire horizon (¢, T]. Also, let U,(y,) be the expected cost over the horizon [¢, T] given that the inventory level
in period ¢ was raised to y, (after the order in period ¢ was placed) and that an optimal policy is followed over

the interval (z, T']. Clearly, Uy (yr) = Cy(yr) and Vp(x7) =min, ., C;(yr). Now foreach t=1,...,T -1,
U, (y) =C(y) + E[V,y, (v, = D)]- (1)
We can now write, for each r=1,..., T,
V() = min U, (3. @

Observe that the optimal expected cost V, has two parts, the newsvendor (or the period) cost, C, and the expected
future cost, E[V,,,(y, — D,)] (where the expectation is taken with respect to D,). The decision in period ¢ affects
the future cost because it affects the inventory level at the beginning of the next period.

The above dynamic program provides a correct formulation of the model discussed above (see Zipkin [47]
for a detailed discussion). The goal is to compute V,(x,), where x, is the inventory level at the beginning of the
horizon, which is given as an input. The following fact provides insight with regard to why this formulation is
indeed correct and to why base-stock policies are optimal.
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Fact 3.1. Let f: R+ R, be a real-valued convex function with a minimizer r (i.e., f(r) < f(y) for each
y €R). Then the following holds:

(i) The function w(x)=min,_ f(y) is convex in x.

(ii) For each x <r, we have w(x) = f(r), and for each x > r, we have w(x) = f(x).
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Using Fact 3.1 above, it is straightforward to show that for each t =1, ..., T, the function U,(y,) is convex
and attains a minimum, and that the function V,(x,) is convex. The proof is done by induction over the
periods, as follows. The claim is clearly true for + = T because U; is just a newsvendor cost function and
Vr(x7) =min, ., Uz(yr). Suppose now that the claim is true for +1,..., T (for some ¢ < T). From (1), it
is readily verified that U, is convex because it is a sum of two convex functions. It attains a minimum because
lim, ,  U,(y,) =c0andlim, . U,(y,) = oo. The convexity of V, follows from Fact 3.1 above. This also implies
that base-stock policies are indeed optimal. Moreover, if the demand distributions are explicitly specified, it is
usually straightforward to recursively compute optimal base-stock levels Ry, ..., Ry, because they are simply
minimizers of the functions U, ..., U, respectively. More specifically, if the demand distributions are known
explicitly, we can compute R,, which is a minimizer of a newsvendor cost function, then recursively define
U;_, and solve for its minimizer R;_, and so on. In particular, if the minimizers R, ..., R; were already
computed, then U,(y,) is a convex function of a single variable, and hence it is relatively easy to compute its
minimizer. Throughout the paper we assume, without loss of generality, that for each r =1, ..., T, the optimal
base-stock level in period ¢ is denoted by R, and that this is the smallest minimizer of U, (in case it has more
than one minimizer). The minimizer R, of U, can then be viewed as the best policy in period ¢, conditioning on
the fact that the optimal base-stock policy R,, |, ..., R; will be executed over [+ 1, T].

By applying Fact 3.1 above to V,,, and U, ;, we see that the function U, can be expressed as

Ut(yt) = Ct(yt) + E[]]'(yt - Dt = Rl+l)Ut+l(Rt+l) + ]]-(yz - Dt > Rt+1)Ut+1(yt - Dt)] (3)

Clearly this is a continuous function of y,. As in the newsvendor model, one can derive explicit expressions for
the right-hand and left-hand derivatives of the functions U,, . . ., Uy, as follows. Assume first that all the demand
distributions are continuous. This implies that the functions U,, . . ., U, are all continuously differentiable. The
derivative of Uy(y;) is Ur(y;) = C; = —by + (hy + by)Fp(y7), where F; is the CDF of D;. Now consider
the function U,(y,) for some ¢ < T. Using the dominated convergence theorem, one can change the order of
expectation and integration to get

Ut/(yl)zC;(yt)—"_E[‘/t,-l—l(yt_Dt)]‘ (4)

However, by Fact 3.1 and (3) above, the derivative V, ,(x,,,) is equal to zero for each x,,, <R, and is equal
to U/, ,(x,,,) for each x,,, > R, (where R, is the minimal minimizer of U, ). This implies that

E[Vt/ﬂ(yt - DZ)] = E[]l(yt - Dt > Rt+1)Ur,+1(yz - Dt)]' (5)

Applying this argument recursively, we obtain

Ul = Cl(3,) +E[ Y 1A, (1) C (3, — D[t,,))} ®)

j=t-+1

where Dy, ; is the cumulative demand over the interval [z, j) (i.e., D}, ;= >J'D,), and A +(,) is the event
that for each k € (t, j] the inequality y, — Dy, ;) > R, holds. Observe that y, — Dy, is the inventory level at
the beginning of period k, assuming that we order up to y, in period ¢ and do not order in any of the periods
t+1,....k—1.1f y,— D, 1) < Ry, then the optimal base-stock level in period k is reachable, and the decision
made in period # does not have any impact on the future cost over the interval [k, T]. However, if y, — Dy, ;) > R;
foreach s=1r+1,...,k, then the optimal base-stock level in period k is not reachable due to the decision made
in period ¢, and the derivative C;(y, — Dy, ) accounts for the corresponding impact on the cost in period k.
The derivative of U, consists of a sum of derivatives of newsvendor cost functions multiplied by the respective
indicator functions.

For general (independent) demand distributions, the functions U, ..., U, might not be differentiable, but
similar arguments can be used to derive explicit expressions for the right-hand and left-hand derivatives of U,,
denoted by U/ and U/, respectively. This is done by replacing C; by C} and C; (see §2 above), respectively,
in the above expression of U, (for each j=1t¢,...,T). In addition, in the right-hand derivative each of the
events A;,(y,) is defined with respect to weak inequalities y, — D — [#, k) > Ry, Vk € (t, j]. This also provides
an optimality criterion for finding a minimizer R, of U,, namely, U/(R,) > 0 and U/(R,) < 0. If the demand
distributions are given explicitly, it is usually easy to evaluate the one-sided derivatives of U,. This suggests
the following approach for solving the dynamic program presented above. In each stage, compute R, such that
0 € dU,(R,), by considering the respective one-sided derivatives of U,. In the next subsection, we shall use a
similar algorithmic approach, but with respect to an approximate base-stock policy and under the assumption
that the only information about the demand distributions is available through a black box.
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3.2. Approximate base-stock levels. To solve the dynamic program described above requires knowing the
explicit demand distributions. However, as mentioned before, in most real-life scenarios these distributions are
either not available or are too complicated to work with directly. Instead, we shall consider this model under
the assumption that the only access to the true demand distribution is through a black box that can generate
independent sample paths from the true demand distributions D;, . . ., D;. As in the newsvendor model discussed
in §2, the goal is to find a policy with expected cost close to the expected cost of an optimal policy that
is assumed to have full access to the demand distributions. In particular, we shall describe a sampling-based
algorithm that, for each specified accuracy level € and confidence level 8, computes a base-stock policy such
that with probability at least 1 — 8, the expected cost of the policy is at most 1+ € times the expected cost of an
optimal policy. Throughout the paper, we use R, ..., R to denote the minimal optimal base-stock level, i.e.,
the optimal base-stock policy. That is, for each r =1, ..., T, the base-stock level R, is the smallest minimizer
of U, defined above. Next we provide an overview of the algorithm and its analysis.

An overview of the algorithm and its analysis. First note that our approach departs from the SAA method
or the IPA methods discussed in §§1 and 2. Instead, it is based on a dynamic programming framework. That is,
the base-stock levels of the policy are computed using a backward recursion. In particular, the approximate base-
stock level in period ¢, denoted by ﬁ,, is computed based on the previously computed approximate base-stock
levels R, IR ,R,. If T =1, then this reduces to solving the SAA of the single-period newsvendor model,
already discussed in §2. However, if 7 > 1 and the base-stock levels are approximated recursively, then the
issue of convexity needs to be carefully addressed. It is no longer clear whether each subproblem is still convex,
and whether base-stock policies are still optimal. More specifically, assume that some (approximate) base-stock
policy R, FETR , R, over the interval [ 4 1, T], not necessarily an optimal one, was already computed in
previous stages of the algorithm. Now let fj,(yt) be the expected cost over [¢, T] of a policy that orders up to y,
in period ¢ and then follows the base-stock policy E, IR ﬁT over [t+ 1, T] (as before, expectations are taken
with respect to the underlying demand distributions D, . .., D;). Let v, "(x,) be the minimum expected cost over
[¢, T] over all ordering pohcles in period ¢, given that the 1nventory level at the beginning of the period is x, and
that the policy R,,,, ..., R is followed over [z + 1, T]. Clearly, V,(x,) = min, ., U,(y,). The functions U, and
V play analogous roles to those of U, and V,, respectively, but are defined with respect to R, ST RT instead
of R,.,...,R;. The functions U, and V, deﬁne a shadow dynamic program to the one described above that
is based on the functions U, and V,. From now on, we will distinguish functions and objects that are defined
with respect to the approximate policy ﬁl, R ,ﬁT by adding the filde sign above them. The convexity of U,
and V, and the optimality of base-stock policies are heavily based on the optimality of R,,,,...,R; (using
Fact 3.1 above). Because the approximate policy Et IR ﬁT is not necessarily optimal, the functions 17, and ‘7,
might not be convex. Hence, it is possible that no base-stock policy in period ¢ is optimal. In order to keep
the subproblem (i.e., the function ﬁ,) in each stage tractable, the algorithm is going to maintain (with high
probability) an invariant under which the convexity of IZ and ‘7t and the optimality of base-stock policies are
preserved (see Definition 3.2 and Lemma 3.1, where we establish the resulting convexity of the functions l7,
and X7,) Assuming that l7, and 17, are indeed convex, it would be natural to compute the smallest minimizer of fj,,
denoted by R,. However, this also requires full access to the explicit demand distributions. Instead, the algorithm
takes the following approach. In each stage r=T,..., 1, the algorithm uses a sampling-based procedure to
compute a base-stock level R that, with high probablhty, has two properties. First, the base-stock level R is
a good approximation of the minimizer R,, in that U, (R, ) is close to the minimum value U/(R), ie., it has a
small relative error. Second, R is greater than or equal to R,. It is this latter property that preserves the invariant

of the algorithm and, in pamcular preserves the convexity of U, 1 and V,_, in the next stage.
The justification for this approach is given in Lemma 3.2, where it is shown that the properties of R,, ..., R,
also guarantee that small errors relative to U,(R,), . . ., Uy(R;), respectively, accumulate but have impact only on
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the expected cost over [#, T] and do not propagate to the interval [1, 7). Thus, applying this approach recursively
leads to a base-stock policy for the entire horizon with expected cost close to the optimal expected cost.
Analogous to the newsvendor cost function, the functions 171, cees (7T also have similar explicit expressions for
the one-sided derivatives that are also bounded, and hence can be estimated accurately with samples. However,
in order to compute such an E, in each stage, it is essential to establish an explicit connection between first-
order information, i.e., information about the value of the one-sided derivatives of IZ at a certain point, and the
bounded relative error that this guarantees relative to a(ﬁt) This is done in Lemma 3.3 below, which plays a
similar central role to Lemma 2.1 in the previous section. Finally, in Lemma 3.4, Corollaries 3.1 and 3.2, and
Lemma 3.5, it is shown how the one-sided derivatives of 17, can be estimated using samples in order to compute
an ﬁt that maintains the two required properties, with high probability.
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Next we discuss the invariant of the algorithm that preserves the convexity of the functions U; and \7, above
and the optimality of a base-stock policy in period 7. In the case where there exists an optimal ordering policy
in period ¢ that is a base-stock policy (i.e., U, is convex), let R, =R, | R, ST RT be the smallest minimizer
of U,, i.e., the smallest optimal base-stock level in period #, given that the pohcy R, ST RT is followed in
periods t 41, ..., T. If the optimal ordering policy in period ¢ given Rt IR TR RT is not a base-stock policy,
we say that R, does not exist. The invariant of the algorithm is given in the next definition.

DEFINITION 3.2. A base-stock policy R.,..., Ry for the interval [+ 1,T] is called an upper base-stock
policy if, for each j=¢+1,...,T, R exists, and the inequality R > R holds.

The algorithm is going to preserve thls invariant by computing in each stage r=T,...,1 an Rt such that
with high probability, Rt > R,. In the next two lemmas we shall show several important structural properties of
upper base-stock policies. In the first of these lemmas, for each j=1,..., T, we shall show that if an upper
base-stock policy R FTR T ,RT is followed over [j+ 1, T], then the convexity of the functions U,» and ‘7j is
preserved and there exists an optimal ordering policy in period j that is a base-stock policy.

LEMMA 3.1. Let R,H, e, RT be an upper base-stock policy over [t + 1, T]. For each j =t..., T, Nlet
U,(y;) be the e)ﬁpected cost over | j, T of a policy that orders up to y; in period j, and then follows R;,, . . . , Ry.
Similarly, let V,(x;) be the minimum expected cost over [j,T] giv~en that at~the beginning of perio~d j the
inventory level is x; and that over [j+1,T] the base-stock policy R;,,, ..., Ry is followed. (Thus, V;(x;) =
min, . U;(y)).) Thelzifor eafh period j=t,. o T,

() The functions U; and V; are convex and U; attains a minimum.

(ii) Given that over [j+ 1, T] we follow the base-stock policy R;,,, ..., Ry, there exists an optimal ordering
policy in period j that is a base-stock policy, i.e., R; does exist.

ProOF. Foreachk=1t+41,...,T,let (~}k (x;) be the expected cost of the base-stock policy Rk, ces RT over
the interval [k, T], given that there are x; units in inventory at the beginning of period k. Thus, for each t < T,
U, () =C.(y) + E[G,;, (b, — D).

The proof follows by induction on j=T,...,t. For j =T, observe that U, = U, = C, and VT(xT)
Vr(xp) =min, Uy (y;), which implies that both U, and V, are convex, U, attains a minimum, and RT =R;
is indeed an optimal base-stock policy in period 7. In particular, R, is the smallest minimizer of UT Now
assume that the claim is true for j > t, i.e., for each of the periods j,...,7T. In particular, the functions
U (o UT are convex, R R RT are their respective smallest minimizers and the functions V,, . .., V, are
convex. Consider now the functlon U (o) =C; l(y] D) +E[G yjo1 — D;_ 1)]. Because C;_; is convex, it is
sufficient to show that G is convex. By induction, R; is a minimizer of U and R > R Hence the function
G, j(x;) can be expressed as G, i(x) = max{V](x]) UJ(R 1)}, which 1mp11es~that it is 1ndeed convex, because is
the maximum of two convex functions. It is straightforward to see that U;_; is convex and has a minimizer,
where its smallest minimizer is denoted by R j—1- By Fact 3.1, we conclude that 17j,l(x —1) is also convex and
that there exists an optimal base-stock policy in period j — 1 (assuming that the policy R o RT is followed
over [j,T]). O

In the next lemma we consider the case where an upper base-stock policy R, T TI RT over the interval
[t+1, T] is known to provide a good solution for that interval. More specifically, for each j=¢t+1,...,T, the
expected cost of the base-stock policy R JIR ,RT is assumed to be close to optimal over the interval [j+ 1, T,
ie., Uj(R ;) < B;U;(R;) for some B; > 1. We shall show that this gives rise to a good policy over the entire
horizon [1, T].

LEMMA 3.2. For some t < T, let E;ﬂ’ .. RT be an upper base-stock policy for the interval [t + 1, T] and
letR,, ..., R; be the minimal optimal base- stock policy over [t, T). Consider the function U, (y,) and its smallest
minimizer R F urthermore, assume that for each j=t+1,...,T, the cost of the base-stock policy R .. RT
is at most 3; times the optimal expected cost over that znterval (where B;=1), ie, U. (R ) <B;U,(R; ) (Recall
that U; is defined with respect 1o the optlmal base-stock policy.) Let 8 =max; ;. Then the expected cost of the
approximate (upper) base-stock policy R,, Rt IR RT over the interval [t, T] is at most B times the expected
cost of an optimal base-stock policy over that interval.

ProoOF. Recall that for each j=1+1, , T the function U;(y;) is defined with respect to the optlmal base-
stock levels R;,;, ..., Ry, and the functlon U (y;) is defined w1th respect to the base-stock levels R FTR PR RT.

Suppose first that under the assumptions in the lemma, the following structural claim is true. For each j > 1,
consider the interval [j, T]. Then the expected cost of the policy R;, R, TR P RT over that interval is at most
B times the respective (optimal) expected cost of the policy R;, R;y,. .., R;.
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Now consider the modified base-stock policy R,, Rt flre e R,. This policy consists of the optimal base-stock
level R, in period 1, followed by R, IR , R, over the rest of the interval. We shall first show that the expected
cost of this policy over the interval [z, T] is at most 3 times the optimal expected cost over that interval.
However, given that the policy Rt o RT is followed over [, T] the optlmal base-stock level in period ¢ is
R,. This implies that the policy R,, R, ST RT is even better than R, R, ST RT, from which the proof of
the lemma follows.

Focusing on the policy R,,R, TR TI RT, we note that in period ¢ this policy is identical to the optimal
base-stock policy R,, ..., R;. It is clear that the two policies incur the same cost in period ¢ (for each possible

realization of D,). Moreover, at the beginning of period 7 4 1 both policies will have the same inventory level
X, Let 7>t +1 be the first period after 7 in which either the modified or the optimal policy placed an order.
Observe that 7 is a random variable. Over the (possibly empty) interval [¢+ 1,7), neither the modified policy
nor the optimal policy ordered. This can happen only if for each j € [t + 1, ) the inventory level of the two
policies is higher than the respective base-stock levels R; and R ;- Moreover, this implies that over that interval
the two policies have exactly the same inventory level, and therefore, they incur exactly the same cost. Now in
the period 7 exactly one of two cases applies. If the modified policy places an order, then by our assumption,
it is clear that the expected cost that the modified policy R,, R, FTI , R, incurs over the interval [7, T] is at
most 3 times the expected cost of the optimal base-stock policy R,, ..., R; over that interval. Now consider
the case in which the optimal policy places an order in  and the modified policy does not. Recall that at the
beginning of period 7, the inventory level of both policies is the same and is equal to X,,, — Dy,11 7. Thus, this
event can occur only if B
Ri =X, 11 = Dypyrpy < Ry

(Indeed, the optimal policy will order up to R; and the modified policy w111 not.) Let R: be the smallest minimizer
of Ut, i.e., the best order up-to level in f given that the policy Rt 15 Ry s followed over [ +1, T] By the
assumption that R, ST RT is an upper base-stock policy, it follows that R > R;. (Because RT >R; =R;,
we conclude that if the above case applies, then, with probability one, 7 < T.) In particular, over the interval
[7, T], the optimal policy executed the policy R;, R;,,, ..., R;. By the structural claim above, we also know
that the expected cost of policy R;, R; SR ,RT over [7,T] is at most B times the expected cost of the
optimal policy R, Ry, ..., Ry over that interval. Observe that X,,, — Dy, ; falls between R: and R; (see
the inequality above and the fact that R; > R;). Because IZ is convex, this implies that the expected cost of
the modified policy over the interval [7, T] is no greater than the expected cost of the policy R;, Rt TR RT,
i.e., at most 3 tlmes the optimal expected cost over that interval. (Observe that the modified policy executed
Xr+1 D[t+1 Y t+1’ ) RT')

It is left to show that the structural claim is indeed valid. It is readily verified that the claim is true for j =T
and j =T — 1. The proof of the induction step is done by arguments identical to the arguments used above. The
proof then follows. O

Consider now an upper base-stock pohcy Rl, .. R such that for each r =1,..., T, the base-stock level
R, is a good approximation of R, =R, | R, IR (by Lemma 3.1 above we know that R, is well defined).
More specifically, for each t=1,...,T, we have R >R, and U(R) < (1+¢€ )U (R) (for some specified
0 <e¢,), where U,(y,) is defined W1th respect to R,,,,...,R; (see above) and R, is its smallest minimizer.
Using Lemmas 3.1 and 3.2, it is straightforward to verify (by backward induction on the periods) that for each
s=1, , T, the expected cost of the base-stock policy R RT is at most ]_[ ,(1+¢€;) times the optimal
expected cost over the interval [s, T].

For s =T, the claim is trivially true. Now assume it is true for some s > 1. Applying Lemma 3.2 above with
t=s—1and B=]]. i=s(1 +€;), we conclude that the policy R, |, R,,..., R, has an expected cost of at most
B=T1 ]=s(1 +€;) times the opt1mal expected cost over the interval [s — 1, T]. Now by the definition of R, ,,
we conclude that the policy Rs_l, RS, e RT has an expected cost of at most (1 + €,_,)B times the optimal
expected cost over [s — 1, T], from which the claim follows. In particular, this implies that the expected cost
of the base-stock policy R,, ..., R, over the entire horizon [1, T] is at most []"_, (1 + €,) times the optimal
expected cost. In other words, the properties of an upper base-stock policy guarantee that errors over the interval
[t+ 1, T] do not propagate to the interval [1, #].

To construct such an upper base-stock policy we need to compute a base-stock level R in each stage t =
T, ..., 1, with the following two properties. To preserve the invariant of an upper base-stock pohcy, it is required
that R > R,. In addition, R is required to have a small relative error with respect to U, (y,) and its minimizer R,,
ie., Ut(R,) <1+ e,)U,(R,). Recall that if the invariant of an upper base-stock policy is preserved, the function
17, is convex with (one-sided) derivatives as given in (7) above. This suggests the same approach as before,
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i.e., use first-order information in order to find a point with objective value close to optimal. However, unlike the
newsvendor cost function, the minimizer of U, is not a well-defined quantile of the distribution of D,, and it is
less obvious how to establish a connection between the value of the one-sided derivatives of l7t at some point y
and the relative error of that point with respect to the minimum expected cost 17,(11). This is established in the
next lemma, which has a central role analogous to that of Lemma 2.1 above. Observe that, foreachr=1,...,T,
the function U, is bounded from below by the newsvendor cost C,, i.e., for each y, we have U (y) > C,(y). Now
C,(y)=E[h,(y—D,)" 4+ b,(D, — y)*] and for each fixed y the function h,(y — D,)* + b,(D, — y)* is convex
in D,. Applying Jensen’s inequality, we conclude that the inequality C,(y) > h,(y — E[D,))* + b,(E[D,] — y)*
holds for each y. For each t =1, ..., T, the function h,(y — E[D,))* + b,(E[D,] — y)" is piecewise linear and
convex with a minimum attained at y = E[D,] and equal to zero. Moreover, it provides a lower bound on ﬁ,(y)
This structural property of the functions l71, .. l7T can be used to establish an explicit connection between
first-order information and relative errors. The next lemma is specialized to the specific setting of the functions
Ul, .. UT In §5, we present a general version of this lemma that is valid in the multidimensional case. We
believe that this structural lemma will have additional applications in different settings.

Before we state and prove the lemma, we introduce the following definition.

DErINITION 3.3. Let f: R™ > R be convex and finite. A point y € R™ is called an a-point of f if there
exists a subgradient r of the function f at y with L1 norm less than «, i.e., there exists r € df (y) with ||r||; < a.

LEMMA 3.3. Let f: Ri—> R be convex and finite with a minimum at y*, i.e., f(y*) < f(y) for each y € R.
Suppose that f(y) = h(y—d)"+b(d —y)* (where h, b > 0) is a convex piecewise linear function with minimum
equal to zero at d, such that f(y) > f(y) for each y € R. Let 0 < € <1 be the specified accuracy level, and let

a=(€/3)min(b, h). If y is an a-point of f, then f(3) < (1+€)f(y*).

ProoF. Let A =min(b, h). Because y is an a-point of f, we conclude that there exists some r € df(y) with
|7| < @, and by the definition of a subgradient, f(3) — f(y*) < @[y — y*|. Now let d; < d < d, be the two points
where f takes the minimum value of f, i.e., f(d,) = f(d,) = f(y*). Let L, =d — d, and L,=d,—d. Clearly,
f(y*) = bL, = hL,, which implies that f(y*) > (A/2)(L, + L,). Moreover, because f(y) > f(y) for each y, we
conclude that y* € [d,, d,].

Now consider the point 3. Suppose first that y € [d,, d,]. This implies that |y — y*| < L, + L,. We now get that

2
FG) = F0) S ald =y S ally+Lo) = SML + L) < ().

The equality is a substitution of a = (e/3)A. The claim then follows.

Now assume that y & [d,, d,]. Without loss of generality, assume J > d, (a symmetric proof applies if y < d,).
Let x =y — d,. Because f is convex, it is clear that d, is also an a-point of f. By the same arguments used
above, we conclude that f(d,) — f(y*) < 3€f(y*) and that f(§) — f(d,) < a|9 — d,| = ax. This implies that

FE) = FO7) = F0) = F(d) + F(d) — () = ax + 2ef ()

It is then sufficient to show that ax < 1ef(y*). We first bound x from above. Now @) =f0O* + hx >
f(*) + Ax. In addition, f () < f(d,) + ax < (1 + 3€)f(y*) + ax. However, f(§) < f(§). We conclude that

_26f07) _26€f(7) _ef0)
=3 —a A(3—e)_ A
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The equality is the substitution of @ = (€/3)A. The last inequality is because € < 1. However, this implies that
ax < ef(y*)/3, from which the claim follows. O

Lemma 3.3 above establishes an explicit connection between a-points of the functions fj[ (fort=1,...,T)
and the relative error they guarantee. We note that slightly tighter bounds can be proven using somewhat more
involved algebra.

Because the demand distributions are not available, it is left to show how the one-sided derivatives of these
functions can be estimated with high accuracy and high confidence probability using random samples.

We next derive expressions of the one-sided derivatives of l7j,1, similar to (6) above. Note that

ijj—l(yj—l) = Cj—1(yj'—1) +E[]l()’j—1 -D;, =< E,)ﬁ,(ﬁj) +]]-(yj—1 —-D; > Ej)ﬁj()’jq - Dj—l)]'
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It is readily verified that l7j,1 is a continuous function of y; ;. If we take the right-hand derivative and apply
this process recursively (similar to (4)—(6) above), we get that the right-hand derivative of U;_, is

T
Ujr—l(yj—l) = C_;—l(yj—l) + EI:Z]]-(Ak,jl (yj—l))C]:(yj—l - D[jl,k))]' (M

k=j
The events Ak,j,l(yj,,) are defined with respect to ﬁj, ..., R, instead of R;, ..., Ry (see (6) above). We get a
similar expression for the left-hand derivative of fjj_ , by replacing C{ by C} foreachk=j—1,...,T. Asin the

case of U/, the events A i 17,’ are defined with respect to weak inequalities. It is easy to verify that the right-
hand and left-hand derivatives of the function f]; are bounded within the interval [— Z,Lt b,, Z,Lt h,]. The next
lemma shows that for each y, there exist explicit computable bounded random variables with expectations equal
to ﬁt’ (y) and lzl(y), respectively. This implies that the right-hand and the left-hand derivatives of the function U,
can be evaluated stochastically with high accuracy and high probability (using the Hoeffding inequality).

LemMMA 3.4. Foreach t=1,...,T —1, j>t and y, consider the random variable Mg(y,) = ]l(Ajt(yt)) .
(=bj+ (hj+b)I(D; <y, = Dy, ). Then E[My(y)] = E[1(A;;(y))C;(y, = Dy ;)]

Proor. First, note that the expectations above are taken with respect to the underlying demand distributions
D,, ..., Dy;. In particular, the base-stock levels Rt 415 - - - » Ry that define the events A are assumed to be known
determlmstlcally Using conditional expectations, we can wnte

E[M;(y)] = E[E[M} () | D, ... D;]]
= E[E[L(A;,(5))(=b; + (h; + b))L(D; <y, = D, ))ID,. ... D, 1]
= E[1(A;,(y)E[~b; + (h;+ b,)L(D; <y, — D, ;)|D,.. ... D;_]]
= E[L(A,(3)C (3, — Dy, )]

We condition on D,, ..., D, ,, so the indicator 1(A ;+(3,)) is known deterministically. In the last equality we
use the definition of C7 and uncondition. The claim then follows. [
In a similar way, we define the random Varlable M ! ;(:) by replacing the indicator 1(D; <y, — Dy, ;) in the

definition of M,; by the indicator 1(D; <y, — Dy, ;) for each 1<t <j<Tandy,.
Considering (7), we immediately get the following corollary.

COROLLARY 3.1.  Foreacht=1,...,T andy, the right-hand derivative of U, is given by U’ (y,) = E[—b, +
(ht + bt)]]-(Dt = yt) + Z]T:H—l Mt;(yt)]

COROLLARY 3.2. For eacht=1,...,T and y,, the left-hand derivative of U, is given by U!(y,) = E[—b, +
(ht + bt)]]-(Dt < yt) + ZJT=1+1 Mtl](yt)]

Lemma 3.4 and Corollaries 3.1 and 3.2 imply that we can estimate the right-hand and left-hand derivatives of
the functions l71, e, l7T with a bounded number of samples. For each t =1, ..., T, take N, samples from the
demand distributions D,, ..., Dy that are independent of ﬁ, FETR ﬁT, i.e., independent of the samples taken
in previous stages. Let fJZ and f];’ be the respective right-hand and left-hand sampling-based estimators of the
one-sided derivatives of U,. Note that the base-stock levels R, , . .., R; have already been computed based on
independent samples from the previous stages. Thus, at stage 7 the function 17, and its one-sided derivatives are
considered to be deterministic. On the other hand, U’ and U’ are random and determined by the specific N,
samples that define them.
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To simplify the notation, we will assume from now on tllat b=b>0and h,=h>0, foreacht=1,...,T.
To evaluate the right-hand and left-hand derivatives of U, at a certain point y,, consider each sample path
di,...,d. (fori=1,. N) evaluate the random variables —b + (h + b)1(D, < y,) + Z, —s1 M (y,) and

—b+ (h + b)]l(D <y, + > . Mt] (,), respectively, and then average over the N, samples. Note that each of
the variables M " (respectively, M ! ;) can take values only within [—D, h], so U " and U] U! are also bounded. By
arguments s1m11ar to Lemma 2.2 (usmg the Hoeffding inequality), it easy to compute the number of samples
N, required to guarantee that the minimizer is an «,-point of the function 17 with probability at least 1 — 6,
(for specified accuracy and confidence levels). However, as we have already seen, in the multiperiod setting it is
also essential to preserve the invariant R > R, to ensure that the problem in the next stage is still convex. That
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is, we wish to find an «,-point Rt of U; but with the additional property that Rt > R,, where R, is the smallest
minimizer of U

We compute R in the following way. Given N, samples, let R be the minimal point with a sample right-hand
derivative of at least a,/2 (i.e., U’'(R,) > a,/2). That is, R, := inf{y: U’(y) > a,/2). First observe that R, is
well defined for each 0 < a, <2Ah(T — t + 1), because the one-sided derivatives of the function U are bounded
within the interval [—b(T — 1+ 1), (T — t + 1)]. By the definition of R,, it is also clear that U (R) < a,/2.
Lemma 3.5 analyzes the required number of samples N, to guarantee that, with probability at least 1 — §,, the
point R, is both an «,-point of U, and satisfies R, > Rt. For the proof of this lemma, we use the Hoeffding
inequality; below we bring a variant of this well-known result, which is relevant for the proof.

THEOREM 3.4 (HOEFFDING INEQUALITY [18]). Let X',..., X" be iid. random variables such that X' €
[B:, B,] (ie., Pr(X' €[B,, B,]) =1) for some B, < B,. Then, for each o > 0, we have

(i) Pr((1/N)XY, X' —E[X'] = a) < e 2N/ (BB,

(i) Pr(J(1/N) XN, X' — E[X"]| > a) < 2exp 2" N/(B=B1)°,

LEMMA 3.5. Consider some stage t during the execution of the algorithm and let 0 < @, and 0 < §, < 1. Sup-
pose we generate N, > 2((b+h)(T —t+ 1))2(1/012) log(2/8, ) independent samples of the demands D,, . .., Dy

that are also independent of the base-stock levels R, +1> -+ - » Ry, and use them to compute R = 1nf{y U T (y) >
a,/2}. Then, with probability at least 1 — 8,, the base- stock level R, is an a,-point of U,, and R, >R,

Proor. First note that R is a random variable, a function of the specific N, samples, and that R, is a
deterministic quantity (the smallest minimizer of the function U that is assumed to be known deterministically).
Observe that the event [R >R,]N [R is an a,-point] contains the event [U ’(R ) > 0]N[U; l(R ) < a,]. It is then
sufficient to show that each of the events [U "(R,) < 0] and 1% '(R)>a ;] has probability at most §, /2.

By the optimality and minimality of R,, we know that R, = inf{y: U /(y) > 0} and that U (R,) = 0. This
implies that the event [U’(R,) < 0] is equivalent to the event [R, € (—oo, R,)]. For a decreasing nonnegative
sequence of numbers 7, | 0, define the monotone-increasing sequence of events By = [U (R, —7) > a /2]
(note that U, 7(y) is a random variable dependent on the specific N, samples). By the monotonicity of U 7, it
is readily verified that B, 1 B (where B is the limit set), and [R, € (—o0, R,)] C B. However, by the Hoeffding
inequality (applied to the random samples of —b + (h + b)1(D, < R, — 7,) + Y.~ i1 M M!(R, — 7,) defined
above) and the specific choice of N,, we conclude that, for each k, we have Pr(B,) < §,/2, which implies that
Pr([R, € (oo, R,)]) <Pr(B) < 8,/2.

Now consider the function U,, and let g be the maximal point with a left-hand derivative at most «,, i.e.,
g = sup{y: U (y) < a,}. Because Ul is left continuous, we conclude that U'(q) < e,. This implies that the
event [U; l(R ) > a,] is equivalent to the event [R, € (¢, 0)]. Define the monotone-increasing sequence of events

[U (¢ + 7,) < ,/2]. By the monotonicity of U/, it is clear that L, 1 L (where L is the limit set), and
that (U] I(R )>a,]C L. Usmg the Hoeffding inequality (now applied to the random samples of —b + (h+ b) -
1(D, <R, —71)+ Z] r41 M! (R 7)) and the choice of N,, we conclude that for each k, Pr(L,) < 8,/2. This
implies that Pr([U (R ) > a,]) <Pr(L) <§,/2. It is now clear that R > R, and that R is an a,-point with
probability at least 1 —o,. O R

Note that it is relatively easy to compute R, above. In particular, it is readily verified that the functions U;’
and U;’ change values in at most (2(7 — ¢) + 1)N, distinct points y,. This and other properties enable us to
compute Rt in relatively efficient ways.

3.3. An algorithm. Next we shall provide a detailed description of the algorithm and a complete analysis
of the number of samples required. For ease of notation, we will assume that h, = h > 0 and b, = b > 0 for each
t=1,...,T.

For a specified accuracy level € (where 0 < € < 1) and confidence level 6 (where 0 < 6 < 1), let €, = €/2T
and 6, =0/T. Foreach r=1,...,T, let o, = (¢,/3) min(b, h) and §, = §,. The algorithm computes a base-
stock policy Rl, e ,RT in the following way. In stage t =T, ..., 1, consider the function Ut defined above
with respect to the previously computed base-stock levels R, T R (where UT = Cy). Use the black box
to generate N, = 2((b+ h)(T —t+1))*(1/a7)log(2/8,) 1ndependent samples of the demands D,, ..., D; and
compute R, =inf{y: U’(y) > @,/2}. Note that in each stage, the algorithm is using an additional N samples
that are independent of the samples used in previous stages. In the next theorem, we show that the algorithm
computes a base-stock policy that satisfies the required accuracy and confidence levels.
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THEOREM 3.5.  For each specified accuracy level € (where 0 < € < 1) and confidence level & (where 0 <
0 < 1), the algorithm computes a base-stock policy R, ..., Ry such that with probability at least 1 — 8, the
expected cost of the policy is at most 1 + € times the optimal expected cost.

Proor. For each t=1,...,T, let I, be the event that ﬁ,, ce ,ET is an upper base-stock policy, and that
for each j=1, .T, R ; 1s a;-point of fj In partlcular by the choice of @; and Lemma 3.3, U, (R ) <
(1+e€; )U (R ), where R is the smallest minimizer of U

Lemma 3.2 implies that if I, occurs, then Rl, - ,RT is an upper base-stock policy with expected cost at
most []—_,(14+¢€,) = (1+¢€/2T)" < 1+ € times the optimal expected cost. It is then sufficient to show that I,
occurs with probability at least 1 — 6.

Clearly, I; 2 I;_; 2 --- D I,. This implies that Pr(f;) = Pr(0_, 1,). It is then sufficient to show that
Pr([N, 1,]) <.

We first show that for each t =1, ..., T, the event /, occurs with positive probability. The proof is done by
induction on t =T,..., 1. For t =T the claim follows trivially. Now assume that the claim is true for some
1 <t <T and consider the event /,_;. We then have

Pr(, ) =Pr(I,N1, ) =Pr(1,)Pr(l,_, | I,).

By induction we know that Pr(/,) > 0, so conditioning on I, is well defined. Because the samples in each stage
are independent of each other, Lemma 3.5 and the choice of N, implies that Pr(Z,_, | I,) > 1 — 8, > 0. The claim
then follows.

Now observe that we can write (N, 7,)€ as

[ﬂl] =ISU[INIS Ul NIE,JU---U[LNIC].

However, given our choice of N, and the fact that the samples in each stage are independent of each other,
for each r=1,...,T, Lemma 3.5 implies that Pr(I{) < &, and Pr(Z,NIS,) =Pr(L)Pr(I€, |1,) <6, ,. We
conclude that Pr([N_, 1,]) < ¥, 8,, which implies that Pr(/,) > 1 — Zt=1 6,=1—46as requlred The proof
then follows. [

The next corollary provides upper bounds on the total number of samples needed from each of the random
variables D, ..., Dy, denoted by ,.

COROLLARY 3.3. Foreacht=1,...,T, specified accuracy level 0 < € < % and confidence level 0 < & < 1,
the algorithm requires at most N, independent samples of D,, where

JvtznT—z(%) (2T>Z(T j+ D2

Observe that the number of samples required is increasing in the periods. In particular, it is of order O(T*)
for the first period and increasing to order of O(7?) in the last period. The bounds do not depend on the specific
demand distributions, but do depend on the square of the reciprocal of min(b, h)/(b+ h).

We note that the algorithm can be applied in the presence of a positive lead time, per-unit ordering costs, and
a discount factor over time. The exact dynamic program described above can be extended in a straightforward
way to capture these features in a way that preserves the convexity of the problem (see Zipkin [47] for details).
Similarly, the shadow dynamic program can still be used to construct an approximate base-stock policy with the
same properties described above. Moreover, the bounds on the number of required samples stay very similar to
the bounds established above.
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4. Approximating myopic policies. In many cases, finding optimal policies can be computationally de-
manding, regardless of whether or not we have access to the demand distributions. As a result, researchers and
practitioners have paid attention to myopic policies. In a myopic policy we aim, in each period t=1,...,T, to
minimize the expected cost (the newsvendor cost) in that period, ignoring the future costs. This provides what
is called a myopic base-stock policy. As we have already mentioned, myopic policies may not be optimal in
general. However, in many cases the myopic policy performs well, and in some cases it is even optimal. In this
section, we shall describe a simple and very efficient sampling-based procedure that computes a policy that,
with high specified confidence probability, has an expected cost very close to the expected cost of the myopic
policy. In particular, if a myopic policy is optimal, then the expected cost of the approximate policy is close




Levi, Roundy, and Shmoys: Provably Near-Optimal Sampling-Based Policies for Stochastic Inventory Control Models
Mathematics of Operations Research 32(4), pp. 821-839, © 2007 INFORMS 837

to optimal. We let RY', ..., R} denote the minimal myopic policy, where for each t=1,..., T, the base-stock
level R is the smallest minimizer of C,(y), the newsvendor cost in that period.

The sampling-based procedure is based on solving the newsvendor problems in each one of the periods
independently. Consider each of the functions C,, ..., C; and find, for each one of them, an approximate
minimizer by means of solving the SAA counterpart. Let ﬁ:” be the approximate solution in period t. To
guarantee that the approximate policy has an expected cost close to the expected myopic cost, it might not
be sufficient to simply take E;" to be the minimizer of the corresponding SAA model as discussed in §2. The
problem is that if we approximate the exact myopic base-stock level from above—i.e., if we get E;” > RI'—
we might impact the inventory level in the next period in a way that will incur high costs. In turn, we will
approximate R} from below. More precisely, we will compute ﬁ;" for each period ¢ that is an e-point with
respect to C, and is no greater than R}, with high probability.

The procedure is symmetric to the computation of ﬁt in §3 above. Given N, samples, consider the SAA
counterpart and focus on the one-sided derivatives 6{ and @,’ . We will compute R” as the maximum point with
sample left-hand derivative value at most —e,/2 (where 0 < €, < b,, i.e., R = sup{y: éf(y) < —¢,/2}). By a
proof symmetric to the one of Lemma 3.5 above, we get the following lemma.

LEmMMA 4.1. Foreacht=1,...,T, consider specified 0 < €, < b, and 0 < J, < L. Further consider the SAA
counterpart of C, defined for N, > 2(b, + h,)*(1/€;)10g(2/8,) samples. Compute R} = sup{y: C/(y) < —¢,/2}.
Then, with probability at least 1 — 8,, the base-stock level R!" is an €,-point of C, and R]' <R".

Moreover, for each specified accuracy level 0 < € <1 and confidence level 0 < &' < I, let €, = €, €, =
(min(b,, h,)/3)€,, and 6, =8, =&'/T. Now apply the above procedure for each of the periods r=1,...,T for
number of samples N, as specified in Lemma 4.1 above, and compute an approximate policy ET, e E’}'. We
claim that with probability of at least 1 — &', this policy has an expected cost of at most 1+ €’ times the expected
cost of the myopic policy.

THEOREM 3.5. Consider the policy R, . . ., I?’}‘ computed above. Then, with probability of at least 1 — &', it
has an expected cost of at most 1 + € times the expected cost of the myopic policy.

Proor. Let I be the event that for each r =1,..., T, the base-stock level ﬁ;" is €,-point with respect to
C, and ﬁ;” < R!" (the corresponding myopic base-stock level). By the choice of N,, it is readily verified that
Pr(I) > 1—§&'. We claim that under the event I, the expected cost of the policy E’I", e ,ﬁ’;’ is at most 1 + €’
times the expected cost of the myopic policy.

Foreach r=1,...,T, let )Z and X, be the respective inventory levels of the approximate policy and of the

myopic policy at the beginning of period ¢ (note that these are two random variables). Then E[C,(R" v X,)]
and E[C,(R v X,)] are the respective expected costs of the approximate policy and of the myopic policy in
period ¢. It is sufficient to show that for each r=1,..., T, we have

E[C,(R! v X)] < (1 +€)E[C,(R] V X))].

Condition now on any realization of the demands D,,...,D,_, and the resulting inventory levels ¥, and x,
(where these are the respective realizations of )?, and X,). Then one of the following cases applies:

Case 1. The base-stock level ﬁ, is reachable, i.e., X, < ﬁT. The inequality then immediately follows by the
fact that I?j" is an €,-point of C,.

Case 2. The inventory level of the approximated policy, X,, is between ﬁ;” and RY', ie., ﬁ;” <X, <R Itis
readily verified that X, is also an €,-point of C,, which implies that the inequality still holds.

Case 3. Finally, consider the case where the inventory level of the approximate policy is above the myopic
base stock, i.e., X, > R!". Observe that under the event /, we know that X, < x,, with probability one. In particular,
this implies that C,(¥,) < C,(x,). This concludes the proof. [

Observe that in this case the number of samples required from each demand distribution is significantly
smaller. It is of order O(log(7T)) instead of O(T?).
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5. General structural lemma. In this section, we provide a proof of a multidimensional version of the key
structural Lemma 3.3 above. In many stochastic dynamic programs, one of the main challenges is to evaluate the
future expected cost that results from the decision being made in the current stage. This cost function is often
very complex to evaluate. However, there are cases where there are analytical expressions for subgradients, which
can then be estimated accurately using sampling-based methods in a way similar to the one described above.
In such cases, one of the natural issues to address is how to relate first-order information to relative errors. We




Levi, Roundy, and Shmoys: Provably Near-Optimal Sampling-Based Policies for Stochastic Inventory Control Models
838 Mathematics of Operations Research 32(4), pp. 821-839, ©2007 INFORMS

believe that the following lemma provides effective tools to establish such relations for certain convex objective
functions. This can lead to algorithms with rigorous analysis of their worst-case performance guarantees. More
specifically, there are cases where we can derive piecewise linear functions that provide a lower bound on the
real objective function value (see for example lida and Zipkin [21]). Piecewise linear approximations are also
used in different heuristics for two-stage stochastic models (see, for example, Birge and Wallace [6]).

The following lemma indicates that in convex minimization models with the property that there exists a
nonnegative piecewise linear function that lower bounds the objective function value, there exists an explicit
relation between first-order information and relative errors. Thus, we believe that this lemma will have appli-
cations in analyzing the worst-case performance of approximation algorithms for stochastic dynamic programs
and stochastic two-stage models.

LEMMA 5.1. Let f: R" = R be convex and finite with a global minimizer denoted by y*. Further assume
that there exists a function f: R™ — R convex, nonnegative, and piecewise linear, such that f(u) < f(u) for
each u € R™. Without loss of generality assume that f (u) = A|u|| for each u € R" and some A > 0. Let 0 < € < 1
and o = €\/3. Then, if y € R"™ is an a-point (see Definition 3.3 above) of f, its objective value f(y) is at most
1 + € times the optimal objective value f(y*), i.e., f(¥) <(1+¢€)f(*).

Proor. The proof follows along the lines of Lemma 3.3 above. Let L = f(y*)/A and %(0, L) € R™ be an
L1 norm ball of radius L around the origin. It is straightforward to verify that y* € 9(0, L). Now, by definition,
we have f(y*) = AL and by the fact that y is an a-point of f, we know that f(3) — f(y*) < a3 — y*|.

First consider the case where y € 98(0, L). Then it is readily verified that ||y — y*|| < 2L. However, this implies
that

2 2
fG)= 1" = all§ -y <2aL = SeAL=Zef ().

Now consider the case where y ¢ %(0, L), in particular, ||y| > L. Let d € %(0, L) be the point on the line
between y and the origin with ||d|| = L. Because f is convex, it is readily verified that the point d is also an
e-point of f. Then, clearly, the point d satisfies f(d) — f(y*) < %ef(y*). Let x = ||y — d||. The rest of the proof
proceeds exactly like the proof of Lemma 3.3. [
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