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Abstract

This paper establishes minimax rates for online regression with arbitrary classes of functions and general

losses.1 We show that below a certain threshold for the complexity of the function class, the minimax rates de-

pend on both the curvature of the loss function and the sequential complexities of the class. Above this threshold,

the curvature of the loss does not affect the rates. Furthermore, for the case of square loss, our results point to the

interesting phenomenon: whenever sequential and i.i.d. empirical entropies match, the rates for statistical and

online learning are the same.

In addition to the study of minimax regret, we derive a generic forecaster that enjoys the established optimal

rates. We also provide a recipe for designing online prediction algorithms that can be computationally efficient

for certain problems. We illustrate the techniques by deriving existing and new forecasters for the case of finite

experts and for online linear regression.

1 Introduction

We study the problem of predicting a real-valued sequence y1, . . . , yn in an on-line manner. At time t = 1, . . . ,n, the

forecaster receives side information in the form of an element xt of an abstract set X . The forecaster then makes

a prediction ŷt on the basis of the current observation xt and the data {(xi , yi )}t−1
i=1

encountered thus far, and then

observes the response yt .

Such a problem of sequence prediction is studied in the literature under two distinct settings: probabilistic

and deterministic [18]. In the former setting, which falls within the purview of time series analysis, one posits a

parametric form for the data-generating mechanism and estimates the model parameters based on past instances

and input information in order to make the next prediction. In contrast, in the deterministic setting one assumes

no such probabilistic mechanism. Instead, the goal is phrased as that of predicting as well as the best forecaster

from a benchmark set of strategies. This latter setting—often termed prediction of individual sequences, or online

learning—is the focus of the present paper.

We let the outcome yt and the prediction ŷt take values in Y ⊆ R and Ŷ ⊆ R, respectively. Formally, a deter-

ministic prediction strategy is a mapping (X ×Y )t−1 ×X → Ŷ . We let the loss function (ŷt , yt ) 7→ ℓ(ŷt , yt ) score

the quality of the prediction on a single round.

Assume that the time horizon n ∈ Z+, is known to the forecaster. The overall quality of the forecaster is then

evaluated against the benchmark set of predictors, denoted as a class F of functions X → Ŷ . The cumulative

regret of the forecaster on the sequence (x1, y1), . . . , (xn , yn ) is defined as

n∑

t=1

ℓ(ŷt , yt )− inf
f ∈F

n∑

t=1

ℓ( f (xt ), yt ). (1)

The forecaster aims to keep the difference in (1) small for all sequences (x1, y1), . . . , (xn , yn ).

The comparison class F encodes the prior belief about the family of predictors one expects to perform well. If a

forecasting strategy guarantees small regret for all sequences, and if F is a good model for the sequences observed

in reality, then the forecasting strategy will also perform well in terms of its cumulative error. In fact, we can take

1This paper builds upon the study of online regression with square loss, presented by the authors at the COLT 2014 conference.
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F to be a class of solutions (that is, forecasting strategies) to a set of probabilistic sources one would obtain by

positing a generative model of data. By doing so, we are modeling solutions to the prediction problem rather than

modeling the data-generating mechanism. We refer to [18, 21] for further discussions on this “duality” between

the probabilistic and deterministic approaches.

To ensure that F captures the phenomenon of interest, we would like F to be large. However, increasing

the “size” of F likely leads to larger regret, as the comparison term in (1) becomes smaller. On the other hand,

decreasing the “size” of F makes the regret minimization task easier, yet the prediction method is less likely to be

successful in practice. This dichotomy is an analogue of the bias-variance tradeoff commonly studied in statistics.

A contribution of this paper is an analysis of the growth of regret (with n) in terms of various notions of complexity

of F . The task was already accomplished in [24] for the case of absolute loss ℓ(a,b) = |a −b|. In the present paper

we obtain optimal guarantees for convex Lipschitz losses under very general assumptions.

To give the reader a sense of the results of this paper, we state the following informal corollary. Let complexity

of F be measured via sequential entropy at scale β, to be defined below. (For the reader familiar with covering

numbers, this is a sequential analogue—introduced in [24]—of the classical Koltchinskii-Pollard entropy).

Corollary 1 (Informal). Suppose sequential entropy at scale β behaves as O(β−p ), p > 0. Then optimal regret

• for prediction with absolute loss grows as n1/2 if p ∈ (0,2), and as n1−1/p for p > 2;

• for prediction with square loss grows as n1−2/(2+p) if p ∈ (0,2), and as n1−1/p for p > 2.

Moreover, these rates have matching, sometimes modulo a logarithmic factor, lower bounds.

The first part of this corollary is established in [24]. The second part requires new techniques that take advan-

tage of the curvature of the loss function.

In an attempt to entice the reader, let us discuss two conclusions that can be drawn from Corollary 1. First,

the rates of convergence match optimal rates for excess square loss in the realm of distribution-free Statistical

Learning Theory with i.i.d. data, under the assumption on the behavior of empirical covering numbers [27]. Hence,

in the absence of a gap between classical and sequential complexities (introduced later) the regression problems

in the two seemingly different frameworks enjoy the same rates of convergence. A deeper understanding of this

phenomenon is of a great interest.

The second conclusion concerns the same optimal rate n−1/p for both square and absolute loss for “rich”

classes (p > 2). Informally, strong convexity of the loss does not affect the rate of convergence for such massive

classes. A geometric explanation of this interesting phenomenon requires further investigation.

We finish this introduction with a note about the generality of the setting proposed so far. Suppose X =
∪t≤nY

t , the space of all histories of Y -valued outcomes. Denoting xt = (y1, . . . , yt−1) , y t−1, we may view each

f ∈ F itself as a strategy that maps history y t−1 to a prediction. Ensuring that xt is not arbitrary but consistent

with history only makes the task of regret minimization easier; the analysis of this paper for this case follows along

the same lines, but we omit the extra overhead of restrictions on xt ’s and instead refer the reader to [14, 21].

The paper is organized as follows. Section 2 introduces the notation and then presents a brief overview of

sequential complexities. Upper and lower bounds on minimax regret are established in Sections 3 and 4. We

calculate minimax rates for various examples in Section 5. We then turn to the question of developing algorithms

in Section 6. We first show that an algorithm based on the Rademacher relaxation is admissible (see [19]) and yields

the rates derived in a non-constructive manner in the first part of the paper. We show that further relaxations in

finite dimensional space lead to the famous Vovk-Azoury-Warmuth forecaster. We also derive a prediction method

for finite class F .

2 Preliminaries

2.1 Assumptions and Definitions

We assume that the set of outcomes Y is a bounded set, a restriction that can be removed by standard truncation

arguments (see e.g. [12]). Let X be some set of covariates, and let F be a class of functions X → Ŷ for some
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Ŷ ⊆R. Recall the protocol of the online prediction problem: On each round t ∈ {1, . . . ,n}, xt ∈X is revealed to the

learner who subsequently makes a prediction ŷt ∈ Ŷ . The response yt ∈Y is revealed after the prediction is made.

The loss function ℓ(·, y) is assumed to be convex. Let ∂aℓ(a, y) denote any element of the subdifferential set

(with respect to first argument), and assume that

sup
a∈Ŷ ,y∈Y

|∂aℓ(a, y)| ≤G <∞.

We assume that for any distribution of y supported on Y , there is a minimizer of expected loss that is finite and

belongs to Ŷ :

Ŷ ∩argmin
ŷ∈R

Eℓ(ŷ , y) 6= ;.

Given a y ∈Y , the error of a linear expansion at a to approximate function value at b is denoted by

∆
y

a,b
, ℓ(b, y)− [ℓ(a, y)+∂aℓ(a, y) · (b −a)].

Let ∆ : (Ŷ − Ŷ ) →R≥0 be a function defined pointwise as

∆(x) = inf
a,b∈Ŷ ,y∈Y s.t. b−a=x

∆
y

a,b
, (2)

a lower bound on the residual for any two values separated by x. For instance, an easy calculation shows that

∆(x) = x2 for ℓ(ŷ , y) = (ŷ − y)2.

2.2 Minimax Formulation

Unlike most previous approaches to the study of online regression, we do not start from an algorithm, but instead

work directly with minimax regret. We will be able to extract a (not necessarily efficient) algorithm after obtaining

upper bounds on the minimax value. Let us introduce the notation that makes the minimax regret definition more

concise. We use ⟪· · ·⟫n
t=1 to denote an interleaved application of the operators, repeated over t = 1. . . n rounds.

With this notation, the minimax regret of the online regression problem described earlier can be written as

Vn =⟪sup
xt

inf
ŷt

sup
yt

⟫n

t=1

{
n∑

t=1

ℓ(ŷt , yt )− inf
f ∈F

n∑

t=1

ℓ( f (xt ), yt )

}
(3)

where each xt ranges over X , ŷt ranges over Ŷ , and yt ranges over Y . An upper bound on Vn guarantees the

existence of an algorithm (that is, a way to choose ŷt ’s) with at most that much regret against any sequence. A

lower bound on Vn , in turn, guarantees the existence of a sequence on which no method can perform better than

the given lower bound.

2.3 Sequential Complexities

One of the key tools in the study of estimators based on i.i.d. data is the symmetrization technique [13]. By in-

troducing Rademacher random variables, one can study the supremum of an empirical process conditionally on

the data. Conditioning facilitates the introduction of sample-based complexities of a function class, such as an

empirical covering number. For a class of bounded functions, the covering number with respect to the empirical

metric is necessarily finite and leads to a correct control of the empirical process even if discretization of the func-

tion class in a data-independent manner is impossible. We will return to this point when comparing our approach

with discretization-based methods.

In the online prediction scenario, symmetrization is more subtle and involves the notion of a binary tree. The

binary tree is, in some sense, the smallest entity that captures the sequential nature of the problem. More precisely,

a Z -valued tree z of depth n is a complete rooted binary tree with nodes labeled by elements of a set Z . Equiva-

lently, we think of z as n labeling functions, where z1 is a constant label for the root, z2(−1),z2(+1) ∈Z are the labels
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for the left and right children of the root, and so forth. Hence, for ǫ= (ǫ1, . . . ,ǫn ) ∈ {±1}n , zt (ǫ) = zt (ǫ1, . . . ,ǫt−1) ∈Z

is the label of the node on the t-th level of the tree obtained by following the path ǫ. For a function g : Z →R, g (z)

is an R-valued tree with labeling functions g ◦zt for level t (or, in plain words, evaluation of g on z).

We now define two tree-based complexity notions of a class of functions.

Definition 1 ([24]). Sequential Rademacher complexity of a class F ⊆R
X on a given X -valued tree x of depth n,

as well as its supremum, are defined as

Rn(F ;x), E sup
f ∈F

[ n∑

t=1

ǫt f (xt (ǫ))

]
, Rn(F ), sup

x
Rn(F ;x) (4)

where the expectation is over a sequence of independent Rademacher random variables ǫ= (ǫ1, . . . ,ǫn ).

One may think of the functions x1 , . . . ,xn as a predictable process with respect to the dyadic filtration {σ(ǫ1 , . . . ,ǫt )}t≥1.

The following notion of a β-cover quantifies complexity of the class F evaluated on the predictable process.

Definition 2 ([24]). A set V of R-valued trees of depth n forms a β-cover (with respect to the ℓq norm) of a function

class F ⊆R
X on a given X -valued tree x of depth n if

∀ f ∈F ,∀ǫ ∈ {±1}n ,∃v ∈V s.t.
1

n

n∑

t=1

| f (xt (ǫ))−vt (ǫ)|q ≤βq .

Aβ-cover in the ℓ∞ sense requires that | f (xt (ǫ))−vt (ǫ)| ≤β for all t ∈ [n]. The size of the smallest β-cover is denoted

by Nq (β,F ,x), and Nq (β,F ,n) , supx Nq (β,F ,x).

We will refer to logNq (β,F ,n) as sequential entropy of F . In particular, we will study the behavior of Vn when

sequential entropy grows polynomially2 as the scale β decreases:

logN2(β,F ,n) ∼β−p , p > 0. (5)

We also consider the parametric “p = 0” case when sequential covering itself behaves as

N2(β,F ,n) ∼β−d (6)

(e.g. linear regression in a bounded set in R
d ). We remark that the ℓ∞ cover is necessarily n-dependent, so the

forms we assume for nonparametric and parametric cases, respectively, are

logN∞(β,F ,n) ∼β−p log(n/β) or N∞(β,F ,n) ∼ (n/β)d (7)

3 Upper Bounds

The following theorem from [24] shows the importance of sequential Rademacher complexity for prediction with

absolute loss.

Theorem 2 ([24]). Let Y = [−1,1], F = [−1,1]X , and ℓ(ŷ , y) = |ŷ − y |. It then holds that

Rn(F ) ≤Vn ≤ 2Rn (F ).

Furthermore, an upper bound of 2GRn(F ) holds for any G-Lipschitz loss. We observe, however, that as soon

as F contains two distinct functions, sequential Radmeacher complexity of F scales as Ω(n1/2). Yet, it is known

that minimax regret for prediction with square loss grows slower than this rate. Therefore, the direct analysis based

on sequential Rademacher complexity (and a contraction lemma) gives loose upper bounds on minimax regret.

The key contribution of this paper is an introduction of an offset Rademacher complexity that captures the correct

behavior.

In the next lemma, we show that minimax value of the sequential prediction problem with any convex Lipschitz

loss function can be controlled via offset sequential Rademacher complexity. As before, let ǫ = (ǫ1, . . . ,ǫn ) where

each ǫi is an independent Rademacher random variable.

2It is straightforward to allow constants in this definition, and we leave these details out for the sake of simplicity.
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Lemma 3. Under the assumptions and definitions in Section 2.1, the minimax rate is bounded by

Vn ≤ sup
x,µ

E sup
f ∈F

[ n∑

t=1

2Gǫt ( f (xt (ǫ))−µt (ǫ))−∆

(
f (xt (ǫ))−µt (ǫ)

)]
(8)

where x and µ range over all X -valued and Ŷ -valued trees of depth n, respectively.

The right-hand side of (8) will be termed offset Rademacher complexity of a function class F ⊆ R
X with re-

spect to a convex even offset function ∆ : R→ R≥0 and a mean R-valued tree µ. If ∆ ≡ 0, we recover the notion of

sequential Rademacher complexity since E[ǫtµt (ǫ)]= 0.

A matching lower bound on the minimax value will be presented in Section 4, and the two results warrant

a further study of offset Rademacher complexity. To this end, a natural next question is whether the chaining

technique can be employed to control the supremum of this modified stochastic process. As a point of comparison,

we first recall that sequential Rademacher complexity of a class G of [−1,1]-valued functions on Z can be upper

bounded via the Dudley integral-type bound

Esup
g∈G

[ n∑

t=1

ǫt g (zt (ǫ))

]
≤ inf

ρ∈(0,1]

{
4ρn+12

p
n

∫1

ρ

√
logN2(δ,G ,z)dδ

}
, (9)

for any Z -valued tree z of depth n, as shown in [26]. We aim to obtain tighter upper bounds on the offset Rademacher

by taking advantage of the negative offset term.

To initiate the study of offset Rademacher complexity with functions ∆ other than quadratic, we recall the

notion of a convex conjugate.

Definition 3. For a convex function ψ : D → R with domain D ⊆ R, the convex conjugate ψ∗ : R → R∪ {+∞} is

defined as

ψ∗(a)= sup
d∈D

{
ad −ψ(d)

}
.

The chaining technique for controlling a supremum of a stochastic process requires a statement about the be-

havior of the process over a finite collection. The next lemma provides such a statement for the offset Rademacher

process.

Lemma 4. Let ∆ be a convex, nonnegative, even function on R and let Γ∗ denote the convex conjugate of the function

x 7→∆(
p
|x|). Assume Γ∗ is nondecreasing. For any finite set W of R-valued trees of depth n and any constant C > 0,

Emax
w∈W

{ n∑

t=1

2Cǫt wt (ǫ)−∆(wt (ǫ))

}
≤ inf

λ>0

{
1

λ
log |W |+n Γ

∗ (
2C 2λ

)}
. (10)

Further, for any [−G,G]-valued tree η,

Emax
w∈W

[ n∑

t=1

ǫtηt (ǫ)wt (ǫ)

]
≤G

√
2log |W | · max

w∈W ,ǫ1:n

n∑

t=1

wn(ǫ)2 . (11)

As an example, if ∆(x) = x2, an easy calculation shows that Γ∗(1) = 0 and Γ
∗(y) =+∞ for any y 6= 1. Hence, the

infimum in (10) is achieved at λ= 1/(2C 2), and the upper bound becomes 2C 2 log |W |.
We can now employ the chaining technique to extend the control of the stochastic process beyond the finite

collection.

Lemma 5. Let ∆ and Γ
∗ be as in Lemma 4. For any Z -valued tree z of depth n and a class G of functions Z →R and

any constant C > 0,

Esup
g∈G

[ n∑

t=1

2Cǫt g (zt (ǫ))−∆
(
g (zt (ǫ))

)]
≤ inf

γ>0

{
C inf

ρ∈(0,γ)

{
4ρn+12

p
n

∫γ

ρ

√
logN∞(δ,G ,z)dδ

}

+ inf
λ>0

{
1

λ
logN∞

(γ
2

,G ,z
)
+n Γ

∗ (
2C 2λ

)}}
.
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Remark 1. For the case of ∆(x) = x2, it is possible to prove the upper bound of Lemma 5 in terms of ℓ2 sequential

covering numbers rather than ℓ∞ (see [22]).

Lemma 5, together with Lemma 3, yield upper bounds on minimax regret under assumptions on the growth of

sequential entropy. Before detailing the rates, we present lower bounds on the minimax value in terms of the offset

Rademacher complexity and combinatorial dimensions.

4 Lower Bounds

The function ∆, arising from uniform (or strong) convexity of the loss function, enters the upper bounds on mini-

max regret. For proving lower bounds, we consider the dual property, that of (restricted) smoothness. To this end,

let S ⊆ Ŷ be a subset satisfying the following condition:

∀s ∈ S, ∃y1(s), y2(s) ∈Y s.t. s ∈ argmin
ŷ∈Ŷ

1

2

(
ℓ(ŷ , y1(s))+ℓ(ŷ , y2(s))

)
. (12)

For any such subset S, let ∆S : (Ŷ −S) →R≥0 be defined as

∆S(x) = sup
s∈S,b∈Ŷ s.t. b−s=x

max
{
∆

y1(s)

s,b
,∆

y2(s)

s,b

}
. (13)

We write ∆κ for the singleton set S = {κ}.

The lower bounds in this section will be constructed from symmetric distributions supported on two carefully

chosen points. Crucially, we do not require a uniform notion of smoothness, but rather a condition on the loss that

holds for a restricted subset S and a two-point distribution.

As an example, consider square loss and Y = Ŷ = (−B,B). For any s ∈ Ŷ , we may choose the two points as

s ±δ ∈Y , for small enough δ, with the desired property. Then S = Ŷ and ∆S(x) = x2.

Lemma 6. Fix R > 0. Suppose S 6= ; satisfies condition (12), and suppose that for any s ∈ S,

∂ℓ(s, y1(s)) =+R, ∂ℓ(s, y2(s))=−R.

Then for any S-valued tree µ of depth n,

Vn ≥ sup
x

E sup
f ∈F

[ n∑

t=1

ǫt R
(

f (xt (ǫ))−µt (ǫ)
)
−∆µt (ǫ)( f (xt (ǫ))−µt (ǫ))

]
. (14)

The lower bound in (14) is an offset Rademacher complexity that matches the upper bound of Lemma 3 up

to constants, as long as functions ∆ and ∆ exhibit the same behavior. In particular, the upper and lower bounds

match up to a constant for the case of square loss.

Our next step is to quantify the lower bound in terms of n according to “size” of F . In contrast to the more com-

mon statistical approaches based on covering numbers and Fano inequality, we turn to a notion of a combinatorial

dimension as the main tool.

Definition 4. An X -valued tree of depth d is said to be β-shattered by F if there exists an R-valued tree s of depth

d such that

∀ǫ ∈ {±1}d , ∃ f ǫ ∈F s.t. ǫt ( f ǫ(xt (ǫ))−st (ǫ)) ≥β/2

for all t ∈ {1, . . . ,d}. The tree s is called a witness. The largest d for which there exists a β-shattered X -valued tree is

called the (sequential) fat-shattering dimension, denoted by fatβ(F ).

The reader will notice that the upper bound of Lemma 5 is in terms of sequential entropies rather than combi-

natorial dimensions. The two notions, however, are closely related.
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Theorem 7 ([26]). Let F be a class of functions X → [−1,1]. For any β> 0,

N2(β,F ,n) ≤N∞(β,F ,n) ≤
(

2en

β

)fatβ(F )

.

As a consequence of the above theorem, if logN2(β,F ,n) ≥ (c/β)p and β≥ 1/n, then fatβ(F ) ≥ (c ′/β)p /log(n)

where c,c ′ may depend on the range of functions in F .

The lower bounds will now be obtained assuming fatβ(F ) ≥ β−p behavior of the fat-shattering dimension,

and the corresponding statements in terms of the sequential entropy growth will involve extra logarithmic factors,

hidden in the Ω̃(·) notation.

Lemma 8. Suppose the statement of Lemma 6 holds for some R > 0, and suppose

∆µt (ǫ)(µt (ǫ)− f (xt (ǫ))) ≤
R

2
|µt (ǫ)− f (xt (ǫ))| (15)

for any f ∈F and µ,x in the statement of Lemma 6. Then it holds that for any β> 0 and n = fatβ(F ),

Vn ≥ (R/2)nβ.

In particular, if fatβ(F ) ≥β−p for p > 0, we have

1

n
Vn ≥ (R/2)n−1/p .

As an example, consider the case of square loss with Y = [−B,B]. Then we may take S = {0}, y1 = B , y2 = −B ,

and hence R = 2B . We verify that (15) holds for Ŷ = [−B/2,B/2].

Lemma 9. Suppose the statement of Lemma 6 holds for some R > 0. For any class F
′ and β > 0, there exists a

modified class F such that for all β′ <β, fatβ′ (F ′) ≤ fatβ′ (F ) ≤ 2fatβ′ (F ′)+4 and for n > fatβ(F ),

1

n
Vn ≥ sup

β,κ





R β

2

√
fatβ(F )

2n
− ∆κ

(
β

2

)
 .

Armed with the upper bounds of Section 3 and the lower bounds of Section 4, we are ready to detail specific

minimax rates of convergence for various classes of regression functions F and a range of loss functions ℓ.

5 Minimax Rates

Combining Lemma 3 and Lemma 5, we can detail the behavior of minimax regret under an assumption about the

growth rate of sequential entropy.

Theorem 10. Let r ≥ 2, p > 0 and suppose the loss function and the function class are such that

∆(t)≥ K t r , logN∞(β,F ,n) ≤β−p log(n/β).

Then for p ∈ (0,2),

1

n
Vn ≤ min

{
cr,p n

− r
2(r−1)+p G

2r
2(r−1)+p K

− 2−p
2(r−1)+p log(n) , cF G log1/2(n)n−1/2

}
. (16)

and for p > 2

1

n
Vn ≤ cpG log1/2(n)n−1/p (17)

Here, cF depends on sup f ∈F
| f |∞. At p = 2, the bound (17) gains an extra log(n) factor.

7



We match the above upper bounds with lower bounds under the assumption on the growth of the combinato-

rial dimension.

Theorem 11. Suppose the statement of Lemma 6 holds for some R > 0 and κ ∈ S ⊆ Ŷ . Let r ≥ 2, p ∈ (0,2), and

assume

∆κ

(
β/2

)
≤ Kβr , fatβ ≥β−p .

Then there exists a function class such that for some constant cp,r > 0,

1

n
Vn ≥ cp,r min

{
n
− r

2(r−1)+p R
2r

2(r−1)+p K
− 2−p

2(r−1)+p , Rn−1/2

}
.

for p ∈ (0,2). Furthermore, for p > 2, for any F with fatβ ≥β−p ,

1

n
Vn ≥ (R/2)n−1/p

under the assumption (15).

The lower bound of Theorem 11 matches (up to polylogarithmic in n factors) the upper bound of Theorem 10

in its dependence on n, the dependence on the constant K , and in dependence on the size of the gradients G

(respectively, R). The rest of this section is devoted to the discussion of the derived upper and lower bounds for

particular loss functions or particular classes of functions.

5.1 Absolute loss

We verify that the general statements recover the correct rates for the case of ℓ(ŷ , y) = |ŷ − y |. Since the absolute

loss is not strongly convex, we take K = 0 (and ∆ ≡ 0). Theorem 10 then yields the Õ (n−1/2) rate for p ∈ (0,2)

and Õ (n−1/p ) for p > 2, up to logarithmic factors. These rates are matched, again up to logarithmic factors, in

Theorem 11. Of course, the result already follows from Theorem 2.

It is also instructive to check the case of r → ∞. In this case, if K is scaled properly by the range of function

values, the function ∆ approaches the zero function, indicating absence of strong convexity of the loss. Examin-

ing the power r
2(r−1)+p

in Theorem 10, we see that it approaches 1/2, matching the discussion of the preceding

paragraph.

5.2 Square loss

The case of square loss ℓ(ŷ , y) = (ŷ − y)2 has been studied in [22]. In view of Remark 1, we state the corollary below

in terms of ℓ2 covering numbers, thus removing some logarithmic terms of Theorem 10.

Corollary 12. For a class F with sequential entropy growth logN2(β,F ,n) ≤β−p ,

• For p > 2, the minimax regret3 is bounded as 1
n

Vn ≤Cn−1/p

• For p ∈ (0,2), the minimax regret is bounded as 1
n Vn ≤Cn−2/(2+p)

• For the parametric case (6), 1
n

Vn ≤Cdn−1 log(n)

• For finite set F , 1
n

Vn ≤Cn−1 log |F |

Corollary 13. The upper bounds of Corollary 12 are tight4:

• For p ≥ 2, for any class F of uniformly bounded functions with a lower bound of β−p on sequential entropy

growth, 1
n Vn ≥ Ω̃(n−1/p )

• For p ∈ (0,2], for any class F of uniformly bounded functions, there exists a slightly modified class F
′ with the

same sequential entropy growth such that 1
n

Vn ≥ Ω̃(n−2/(2+p))

• There exists a class F with the covering number as in (6), such that 1
n Vn ≥Ω(dn−1 log(n))

3For p = 2, 1
n Vn ≤C log(n)n−1/2 .

4The Ω̃(·) notation suppresses logarithmic factors
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5.3 q-loss for q ∈ (1,2)

Consider the case of ℓ(ŷ , y) = |y − ŷ |q , for q ∈ (1,2), which interpolates between the absolute value and square

losses.

Corollary 14. Suppose Y = Ŷ = [−1,1] and ℓ(ŷ , y) = |y − ŷ|q for q ∈ (1,2). Assume complexity of F as in Theorems

10 and 11 for some p > 0. Then
1

n
Vn =Θ

(
min

{(
q −1

)− 2−p
2+p n

− 2
2+p ,n−1/2

})

5.4 q-loss for q ≥ 2

It is easy to check that for q > 2, ℓ(·, y) = | ·−y |q is q-uniformly convex, and thus

∆(t)≥C t q

The upper bound of
1

n
Vn ≤Cn

− q
2(q−1)+p

then follows from Theorem 10.

5.5 Logistic loss

The loss function ℓ(ŷ , y) = log(1+exp{−ŷ y}) is strongly convex and smooth if the sets Y ,Ŷ are bounded. This can

be seen by computing the second derivative with respect to the first argument:

ℓ′′(ŷ , y) = y2 exp{ŷ y}

(1+exp{ŷ y})2

We conclude that
1

n
Vn = Θ̃

(
min

{
n
− 2

2+p ,n−1/2
})

Logistic loss is an example of a function with third derivative bounded by a multiple of the second derivative.

Control of the remainder term in Taylor approximation for such functions is given in [5, Lemma 1]. Other examples

of strongly convex and smooth losses are the exponential loss and truncated quadratic loss. These enjoy the same

minimax rate as given above.

5.6 Logarithmic loss

The technique developed in this paper is not universal. In particular, it does not yield correct rates for rich classes

of functions under the loss

ℓ(ŷ , y) =− log(ŷ)1
{

y = 1
}
− log(1− ŷ)1

{
y = 0

}

for the problem of probability assignment and a binary alphabet Y = {0,1}. The suboptimality of Lemma 3 is due

to the exploding Lipschitz constant. However, a modified approach is possible, and will be carried out in a separate

paper.

5.7 Sparse linear predictors and square loss

We now focus on quadratic loss and instead detail minimax rates for specific classes of functions. Consider the

following parametric class. Let G = {g1, . . . , gM } be a set of M functions such that each gi : X 7→ [−1,1]. Define F

to be the convex combination of at most s out of these M functions. That is

F =
{

s∑

j=1

α j gσ j
:σ1:s ⊂ [M],∀ j ,α j ≥ 0,

s∑

j=1

α j = 1

}

9



For this example note that the sequential covering number can be easily upper bounded: we can choose s out of M

functions in
(M

s

)
ways and observe that pointwise metric entropy for convex combination of s bounded functions

at scale β is bounded as β−s . We conclude that

N2(β,F ,n) ≤
(

eM

s

)s

β−s

From the main theorem, for the case of square loss, the upper bound is

1
n Vn ≤O

(
s log(M/s)

n

)
.

The extension to other loss functions follows immediately from the general statements.

5.8 Besov spaces and square loss

Let X be a compact subset of Rd . Let F be a ball in Besov space B s
p,q (X ). When s > d/p, pointwise metric entropy

bounds at scale β scales as Ω(β−d/s ) [31, p. 20]. On the other hand, when s < d/p, and p > 2, one can show that

the space is a p-uniformly convex Banach space. From [26], it can be shown that sequential Rademacher can be

upper bounded by O(n1−1/p ), yielding a bound on minimax rate. These two controls together give the bound on

the minimax rate. The generic forecaster with Rademacher complexity as relaxation (see Section 6), enjoys the best

of both of these rates. More specifically, we may identify the following regimes:

• If s ≥ d/2, the minimax rate is 1
n

Vn ≤O
(
n− 2s

2s+d

)
.

• If s < d/2, the minimax rate depends on the interaction of p and d , s:

– if p > d
s , the minimax rate 1

n Vn ≤O
(
n− s

d

)
, otherwise, the rate is 1

n Vn ≤O
(
n
− 1

p

)

5.9 Remarks: Experts, Mixability, and Discretization

The problem of prediction with expert advice has been central in the online learning literature [9]. One can phrase

the experts problem in our setting by taking a finite class F = { f 1, . . . , f N } of functions. It is possible to ensure sub-

linear regret by following the “advice” f It (xt ) of a randomly chosen “expert” It from an appropriate distribution

over experts. The randomized approach, however, effectively linearizes the problem and does not take advantage

of the curvature of the loss. The precise way in which the loss enters the picture has been investigated thoroughly

by Vovk [28] (see also [15]). Vovk defines a mixability curve that parametrizes achievable regret of a form slightly

different than (1). Specifically, Vovk allows a constant other than 1 in front of the infimum in the regret definition.

Such regret bounds are called “inexact oracle inequalities” in statistics. Audibert [2] shows that the mixability con-

dition on the loss function leads to a variance-type bound in his general PAC-based formulation, yet the analysis

is restricted to the case of finite experts. While it is possible to repeat the analysis in the present paper with a con-

stant other than 1 in front of the comparator, this goes beyond the scope of the paper. Importantly, our techniques

go beyond the finite case and can give correct regret bounds even if discretization to a finite set of experts yields

vacuous bounds.

Let us emphasize the above point again by comparing the upper bound of Lemma 5 to the bound we may

obtain via a metric entropy approach, as in the work of [31]. Assume that F is a compact subset of C (X ) equipped

with supremum norm. The metric entropy, denoted by H (ǫ,F ), is the logarithm of the smallest ǫ-net with respect

to the sup norm on X . An aggregating procedure over the elements of the net gives an upper bound (omitting

constants and logarithmic factors)

nǫ+H (ǫ,F ) (18)

on regret (1). Here, nǫ is the amount we lose from restricting the attention to the ǫ-net, and the second term ap-

pears from aggregation over a finite set. The balance (18) fails to capture the optimal behavior for large nonpara-

metric sets of functions. Indeed, for an O(ǫ−p ) behavior of metric entropy, Vovk concludes the rate of O
(
n

p
p+1

)
. For
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p ≤ 2, this is slower than the O
(
n

p
p+2

)
rate one obtains from Lemma 5 by trivially upper bounding the sequential

entropy by metric entropy. The gain is due to the chaining technique, a phenomenon well-known in statistical

learning theory. Our contribution is to introduce the same concepts to the domain of online learning.

6 Relaxations and Algorithms

To design generic forecasters for the problem of online non-parametric regression we follow the recipe provided

in [19]. It was shown in that paper that if one can find a relaxation Reln (a sequence of mappings from observed

data to reals) that satisfies certain conditions, then one can define prediction strategies based on such relaxations.

Specifically, we look for relaxations that satisfy the initial condition

Reln

(
x1:n , y1:n

)
≥− inf

f ∈F

n∑

t=1

ℓ( f (xt ), yt )

and the recursive admissibility condition that requires

inf
ŷt

sup
yt

{
ℓ(ŷt , yt )+Reln

(
x1:t , y1:t

)}
≤ Reln

(
x1:t−1, y1:t−1

)
(19)

for any t ∈ [n] and any xt ∈ X . A relaxation Reln satisfying these two conditions is said to be admissible, and it

leads to an algorithm

ŷt = argmin
ŷ∈Ŷ

sup
yt∈Y

{
ℓ(ŷ , yt )+Reln

(
x1:t , y1:t

)}
. (20)

For this forecast the associated bound on regret is

Regn :=
n∑

t=1

ℓ(ŷt , yt )− inf
f ∈F

n∑

t=1

ℓ( f (xt ), yt ) ≤ Reln (;) (21)

(see [19] for details). We now claim that the following conditional version of (8) gives an admissible relaxation and

leads to a method that enjoys the regret bounds shown in the first part of the paper.

Lemma 15. The following relaxation is admissible:

Rn(x1:t , y1:t ) = sup
x,µ

Eǫ sup
f ∈F

[
n∑

j=t+1

2Gǫ j ( f (x j (ǫ))−µj (ǫ))−∆

(
f (x j (ǫ))−µ j (ǫ)

)
−

t∑

j=1

ℓ( f (x j ), y j )

]
.

The algorithm (20) with this relaxation enjoys the regret bound of offset Rademacher complexity

Regn ≤ sup
x,µ

Eǫ sup
f ∈F

[ n∑

t=1

2Gǫt ( f (xt (ǫ))−µt (ǫ))−∆

(
f (xt (ǫ))−µt (ǫ)

)]
.

The proof of Lemma 15 follows closely the proof of Lemma 3 and we omit it (see [19, 20]). Since the regret

bound for the above forecaster is exactly the one given in (8), the upper bounds in Corollary 12 hold for the above

algorithm. Therefore, the algorithm based on Rn(x1:t , y1:t ) is optimal up to the tightness of the upper and lower

bounds in Section 4 and Section 3.

For the rest of this section, we restrict our attention to the case when Y = Ŷ = [−B,B]. We further assume that

ℓ(ŷ , yt )+Reln

(
x1:t , (y1:t−1, yt )

)
is a convex function of yt . In this case, the prediction ŷt takes a simple form, as the

supremum over yt is attained either at B or −B . More precisely, the prediction can be written as

ŷt = argmin
ŷ∈[−B ,B ]

max
{
ℓ(ŷ ,B)+Reln

(
x1:t , (y1:t−1,B)

)
,ℓ(ŷ ,−B)+Reln

(
x1:t , (y1:t−1,−B)

)}
. (22)
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6.1 Recipe for designing online regression algorithms for general loss functions

We now provide a schema for deriving forecasters for general online non-parametric regression:

1. Find relaxation Reln s.t. Rn

(
x1:t , y1:t

)
≤ Reln

(
x1:t , y1:t

)
, and ℓ(ŷ , yt )+Reln

(
x1:t , y1:t−1, yt

)
is convex in yt .

2. Check the condition

sup
xt∈X ,pt ∈∆([−B ,B ])

{
inf
ŷt

Eyt∼pt

[
ℓ

(
ŷt , yt

)]
+Eyt∼pt

[
Reln

(
x1:t , y1:t

)]
}
≤ Reln

(
x1:t−1 , y1:t−1

)

3. Given xt , the prediction ŷt is given by

ŷt = argmin
ŷ∈[−B ,B ]

max
{
ℓ(ŷ ,B)+Reln

(
x1:t , (y1:t−1,B)

)
,ℓ(ŷ ,−B)+Reln

(
x1:t , (y1:t−1,−B)

)}

Proposition 16. For any algorithm derived from the above schema, Regn ≤ Reln (;).

The proof of this Proposition follows very closely the proof in [19] (see also [20]), and we omit it.

6.1.1 Square Loss

To provide concrete examples of how the recipe can be used to derive algorithms, we now consider the square

loss setting, ℓ(ŷ , y) = (ŷ − y)2. In this case, we observe that in (22), the first term in the maximum decreases as ŷ

increases to B and likewise the second term monotonically decreases as ŷ decreases to −B . Hence, the solution to

(22) is given when both terms are equal (if this does not happen within the range [−B,B] then we clip the prediction

to this range). In other words, for the case of square loss, if we have an admissible relaxation, then the prediction

based on this relaxation is simply given by:

ŷt = Clip

(
Reln

(
x1:t , (y1:t−1,B)

)
−Reln

(
x1:t , (y1:t−1,−B)

)

4B

)

where Clip(z) = B1 {z > B}+ (−B)1 {z <−B}+ z1 {z ∈ [−B,B]}. Hence, for any admissible relaxation such that (ŷ −
yt )2 + Reln

(
x1:t , (y1:t−1, yt )

)
is a convex function of yt , the above prediction based on the relaxation enjoys the

bound on regret Reln . Based on the above observations and the recipe outline, we now provide two examples of F

for which algorithms are derived.

Example : Finite class of experts

As an example of estimator derived from the schema for the square loss learning setting, we first consider the

simple case |F | <∞.

Corollary 17. The following is an admissible relaxation:

Reln

(
x1:t , y1:t

)
= B2 log

(
∑

f ∈F

exp

(
−B−2

t∑

j=1

( f (x j )− y j )2

))
.

It leads to the algorithm

ŷt = Clip

(
B

4
log

(∑
f ∈F exp

(
−B−2 ∑t−1

j=1
( f (x j )−y j )2−B−2( f (xt )−B )2

)

∑
f ∈F exp

(
−B−2

∑t−1
j=1

( f (x j )−y j )2−B−2( f (xt )+B )2
)

))

which enjoys a regret bound Regn ≤ B2 log |F | .
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Example : Linear regression

Next, consider the problem of online linear regression in R
d . Here F is the class of linear functions. For this

problem we consider a slightly modified notion of regret,

n∑

t=1

(ŷt − yt )2 − inf
f ∈F

{ n∑

t=1

( f ⊤xt − yt )2 +λ
∥∥ f

∥∥2
2

}
.

This regret can be seen alternatively as regret if we assume that on rounds −d + 1 to 0 Nature plays (λe1,0),. . . ,

(λed ,0), where {ei } are the standard basis vectors, and that on these rounds the learner (knowing this) predicts 0,

thus incurring zero loss over these initial rounds. We can readily apply the schema for designing an algorithm for

this problem.

Corollary 18. For any λ> 0, the following is an admissible relaxation:

Reln
(
x1:t , y1:t

)
=

∥∥∥∥∥
t∑

j=1

y j z j

∥∥∥∥∥

2

(∑t
j=1

z j z⊤
j
+λI

)−1
+4B2 log




(
n
d

)d

∆

(∑t
j=1

z j z⊤
j
+λI

)


−

t∑

j=1

y2
j .

It leads to the Vovk-Azoury-Warmuth forecaster [29, 4]

ŷt = Clip

(
x⊤

t

(
t∑

j=1

x j x⊤
j +λI

)−1 (
t−1∑

j=1

y j x j

))

and enjoys the regret bound

1

n

n∑

t=1

(ŷt − yt )2 ≤
1

n

n∑

t=1

( f ⊤xt − yt )2 +
λ

2n

∥∥ f
∥∥2

2 +
4dB2 log

(
n
λd

)

n
.

The proofs of Corollaries 17 and 18 already appeared in [23], and we omit them here.

7 Discussion and Related Work

In the past twenty years, progress in online regression for arbitrary sequences, starting with the paper of [10], has

been almost exclusively on finite-dimensional linear regression (an incomplete list includes [29, 15, 17, 30, 6, 3,

4, 16, 11]). This is to be contrasted with Statistics, where regression has been studied for rich (nonparametric)

classes of functions. Important exceptions to this limitation in the online regression framework – and works that

partly motivated the present findings – are the papers of [33, 31, 32]. Vovk considers regression with large classes,

such as subsets of a Besov or Sobolev space, and remarks that there appears to be two distinct approaches to

obtaining the upper bounds in online competitive regression. The first approach, which Vovk terms Defensive

Forecasting, exploits uniform convexity of the space, while the second – an aggregating technique (such as the

Exponential Weights Algorithm) – is based on the metric entropy of the space. Interestingly, the two seemingly

different approaches yield distinct upper bounds, based on the respective properties of the space. In particular,

Vovk asks whether there is a unified view of these techniques. The present paper addresses these questions and

establishes optimal performance for online regression.

Since most work in online learning is algorithmic, the boundaries of what can be proved are defined by the

regret minimization algorithms one can find. One of the main algorithmic workhorses is the aggregating procedure

(or, the Exponential Weights Algorithm). However, the difficulty in using an aggregating procedure beyond simple

parametric classes (e.g. subsets of Rd ) lies in the need for a “pointwise” cover of the set of functions – that is, a

data-independent cover in the supremum norm on the underlying space of covariates. The same difficulty arises

when one uses PAC-Bayesian bounds [2] that, at the end of the day, require a volumetric argument. Notably, this

difficulty has been overcome in statistical learning, where it has long been recognized (since the work of Vapnik and

Chervonenkis) that it is sufficient to consider an empirical cover of the class – a potentially much smaller quantity.

Such an empirical entropy is necessarily finite, and its growth with n is one of the key complexity measures for

13



i.i.d. learning. In particular, the recent work of [27] shows that the behavior of empirical entropy characterizes the

optimal rates for i.i.d. learning with square loss. To mimic this development, it appears that we need to understand

empirical covering numbers in the sequential prediction framework.

A hint as to how to modify the analysis of [24] for “curved” losses appears in the paper of [8] where the authors

derived rates for log-loss via a two-level procedure: the set of densities is first partitioned into small balls of a

critical radius γ; a minimax algorithm is employed on each of these small balls; and an overarching aggregating

procedure combines these algorithms. Regret within each small ball is upper bounded by classical Dudley entropy

integral (with respect to a pointwise metric) defined up to the γ radius. The main technical difficulty in this paper

is to prove a similar statement using “empirical” sequential covering numbers.

Interestingly, our results imply the same phase transition as the one exhibited in [26] for i.i.d. learning with

square loss. More precisely, under the assumption of the O(β−p ) behavior of sequential entropy, the minimax

regret normalized by time horizon n decays as n
− 2

2+p if p ∈ (0,2], and as n−1/p for p ≥ 2. We prove lower bounds

that match up to a logarithmic factor, establishing that the phase transition is real. Even more surprisingly, it

follows that, under a mild assumption that sequential Rademacher complexity of F behaves similarly to its i.i.d.

cousin, the rates of minimax regret in online regression with arbitrary sequences match, up to a logarithmic factor,

those in the i.i.d. setting of Statistical Learning. This phenomenon has been noticed for some parametric classes

by various authors (e.g. [7]). The phenomenon is even more striking given the simple fact that one may convert

the regret statement, that holds for all sequences, into an i.i.d. guarantee. Thus, in particular, we recover the

result of [27] through completely different techniques. Since in many situations, one obtains optimal rates for

i.i.d. learning from a regret statement, the relaxation framework of [19] provides a toolkit for developing improper

learning algorithms in the i.i.d. scenario.

A Proofs

Proof of Lemma 3. Denoting the set of distributions on Y by P , minimax regret can be written as

Vn =⟪sup
xt

inf
qt

sup
pt∈P

E
ŷt∼qt
yt ∼pt

⟫n

t=1

{
n∑

t=1

ℓ(ŷt , yt )− inf
f ∈F

n∑

t=1

ℓ( f (xt ), yt )

}
(23)

=⟪sup
xt

sup
pt∈P

Eyt⟫
n

t=1

{
n∑

t=1

inf
ŷt

Eyt

[
ℓ(ŷt , yt )

]
− inf

f ∈F

n∑

t=1

ℓ( f (xt ), yt )

}

=⟪sup
xt

sup
pt∈P

Eyt⟫
n

t=1

[
sup
f ∈F

{
n∑

t=1

inf
ŷt

{
Eyt

[
ℓ(ŷt , yt )

]}
−

n∑

t=1

ℓ( f (xt ), yt )

}]

where the first equality is by definition, the second follows from an argument of [1, 24], and the third is a simple

rearrangement. Taking ŷ∗
t = argmin

ŷ∈Ŷ

Ey∼pt

[
ℓ(ŷ , y)

]
, we write the above as

⟪sup
xt

sup
pt∈P

Eyt⟫
n

t=1

[
sup
f ∈F

{ n∑

t=1

Eyt

[
ℓ(ŷ∗

t , yt )
]
−

n∑

t=1

ℓ( f (xt ), yt )

}]
(24)

=⟪sup
xt

sup
pt∈P

Eyt⟫
n

t=1

[
sup
f ∈F

{ n∑

t=1

ℓ(ŷ∗
t , yt )−ℓ( f (xt ), yt )

}]
(25)

The last step holds true by observing that the terms ℓ(ŷ∗
t , yt ) do not depend on f and can therefore be moved

outside the supremum over f ∈F . The equality then follows by the linearity of expectation. By definition of ∆ in

(2),

Vn ≤⟪sup
xt

sup
pt ∈P

Eyt⟫
n

t=1

[
sup
f ∈F

{ n∑

t=1

∂ℓ(ŷ∗
t , yt ) ·

(
ŷ∗

t − f (xt )
)
−∆(ŷ∗

t − f (xt ))

}]
(26)

14



By definition of ŷ∗
t , we have, Eyt∼pt

[
∂ℓ(ŷ∗

t , yt )
]
= ∂Eyt∼pt

[
ℓ(ŷ∗

t , yt )
]
= 0 by the assumption that the minimum is

attained in Ŷ (see Section 2.1). Thus we can view
(
∂ℓ(ŷ∗

t , yt )
)T

t=1 as a martingale difference sequence. Hence,

Vn ≤⟪sup
xt

sup
pt∈P

Eyt⟫
n

t=1

[
sup
f ∈F

{ n∑

t=1

(
∂ℓ(ŷ∗

t , yt )−Ey ′
t∼pt

[
∂ℓ(ŷ∗

t , y ′
t )

])
·
(
ŷ∗

t − f (xt )
)
−∆(ŷ∗

t − f (xt ))

}]
.

By Jensen’s inequality the above is upper bounded by

⟪sup
xt

sup
pt ∈P

Eyt ,y ′
t∼pt

Eǫt⟫
n

t=1

[
sup
f ∈F

{ n∑

t=1

ǫt

(
∂ℓ(ŷ∗

t , yt )−∂ℓ(ŷ∗
t , y ′

t )
)
·
(
ŷ∗

t − f (xt )
)
−∆(ŷ∗

t − f (xt ))

}]

where we introduced Rademacher random variables. The next step involves splitting the upper bound into two

equal terms, one for the yt sequence and the other for the y ′
t sequence:

Vn ≤⟪sup
xt

sup
pt ∈P

Eyt∼pt Eǫt⟫
n

t=1

[
sup
f ∈F

{ n∑

t=1

2ǫt∂ℓ(ŷ∗
t , yt ) ·

(
ŷ∗

t − f (xt )
)
−∆(ŷ∗

t − f (xt ))

}]

Using Jensen’s inequality once again leads to an upper bound of

⟪sup
xt

sup
pt ∈P

Eyt∼pt Eǫt⟫
n

t=1

[
sup
f ∈F

{ n∑

t=1

2ǫt∂ℓ(ŷ∗
t , yt ) ·

(
ŷ∗

t − f (xt )
)
−∆(ŷ∗

t − f (xt ))

}]

Now, observe that y∗
t is a function of pt and ∂ℓ(ŷ∗

t , yt ) is a function of yt and pt . Hence, we may pass to a further

upper bound by inserting supηt ,µt
, and by replacing each subgradient with the respective ηt and each ŷ∗

t with µt :

⟪sup
xt

sup
pt∈P

Eyt∼pt sup
ηt∈[−G ,G]

sup
µt

Eǫt⟫
n

t=1

[
sup
f ∈F

{ n∑

t=1

2ǫtηt ·
(
µt − f (xt )

)
−∆(µt − f (xt ))

}]

=⟪ sup
xt∈X

sup
ηt∈[−G ,G]

sup
µt

Eǫt⟫
n

t=1

[
sup
f ∈F

{ n∑

t=1

2ǫtηt ·
(
µt − f (xt )

)
−∆(µt − f (xt ))

}]

Since each ηt range over [−G,G], we can represent it as G times the expectation of a random variable ut ∈ {−1,1}.

Denoting this distribution by qt , by Jensen’s inequality

Vn ≤⟪ sup
xt ,µt ,qt

Eǫt
⟫n

t=1

{
sup
f ∈F

[ n∑

t=1

2GǫtE(ut )(µt − f (xt ))−∆(µt − f (xt ))

]}

≤⟪ sup
xt ,µt ,qt

Eut
Eǫt
⟫n

t=1

{
sup
f ∈F

[ n∑

t=1

2Gǫt ut ( f (xt )−µt )−∆(µt − f (xt ))

]}

=⟪sup
xt ,µt

max
ut∈{−1,1}

Eǫt
⟫n

t=1

{
sup
f ∈F

[ n∑

t=1

2Gǫt ut ( f (xt )−µt )−∆(µt − f (xt ))

]}

Since for any fixed ut ∈ {+1,−1}, the distribution of ǫt ut is the same as that of ǫt , the above expression is simply

⟪sup
xt ,µt

Eǫt
⟫n

t=1

{
sup
f ∈F

[ n∑

t=1

2Gǫt ( f (xt )−µt )−∆(µt − f (xt ))

]}

= sup
x,µ

Eǫ

[
sup
f ∈F

{ n∑

t=1

2Gǫt

(
f (xt (ǫ)−µt (ǫ))

)
−∆

(
µt (ǫ)− f (xt (ǫ))

)}
]

which is the same as the desired upper bound in (8), in the tree notation.
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Proof of Lemma 4. It holds that

Eǫ

[
max
w∈W

{ n∑

t=1

2Cǫt wt (ǫ)−∆(wt (ǫ))

}]

= Eǫ

[
inf
λ>0

1

λ
log

(
∑

w∈W

exp

(
λ

( n∑

t=1

2Cǫt wt (ǫ)−∆(wt (ǫ))

)))]

which, by Jensen’s inequality, is upper bounded by

inf
λ>0

{
1

λ
log

(
∑

w∈W

Eǫ

[
exp

(
λ

( n∑

t=1

2Cǫt wt (ǫ)−∆(wt (ǫ))

))])}

= inf
λ>0

{
1

λ
log

(
∑

w∈W

Eǫ

[ n∏

t=1

exp(λ(2Cǫt wt (ǫ)−∆(wt (ǫ))))

])}

Since ex +e−x ≤ 2ex2/2, we have that

Eǫn

[
exp(λ(2Cǫn wn(ǫ)−∆(wn(ǫ))))

]
≤ exp

(
2C 2λ2wn (ǫ)2 −λ∆(wn (ǫ))

)

= exp
(
2C 2λ2wn (ǫ)2 −λΓ

(
wn (ǫ)2

))

By definition of conjugacy, we pass to a further upper bound of

exp
(
λΓ∗ (

2C 2λ
))
≤ exp

(
λΓ∗ (

2C 2λ
))

where the last step is because Γ
∗ is non-decreasing. Hence we have that

1

λ
log

(
Eǫ1:n

[ n∏

t=1

exp(λ(2Cǫt wt (ǫ)−∆(wt (ǫ))))

])

≤
1

λ
log

(
Eǫ1:n−1

[
n−1∏

t=1

exp(λ(2Cǫt wt (ǫ)−∆(wt (ǫ))))

])
+Γ

∗ (
2C 2λ

)

Proceeding in similar fashion from n−1 down to 1, we arrive at an upper bound of

1

λ
log |W |+nΓ∗ (

2C 2λ
)

This proves the first claim. The second statement (which already appears in [24]) is proved similarly, except the

tuning value λ is chosen at the end, and we need to account for the worst-case ℓ2 norm along any paths. We

provide the proof here for completeness. For any tree w ∈W ,

E

[
exp

{ n∑

t=1

λǫt wt (ǫ)

} ∣∣∣∣ ǫ1:n−1

]
≤ exp

{
n−1∑

t=1

λǫt wt (ǫ)

}
exp

{
λ2wn (ǫ)2/2

}

≤ exp

{
n−1∑

t=1

λǫt wt (ǫ)

}
max
ǫn

exp
{
λ2wn(ǫ)2/2

}

Continuing in this fashion backwards to t = 1, for any w ∈W

E

[
exp

{ n∑

t=1

λǫt wt (ǫ)

}]
≤ max

ǫ1,...,ǫn
exp

{
(λ2/2)

n∑

t=1

wn(ǫ)2

}

and thus

E

[
∑

w∈W

exp

{ n∑

t=1

λǫt wt (ǫ)

}]
≤ |W | max

ǫ1 ,...,ǫn
max
w∈W

exp

{
(λ2/2)

n∑

t=1

wn(ǫ)2

}
.
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Choosing

λ=
√

2log |W |
maxǫ1:n ,w∈W

∑n
t=1 wn(ǫ)2

we obtain

Emax
w∈W

[ n∑

t=1

ǫt wt (ǫ)

]
≤

1

λ
logE

[
∑

w∈W

exp

{ n∑

t=1

λǫt wt (ǫ)

}]

≤

√
2log |W | · max

w∈W ,ǫ1:n

n∑

t=1

wn (ǫ)2

Proof of Lemma 5. Fix γ> 0. Let V ′ be a sequential γ/2-cover of G on z in the ℓ∞ sense, i.e.

∀ǫ, ∀g ∈G , ∃v′ ∈V ′ s.t. max
t∈[n]

∣∣g (zt (ǫ))−v′t (ǫ)
∣∣≤ γ/2

We now modify V ′ to construct a γ-cover of G on z, which we shall denote by V . The γ-cover is built as follows. For

every v′ ∈V ′ we include v in V as defined by a soft-thresholding operation:

∀ǫ ∈ {±1}n ,∀t ∈ [n], vt (ǫ) =
{

0 if |v′t (ǫ)| ≤ γ/2

sign(v′t (ǫ))
(
|v′t (ǫ)|−γ/2

)
otherwise

Since we change each v′ ∈V ′ only by γ/2 on each coordinate, V is indeed a γ-cover in the ℓ∞ sense. Also note that

by the way we constructed V from V ′, we also have that for every ǫ and any g ∈ G , there exists a v ∈ V that is γ-

close in the ℓ∞ sense and for this v, |g (zt (ǫ))| ≥ |vt (ǫ)| for every t . Hence, ∆(g (zt (ǫ))) ≥∆(vt (ǫ)) by the assumption

that ∆ is nondecreasing on R≥0 and non-increasing on R≤0. Denote such a γ-close tree v by v[ǫ, g ] to make the

dependence on g ,ǫ explicit. Since, for all ǫ and all t , ∆(g (zt (ǫ))) ≥∆(v[ǫ, g ]t (ǫ)) we have,

Esup
g∈G

[ n∑

t=1

2Cǫt g (zt (ǫ))−∆
(
g (zt (ǫ))

)]
(27)

= Esup
g∈G

[ n∑

t=1

2Cǫt

(
g (zt (ǫ))−v[ǫ, g ]t (ǫ)

)
+2Cǫt v[ǫ, g ]t (ǫ)−∆(g (zt (ǫ)))

]

≤ Esup
g∈G

[ n∑

t=1

2Cǫt

(
g (zt (ǫ))−v[ǫ, g ]t (ǫ)

)
+2Cǫt v[ǫ, g ]t (ǫ)−∆(v[ǫ, g ]t (ǫ))

]

Since v[ǫ, g ] ranges over V , the last expression is upper bounded by

Esup
g∈G

[ n∑

t=1

2Cǫt

(
g (zt (ǫ))−v[ǫ, g ]t (ǫ)

)]
+Emax

v∈V

[ n∑

t=1

2Cǫt vt (ǫ)−∆(vt (ǫ))

]
(28)

Now let v[ǫ, g ] be denoted by v0[ǫ, g ] and V be denoted by V 0. Let β j = 2− jγ and let V j denote a sequential β j -

cover of G on the tree z, for j = 1, . . . , N , N ≥ 1 to be specified later. We can now write the first term in (28) as the

constant C times

Esup
g∈G

[
n∑

t=1

2ǫt

(
g (zt (ǫ))−vN [ǫ, g ]t (ǫ)

)
+

n∑

t=1

N∑

j=1

2ǫt

(
v j [ǫ, g ]t (ǫ)−v j−1[ǫ, g ]t (ǫ)

)]

≤ Esup
g∈G

[ n∑

t=1

2ǫt

(
g (zt (ǫ))−vN [ǫ, g ]t (ǫ)

)]
+

N∑

j=1

Esup
g∈G

[ n∑

t=1

2ǫt

(
v j [ǫ, g ]t (ǫ)−v j−1[ǫ, g ]t (ǫ)

)]

Observe that |g (zt (ǫ))−vN [ǫ, g ]t (ǫ)| ≤ 2βN , and hence the first term above is upper-bounded by 4βN n.
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We now upper bound the second term. Fix ρ ∈ (0,γ) and choose N = max{ j : β j > 2ρ}. Then βN+1 ≤ 2ρ and

βN ≤ 4ρ. Further, βN+1 >α. Then second term is upper bounded via Lemma 4 by

N∑

j=1

3β j

√
2n log(|V j | |V j−1|) ≤ 12

p
n

∫γ

ρ

√
logN∞(δ,G ,z)dδ

and, finally, the second term in (28) is upper bounded via Lemma 4 by

inf
λ>0

{
1

λ
logN∞

(γ
2

,G ,z
)
+n Γ

∗ (
2C 2λ

)}

Combining the results,

Esup
g∈G

[ n∑

t=1

2Cǫt g (zt (ǫ))−∆
(
g (zt (ǫ))

)]

≤C inf
ρ∈(0,γ)

{
4ρn+12

p
n

∫γ

ρ

√
logN∞(δ,G ,z)dδ

}
+ inf

λ>0

{
1

λ
logN∞

(γ
2

,G ,z
)
+n Γ

∗ (
2C 2λ

)}

Since γ was chosen arbitrarily, the result follows.

Proof of Lemma 6. Recall that by definition,

ℓ(y∗, yt )−ℓ( f (xt ), yt ) = ∂ℓ(y∗, yt ) ·
(
y∗− f (xt )

)
−∆

yt

y∗, f (xt ).

From Eq. (24) in the proof of Lemma 3,

Vn =⟪sup
xt

sup
pt∈P

Eyt⟫
n

t=1

[
sup
f ∈F

{ n∑

t=1

ℓ(ŷ∗
t , yt )−ℓ( f (xt ), yt )

}]

=⟪sup
xt

sup
pt∈P

Eyt⟫
n

t=1

[
sup
f ∈F

{ n∑

t=1

∂ℓ(ŷ∗
t , yt ) ·

(
ŷ∗

t − f (xt )
)
−∆

yt

y∗
t , f (xt )

}]

The above inequality holds true if ŷ∗
t ensures Ey∼pt

[
∂ℓ(ŷ∗

t , y)
]
= 0. Let us now pass to a lower bound by restricting

the set of possible optima ŷ∗
t to be in S and the set of associated distributions to be two-point uniform distributions

on the corresponding y1(ŷ∗
t ), y2(ŷ∗

t ). Recall that by definition

∆S( f (xt )− s) ≥ max
{
∆

y1

s, f (xt ),∆
y2

s, f (xt )

}

The lower bound is then

Vn ≥ R⟪sup
xt

sup
st∈S

Eǫt⟫
n

t=1

[
sup
f ∈F

{ n∑

t=1

ǫt ·
(
st − f (xt )

)
−

1

R
∆S( f (xt )− st )

}]

≥ R sup
x

Eǫ

[
sup
f ∈F

{ n∑

t=1

ǫt ·
(

f (xt (ǫ)−µt (ǫ))
)
−

1

R
∆µt (ǫ)( f (xt (ǫ))−µt (ǫ))

}]

for any S-valued tree µ.

Proof of Lemma 8. Fix a β> 0, and set n = fatβ(F ). Suppose x is an X -valued tree of depth n that is β-shattered

by F :

∀ǫ,∃ f ǫ ∈F s.t. ǫt ( f ǫ(xt (ǫ))−µt (ǫ)) ≥β/2
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where µ is the witness to shattering. Then from (14) with the particular choices of x and µ described above,

Vn ≥ E sup
f ∈F

[ n∑

t=1

Rǫt ( f (xt (ǫ))−µt (ǫ))−∆µt (ǫ)( f (xt (ǫ))−µt (ǫ))

]
(29)

≥ E sup
f ∈F

[ n∑

t=1

Rǫt ( f (xt (ǫ))−µt (ǫ))−
R

2
| f (xt (ǫ))−µt (ǫ)|

]
(30)

≥ E

[ n∑

t=1

Rǫt ( f ǫ(xt (ǫ))−µt (ǫ))−
R

2
| f ǫ(xt (ǫ))−µt (ǫ)|

]
(31)

Using the definition of shattering, we can further lower bound the above quantity by

E

[ n∑

t=1

R

2
| f ǫ(xt (ǫ))−µt (ǫ)|

]
≥

Rnβ

2
.

Now, suppose fatβ(F ) = 1/βp , p > 0. Then n = fatβ(F ) implies β= n−1/p . The result follows.

Proof of Lemma 9. Assume that d = fatβ(F ′) ≤ n. Let z be an X -valued tree of depth d that is β-shattered by F
′

with a witness tree s. Observe that the functions f ǫ that guarantee

∀t ∈ [n], ǫt ( f ǫ(zt (ǫ))−st (ǫ)) ≥β/2 (32)

do not necessarily take on values close to the st (ǫ)±β/2 interval. We augment F
′ with 2d functions g ǫ that take on

the same values as f ǫ, except on points on the z tree where, for some choice κ, we have,

g ǫ(zt (ǫ)) = ǫtβ/2+κ .

Let F be the resulting class of functions, and G =F \F
′. We now argue that fatβ(F ) cannot be more than 2d +4,

as we have only added at most 2d functions to F
′. Suppose for the sake of contradiction that there exists a tree

z of depth at least 2d +5 shattered by F . There must exist 22d+5 functions that shatter z and only at most 2d of

them can be from G . Let us label the leaves of z with the functions that shatter the corresponding path from the

root; these functions are clearly distinct. Order the leaves of the tree in any way, and observe that there must exist

a pair of functions from G with indices differing by at least 2d+4. It is easy to see that such two leaves can only

have a common parent at d +3 levels from the leaves, and this yields a complete binary subtree of size d +1 that is

shattered by functions in F
′, a contradiction.

We will now use the function class F to prove a lower bound. Recall that z is an X -valued tree of depth fatβ that

is β-shattered by G ⊆F , with a witness tree having the constant κ at every node. We will now show a construction

of particular trees of depth

n′ =
⌈

n

fatβ

⌉
fatβ (33)

using the tree z. Define k = ⌈ n
fatβ

⌉ = n′

fatβ
≥ 1 and consider the X -valued tree x and the R-valued tree µ of depth n′

constructed as follows. For any path ǫ ∈ {±1}n′
and any t ∈ [n′], set

xt (ǫ) = z⌈ t
k
⌉ (ǫ̃) , µt (ǫ) =κ

where ǫ̃ ∈ {±1}fatβ is the sequence of signs specified as

ǫ̃=


sign

(
k∑

j=1

ǫ j

)
,sign

(
2k∑

j=k+1

ǫ j

)
, . . . ,sign




k fatβ∑

j=k
(
fatβ−1

)ǫ j




 .

19



We now lower bound (14) by choosing the particular x,µ defined above:

Vn′ ≥ R E sup
f ∈F

[
n′∑

t=1

ǫt ( f (xt (ǫ))−κ)−
1

R
∆κ( f (xt (ǫ))−κ)

]

= R E sup
f ∈F

[
n′∑

t=1

ǫt ( f (z⌈ t
k
⌉(ǫ̃))−κ)−

1

R
∆κ( f (z⌈ t

k
⌉(ǫ̃))−κ)

]
.

Splitting the sum over t into fatβ blocks, the above expression is equal to

R E sup
f ∈F

[
fatβ∑

i=1

i ·k∑

j=(i−1)k+1

ǫ j ( f (zi (ǫ̃))−κ)−
1

R
∆κ( f (zi (ǫ̃))−κ)

]

= R E sup
f ∈F

[
fatβ∑

i=1

( f (zi (ǫ̃))−κ)

(
i ·k∑

j=(i−1)k+1

ǫ j

)
−

k

R
∆κ( f (zi (ǫ̃))−κ)

]

= R E sup
f ∈F

[
fatβ∑

i=1

ǫ̃i ( f (zi (ǫ̃))−κ)

∣∣∣∣∣
i ·k∑

j=(i−1)k+1

ǫ j

∣∣∣∣∣−
k

R
∆κ( f (zi (ǫ̃))−κ)

]

where the last step follows by the definition of ǫ̃. Recall that z is shattered by the subset G and that the functions in

G stay close to the witness tree s. We obtain a lower bound

R Esup
g∈G

[
fatβ∑

i=1

ǫ̃i (g (zi (ǫ̃))−κ)

∣∣∣∣∣
i ·k∑

j=(i−1)k+1

ǫ j

∣∣∣∣∣−
k

R
∆κ(g (zi (ǫ̃))−κ)

]
≥ R E

fatβ∑

i=1

(
β

2

∣∣∣∣∣
i ·k∑

j=(i−1)k+1

ǫ j

∣∣∣∣∣−
k

R
∆κ

(
β

2

))

≥ R fatβ(F )


β

2

√
k

2
−

k

R
∆κ

(
β

2

)


where we used Khinchine’s inequality in the last step. By the definition of k,

fatβ(F )
β

2

√
k

2
= fatβ(F )

β

2

√
n′

2fatβ(F )
=

1

2
p

2
β
√

n′fatβ(F )

and fatβ(F )k = n′ and so we conclude that,

Vn′ ≥
R β

2

√
n′fatβ(F )

2
−n′

∆κ

(
β

2

)

Since we are free to choose κ and β,

Vn′ ≥ sup
β,κ





R β

2

√
n′fatβ(F )

2
−n′

∆κ

(
β

2

)
 (34)

Examining (23), we see that Vn is nondecreasing with n. To see this, let n′ > n. For t ∈ {n+1, . . . ,n′}, we may choose

pt in (23) as a delta distribution on f ∗(xt ), for any sequence of xt , where f ∗ is an optimal function over steps

{1, . . . ,n}. Clearly, Vn′ ≥Vn . In view of (33) and the above discussion, Vn′ ≤V2n−1, and thus

V2n ≥V2n−1 ≥Vn′ .
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Proof of Theorem 10. We have ∆(t) = K t r for r ≥ 2. It will suffice to take the conjugate of t 7→ K t r /2 over all of R. A

straightforward calculation shows that

Γ
∗(s) ≤

K

2
(r −2)

(
2s

K r

) r
r−2

≤
r −2

2e

s
r

r−2

K
2

r−2

Combining Lemma 3 and Lemma 5, the minimax value Vn is upper bounded by

inf
γ>0

{
G inf

ρ∈(0,γ)

{
4ρn+12

p
n

∫γ

ρ

√
logN∞(δ,F ,n)dδ

}
+ inf

λ>0

{
1

λ
logN∞

(γ
2

,F ,n
)
+n Γ

∗ (
2λG2

)}
}

(35)

Consider the case p ∈ (0,2). By the assumption on the growth of the covering numbers, and taking ρ = 1/n,

∫γ

ρ

√
logN∞(δ,F ,n)dδ≤

∫γ

ρ
δ−p/2

√
log(n/δ)dδ≤

c
√

logn

2−p
γ1−p/2

Then (35) is upper bounded by

inf
γ>0

{
4G +G

p
n

c
√

logn

2−p
γ1−p/2 + inf

λ>0

{
1

λ
γ−p log(n/γ)+n Γ

∗ (
2λG2

)}
}

We take γ≥ n−c and divide through by log n:

Vn

n log n
≤

4G

n
+ inf

γ≥n−c

{
cpGn−1/2γ1−p/2 + inf

λ>0

{
1

nλ
γ−p +Γ

∗ (
2λG2

)}}

where cp is a constant that depends on p. Balancing the terms in the inner infimum,

inf
λ>0

{
1

nλ
γ−p +Γ

∗ (
2λG2

)}
= inf

λ>0

{
1

nλ
γ−p +cr

(λG2)
r

r−2

K
2

r−2

}
≤ cr n− r

2(r−1) γ− r p
2(r−1) G

r
r−1 K − 1

r−1

where cr is a constant that depends on r and may change from one expression to next. The value of γ that balances

cp Gn−1/2γ1−p/2 = cr n− r
2(r−1) γ− r p

2(r−1) G
r

r−1

is

γ= cr,p n
− 1

2(r−1)+p G
2

2(r−1)+p K
− 2

2(r−1)+p

and it gives

Vn

n log n
≤ cr,p

(
n
− 1

2(r−1)+p G
2

2(r−1)+p K
− 2

2(r−1)+p

)1−p/2

Gn−1/2

= cr,p n
− r

2(r−1)+p G
2r

2(r−1)+p K
− 2−p

2(r−1)+p

On the other hand, using [25, Theorem 8], we have

Vn ≤ cGRn(F )

In turn, sequential Rademacher complexity Rn(F ) is upper bounded via (9) by either O(n1−1/p ) or O(n1/2) for

p > 2 and p ∈ (0,2), respectively. More precisely, for the p > 2 regime, taking ρ = n−1/p we obtain

1

n
Rn(F )≤ 4n−1/p +12n−1/2

∫∞

n−1/p

√
δ−p log(n/δ)dδ (36)

= cn−1/p +c
√

log(n)/n

[(
2

2−p

)
δ(2−p)/2

]∞

n−1/p

(37)

≤ cp n−1/p
√

log(n). (38)

The same calculation for p ∈ (0,2) gives 1
n
Rn(F ) ≤ cF n−1/2

√
log(n).
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Proof of Theorem 11. From Lemma 9,

Vn ≥ sup
β≤1





Rβ

2

√
nfatβ(F )

2
−n ∆κ

(
β

2

)
≥ sup

β≤1

{
R
p

nβ1−p/2

2
p

2
−nKβr

}

Using β= min

{
1,

(
R2

cp,r K 2n

) 1
2r+p−2

}
, we find that

1

n
Vn ≥ cp,r min

{
R
p

n
, K

− 2−p
2(r−1)+p R

2r
2(r−1)+p n

− r
2(r−1)+p

}

for some constant cp,r .

Proof of Corollary 14. The second derivative of this loss with respect to the first argument is given by q(q −1)|y −
ŷ |q−2, and it is lower bounded by

q(q−1)
2 because q ∈ (1,2) and y, ŷ ∈ [−1,1]. This means that the loss is q(q −1)/2

strongly convex and so

∆(x) ≥
q(q −1)

2
x2.

We now turn to upper bounding ∆. Choose S = {0} and take y1 = 1, y2 =−1. By symmetry of the loss function, the

optimal ŷ∗ = 0, verifying property (12). Then

∆0(x) = sup
x∈Y

max
{
∆

1
0,x ,∆−1

0,x

}
, (39)

with domain Ŷ − {0} = [−1,1]. For any y ∈Y , the generalized binomial theorem gives an expansion of ℓ(·, y) at the

point a 6= y as

∆
y

a,b
= ℓ(b, y)− [ℓ(a, y)+∂aℓ(a, y) · (b −a)]=

∞∑

j=2

∏j−1

k=0
(q −k)

j !
(a − y)q− j · (b −a) j

Then, taking b = x and a = 0,

∆0(x) ≤
∞∑

j=2

∏ j−1

k=0

∣∣q −k
∣∣

j !
|x| j =

(
∞∑

j=2

∏ j−1

k=2
(k −q)

j !
|x| j−2

)
q(q −1)x2

Since q > 1 we can bound the above by

(
∞∑

j=2

( j −2)!

j !
|x| j−2

)
q(q −1)x2 ≤

(
∞∑

j=2

1

j ( j −1)

)
q(q −1)x2 ≤ 2q(q −1)x2.

The result follow from Theorems 10 and 11.
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